qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

excp_helper.c (19237B)


      1 /*
      2  *  x86 exception helpers - sysemu code
      3  *
      4  *  Copyright (c) 2003 Fabrice Bellard
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2.1 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 
     20 #include "qemu/osdep.h"
     21 #include "cpu.h"
     22 #include "exec/exec-all.h"
     23 #include "tcg/helper-tcg.h"
     24 
     25 typedef struct TranslateParams {
     26     target_ulong addr;
     27     target_ulong cr3;
     28     int pg_mode;
     29     int mmu_idx;
     30     int ptw_idx;
     31     MMUAccessType access_type;
     32 } TranslateParams;
     33 
     34 typedef struct TranslateResult {
     35     hwaddr paddr;
     36     int prot;
     37     int page_size;
     38 } TranslateResult;
     39 
     40 typedef enum TranslateFaultStage2 {
     41     S2_NONE,
     42     S2_GPA,
     43     S2_GPT,
     44 } TranslateFaultStage2;
     45 
     46 typedef struct TranslateFault {
     47     int exception_index;
     48     int error_code;
     49     target_ulong cr2;
     50     TranslateFaultStage2 stage2;
     51 } TranslateFault;
     52 
     53 typedef struct PTETranslate {
     54     CPUX86State *env;
     55     TranslateFault *err;
     56     int ptw_idx;
     57     void *haddr;
     58     hwaddr gaddr;
     59 } PTETranslate;
     60 
     61 static bool ptw_translate(PTETranslate *inout, hwaddr addr)
     62 {
     63     CPUTLBEntryFull *full;
     64     int flags;
     65 
     66     inout->gaddr = addr;
     67     flags = probe_access_full(inout->env, addr, MMU_DATA_STORE,
     68                               inout->ptw_idx, true, &inout->haddr, &full, 0);
     69 
     70     if (unlikely(flags & TLB_INVALID_MASK)) {
     71         TranslateFault *err = inout->err;
     72 
     73         assert(inout->ptw_idx == MMU_NESTED_IDX);
     74         *err = (TranslateFault){
     75             .error_code = inout->env->error_code,
     76             .cr2 = addr,
     77             .stage2 = S2_GPT,
     78         };
     79         return false;
     80     }
     81     return true;
     82 }
     83 
     84 static inline uint32_t ptw_ldl(const PTETranslate *in)
     85 {
     86     if (likely(in->haddr)) {
     87         return ldl_p(in->haddr);
     88     }
     89     return cpu_ldl_mmuidx_ra(in->env, in->gaddr, in->ptw_idx, 0);
     90 }
     91 
     92 static inline uint64_t ptw_ldq(const PTETranslate *in)
     93 {
     94     if (likely(in->haddr)) {
     95         return ldq_p(in->haddr);
     96     }
     97     return cpu_ldq_mmuidx_ra(in->env, in->gaddr, in->ptw_idx, 0);
     98 }
     99 
    100 /*
    101  * Note that we can use a 32-bit cmpxchg for all page table entries,
    102  * even 64-bit ones, because PG_PRESENT_MASK, PG_ACCESSED_MASK and
    103  * PG_DIRTY_MASK are all in the low 32 bits.
