qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

seg_helper.c (7742B)


      1 /*
      2  *  x86 segmentation related helpers: (sysemu-only code)
      3  *  TSS, interrupts, system calls, jumps and call/task gates, descriptors
      4  *
      5  *  Copyright (c) 2003 Fabrice Bellard
      6  *
      7  * This library is free software; you can redistribute it and/or
      8  * modify it under the terms of the GNU Lesser General Public
      9  * License as published by the Free Software Foundation; either
     10  * version 2.1 of the License, or (at your option) any later version.
     11  *
     12  * This library is distributed in the hope that it will be useful,
     13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     15  * Lesser General Public License for more details.
     16  *
     17  * You should have received a copy of the GNU Lesser General Public
     18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     19  */
     20 
     21 #include "qemu/osdep.h"
     22 #include "qemu/log.h"
     23 #include "cpu.h"
     24 #include "exec/helper-proto.h"
     25 #include "exec/cpu_ldst.h"
     26 #include "tcg/helper-tcg.h"
     27 #include "../seg_helper.h"
     28 
     29 #ifdef TARGET_X86_64
     30 void helper_syscall(CPUX86State *env, int next_eip_addend)
     31 {
     32     int selector;
     33 
     34     if (!(env->efer & MSR_EFER_SCE)) {
     35         raise_exception_err_ra(env, EXCP06_ILLOP, 0, GETPC());
     36     }
     37     selector = (env->star >> 32) & 0xffff;
     38     if (env->hflags & HF_LMA_MASK) {
     39         int code64;
     40 
     41         env->regs[R_ECX] = env->eip + next_eip_addend;
     42         env->regs[11] = cpu_compute_eflags(env) & ~RF_MASK;
     43 
     44         code64 = env->hflags & HF_CS64_MASK;
     45 
     46         env->eflags &= ~(env->fmask | RF_MASK);
     47         cpu_load_eflags(env, env->eflags, 0);
     48         cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
     49                            0, 0xffffffff,
     50                                DESC_G_MASK | DESC_P_MASK |
     51                                DESC_S_MASK |
     52                                DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK |
     53                                DESC_L_MASK);
     54         cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
     55                                0, 0xffffffff,
     56                                DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
     57                                DESC_S_MASK |
     58                                DESC_W_MASK | DESC_A_MASK);
     59         if (code64) {
     60             env->eip = env->lstar;
     61         } else {
     62             env->eip = env->cstar;
     63         }
     64     } else {
     65         env->regs[R_ECX] = (uint32_t)(env->eip + next_eip_addend);
     66 
     67         env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
     68         cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
     69                            0, 0xffffffff,
     70                                DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
     71                                DESC_S_MASK |
     72                                DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
     73         cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
     74                                0, 0xffffffff,
     75                                DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
     76                                DESC_S_MASK |
     77                                DESC_W_MASK | DESC_A_MASK);
     78         env->eip = (uint32_t)env->star;
     79     }
     80 }
     81 #endif /* TARGET_X86_64 */
     82 
     83 void handle_even_inj(CPUX86State *env, int intno, int is_int,
     84                      int error_code, int is_hw, int rm)
     85 {
     86     CPUState *cs = env_cpu(env);
     87     uint32_t event_inj = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
     88                                                           control.event_inj));
     89 
     90     if (!(event_inj & SVM_EVTINJ_VALID)) {
     91         int type;
     92 
     93         if (is_int) {
     94             type = SVM_EVTINJ_TYPE_SOFT;
     95         } else {
     96             type = SVM_EVTINJ_TYPE_EXEPT;
     97         }
     98         event_inj = intno | type | SVM_EVTINJ_VALID;
     99         if (!rm && exception_has_error_code(intno)) {
    100             event_inj |= SVM_EVTINJ_VALID_ERR;
    101             x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
    102                                              control.event_inj_err),
    103                      error_code);
    104         }
    105         x86_stl_phys(cs,
    106                  env->vm_vmcb + offsetof(struct vmcb, control.event_inj),
    107                  event_inj);
    108     }
    109 }
    110 
    111 void x86_cpu_do_interrupt(CPUState *cs)
    112 {
    113     X86CPU *cpu = X86_CPU(cs);
    114     CPUX86State *env = &cpu->env;
    115 
    116     if (cs->exception_index == EXCP_VMEXIT) {
    117         assert(env->old_exception == -1);
    118         do_vmexit(env);
    119     } else {
    120         do_interrupt_all(cpu, cs->exception_index,
    121                          env->exception_is_int,
    122                          env->error_code,
    123                          env->exception_next_eip, 0);
    124         /* successfully delivered */
    125         env->old_exception = -1;
    126     }
    127 }
    128 
    129 bool x86_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
    130 {
    131     X86CPU *cpu = X86_CPU(cs);
    132     CPUX86State *env = &cpu->env;
    133     int intno;
    134 
    135     interrupt_request = x86_cpu_pending_interrupt(cs, interrupt_request);
    136     if (!interrupt_request) {
    137         return false;
    138     }
    139 
    140     /* Don't process multiple interrupt requests in a single call.
    141      * This is required to make icount-driven execution deterministic.
    142      */
    143     switch (interrupt_request) {
    144     case CPU_INTERRUPT_POLL:
    145         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
    146         apic_poll_irq(cpu->apic_state);
    147         break;
    148     case CPU_INTERRUPT_SIPI:
    149         do_cpu_sipi(cpu);
    150         break;
    151     case CPU_INTERRUPT_SMI:
    152         cpu_svm_check_intercept_param(env, SVM_EXIT_SMI, 0, 0);
    153         cs->interrupt_request &= ~CPU_INTERRUPT_SMI;
    154         do_smm_enter(cpu);
    155         break;
    156     case CPU_INTERRUPT_NMI:
    157         cpu_svm_check_intercept_param(env, SVM_EXIT_NMI, 0, 0);
    158         cs->interrupt_request &= ~CPU_INTERRUPT_NMI;
    159         env->hflags2 |= HF2_NMI_MASK;
    160         do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
    161         break;
    162     case CPU_INTERRUPT_MCE:
    163         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
    164         do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
    165         break;
    166     case CPU_INTERRUPT_HARD:
    167         cpu_svm_check_intercept_param(env, SVM_EXIT_INTR, 0, 0);
    168         cs->interrupt_request &= ~(CPU_INTERRUPT_HARD |
    169                                    CPU_INTERRUPT_VIRQ);
    170         intno = cpu_get_pic_interrupt(env);
    171         qemu_log_mask(CPU_LOG_INT,
    172                       "Servicing hardware INT=0x%02x\n", intno);
    173         do_interrupt_x86_hardirq(env, intno, 1);
    174         break;
    175     case CPU_INTERRUPT_VIRQ:
    176         cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR, 0, 0);
    177         intno = x86_ldl_phys(cs, env->vm_vmcb
    178                              + offsetof(struct vmcb, control.int_vector));
    179         qemu_log_mask(CPU_LOG_INT,
    180                       "Servicing virtual hardware INT=0x%02x\n", intno);
    181         do_interrupt_x86_hardirq(env, intno, 1);
    182         cs->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
    183         env->int_ctl &= ~V_IRQ_MASK;
    184         break;
    185     }
    186 
    187     /* Ensure that no TB jump will be modified as the program flow was changed.  */
    188     return true;
    189 }
    190 
    191 /* check if Port I/O is allowed in TSS */
    192 void helper_check_io(CPUX86State *env, uint32_t addr, uint32_t size)
    193 {
    194     uintptr_t retaddr = GETPC();
    195     uint32_t io_offset, val, mask;
    196 
    197     /* TSS must be a valid 32 bit one */
    198     if (!(env->tr.flags & DESC_P_MASK) ||
    199         ((env->tr.flags >> DESC_TYPE_SHIFT) & 0xf) != 9 ||
    200         env->tr.limit < 103) {
    201         goto fail;
    202     }
    203     io_offset = cpu_lduw_kernel_ra(env, env->tr.base + 0x66, retaddr);
    204     io_offset += (addr >> 3);
    205     /* Note: the check needs two bytes */
    206     if ((io_offset + 1) > env->tr.limit) {
    207         goto fail;
    208     }
    209     val = cpu_lduw_kernel_ra(env, env->tr.base + io_offset, retaddr);
    210     val >>= (addr & 7);
    211     mask = (1 << size) - 1;
    212     /* all bits must be zero to allow the I/O */
    213     if ((val & mask) != 0) {
    214     fail:
    215         raise_exception_err_ra(env, EXCP0D_GPF, 0, retaddr);
    216     }
    217 }