    104  */
    105 static bool ptw_setl_slow(const PTETranslate *in, uint32_t old, uint32_t new)
    106 {
    107     uint32_t cmp;
    108 
    109     /* Does x86 really perform a rmw cycle on mmio for ptw? */
    110     start_exclusive();
    111     cmp = cpu_ldl_mmuidx_ra(in->env, in->gaddr, in->ptw_idx, 0);
    112     if (cmp == old) {
    113         cpu_stl_mmuidx_ra(in->env, in->gaddr, new, in->ptw_idx, 0);
    114     }
    115     end_exclusive();
    116     return cmp == old;
    117 }
    118 
    119 static inline bool ptw_setl(const PTETranslate *in, uint32_t old, uint32_t set)
    120 {
    121     if (set & ~old) {
    122         uint32_t new = old | set;
    123         if (likely(in->haddr)) {
    124             old = cpu_to_le32(old);
    125             new = cpu_to_le32(new);
    126             return qatomic_cmpxchg((uint32_t *)in->haddr, old, new) == old;
    127         }
    128         return ptw_setl_slow(in, old, new);
    129     }
    130     return true;
    131 }
    132 
    133 static bool mmu_translate(CPUX86State *env, const TranslateParams *in,
    134                           TranslateResult *out, TranslateFault *err)
    135 {
    136     const int32_t a20_mask = x86_get_a20_mask(env);
    137     const target_ulong addr = in->addr;
    138     const int pg_mode = in->pg_mode;
    139     const bool is_user = (in->mmu_idx == MMU_USER_IDX);
    140     const MMUAccessType access_type = in->access_type;
    141     uint64_t ptep, pte, rsvd_mask;
    142     PTETranslate pte_trans = {
    143         .env = env,
    144         .err = err,
    145         .ptw_idx = in->ptw_idx,
    146     };
    147     hwaddr pte_addr, paddr;
    148     uint32_t pkr;
    149     int page_size;
    150 
    151  restart_all:
    152     rsvd_mask = ~MAKE_64BIT_MASK(0, env_archcpu(env)->phys_bits);
    153     rsvd_mask &= PG_ADDRESS_MASK;
    154     if (!(pg_mode & PG_MODE_NXE)) {
    155         rsvd_mask |= PG_NX_MASK;
    156     }
    157 
    158     if (pg_mode & PG_MODE_PAE) {
    159 #ifdef TARGET_X86_64
    160         if (pg_mode & PG_MODE_LMA) {
    161             if (pg_mode & PG_MODE_LA57) {
    162                 /*
    163                  * Page table level 5
    164                  */
    165                 pte_addr = ((in->cr3 & ~0xfff) +
    166                             (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
    167                 if (!ptw_translate(&pte_trans, pte_addr)) {
    168                     return false;
    169                 }
    170             restart_5:
    171                 pte = ptw_ldq(&pte_trans);
    172                 if (!(pte & PG_PRESENT_MASK)) {
    173                     goto do_fault;
    174                 }
    175                 if (pte & (rsvd_mask | PG_PSE_MASK)) {
    176                     goto do_fault_rsvd;
    177                 }
    178                 if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
    179                     goto restart_5;
    180                 }
    181                 ptep = pte ^ PG_NX_MASK;
    182             } else {
    183                 pte = in->cr3;
    184                 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
    185             }
    186 
    187             /*
    188              * Page table level 4
    189              */
    190             pte_addr = ((pte & PG_ADDRESS_MASK) +
    191                         (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
    192             if (!ptw_translate(&pte_trans, pte_addr)) {
    193                 return false;
    194             }
    195         restart_4:
    196             pte = ptw_ldq(&pte_trans);
    197             if (!(pte & PG_PRESENT_MASK)) {
    198                 goto do_fault;
    199             }
    200             if (pte & (rsvd_mask | PG_PSE_MASK)) {
    201                 goto do_fault_rsvd;
    202             }
    203             if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
    204                 goto restart_4;
    205             }
    206             ptep &= pte ^ PG_NX_MASK;
    207 
    208             /*
    209              * Page table level 3
    210              */
    211             pte_addr = ((pte & PG_ADDRESS_MASK) +
    212                         (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
    213             if (!ptw_translate(&pte_trans, pte_addr)) {
    214                 return false;
    215             }
    216         restart_3_lma:
    217             pte = ptw_ldq(&pte_trans);
    218             if (!(pte & PG_PRESENT_MASK)) {
    219                 goto do_fault;
    220             }
    221             if (pte & rsvd_mask) {
    222                 goto do_fault_rsvd;
    223             }
    224             if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
    225                 goto restart_3_lma;
    226             }
    227             ptep &= pte ^ PG_NX_MASK;
    228             if (pte & PG_PSE_MASK) {
    229                 /* 1 GB page */
    230                 page_size = 1024 * 1024 * 1024;
    231                 goto do_check_protect;
    232             }
    233         } else
    234 #endif
    235         {
    236             /*
    237              * Page table level 3
    238              */
    239             pte_addr = ((in->cr3 & ~0x1f) + ((addr >> 27) & 0x18)) & a20_mask;
    240             if (!ptw_translate(&pte_trans, pte_addr)) {
    241                 return false;
    242             }
    243             rsvd_mask |= PG_HI_USER_MASK;
    244         restart_3_nolma:
    245             pte = ptw_ldq(&pte_trans);
    246             if (!(pte & PG_PRESENT_MASK)) {
    247                 goto do_fault;
    248             }
    249             if (pte & (rsvd_mask | PG_NX_MASK)) {
    250                 goto do_fault_rsvd;
    251             }
    252             if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
    253                 goto restart_3_nolma;
    254             }
    255             ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
    256         }
    257 
    258         /*
    259          * Page table level 2
    260          */
    261         pte_addr = ((pte & PG_ADDRESS_MASK) +
    262                     (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
    263         if (!ptw_translate(&pte_trans, pte_addr)) {
    264             return false;
    265         }
    266     restart_2_pae:
    267         pte = ptw_ldq(&pte_trans);
    268         if (!(pte & PG_PRESENT_MASK)) {
    269             goto do_fault;
    270         }
    271         if (pte & rsvd_mask) {
    272             goto do_fault_rsvd;
    273         }
    274         if (pte & PG_PSE_MASK) {
    275             /* 2 MB page */
    276             page_size = 2048 * 1024;
    277             ptep &= pte ^ PG_NX_MASK;
    278             goto do_check_protect;
    279         }
    280         if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
    281             goto restart_2_pae;
    282         }
    283         ptep &= pte ^ PG_NX_MASK;
    284 
    285         /*
    286          * Page table level 1
    287          */
    288         pte_addr = ((pte & PG_ADDRESS_MASK) +
    289                     (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
    290         if (!ptw_translate(&pte_trans, pte_addr)) {
    291             return false;
    292         }
    293         pte = ptw_ldq(&pte_trans);
    294         if (!(pte & PG_PRESENT_MASK)) {
    295             goto do_fault;
    296         }
    297         if (pte & rsvd_mask) {
    298             goto do_fault_rsvd;
    299         }
    300         /* combine pde and pte nx, user and rw protections */
    301         ptep &= pte ^ PG_NX_MASK;
    302         page_size = 4096;
    303     } else {
    304         /*
    305          * Page table level 2
    306          */
    307         pte_addr = ((in->cr3 & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
    308         if (!ptw_translate(&pte_trans, pte_addr)) {
    309             return false;
    310         }
    311     restart_2_nopae:
    312         pte = ptw_ldl(&pte_trans);
    313         if (!(pte & PG_PRESENT_MASK)) {
    314             goto do_fault;
    315         }
    316         ptep = pte | PG_NX_MASK;
    317 
    318         /* if PSE bit is set, then we use a 4MB page */
    319         if ((pte & PG_PSE_MASK) && (pg_mode & PG_MODE_PSE)) {
    320             page_size = 4096 * 1024;
    321             /*
    322              * Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
    323              * Leave bits 20-13 in place for setting accessed/dirty bits below.
    324              */
    325             pte = (uint32_t)pte | ((pte & 0x1fe000LL) << (32 - 13));
    326             rsvd_mask = 0x200000;
    327             goto do_check_protect_pse36;
    328         }
    329         if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
    330             goto restart_2_nopae;
    331         }
    332 
    333         /*
    334          * Page table level 1
    335          */
    336         pte_addr = ((pte & ~0xfffu) + ((addr >> 10) & 0xffc)) & a20_mask;
    337         if (!ptw_translate(&pte_trans, pte_addr)) {
    338             return false;
    339         }
    340         pte = ptw_ldl(&pte_trans);
    341         if (!(pte & PG_PRESENT_MASK)) {
    342             goto do_fault;
    343         }
    344         /* combine pde and pte user and rw protections */
    345         ptep &= pte | PG_NX_MASK;
    346         page_size = 4096;
    347         rsvd_mask = 0;
    348     }
    349 
    350 do_check_protect:
    351     rsvd_mask |= (page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK;
    352 do_check_protect_pse36:
    353     if (pte & rsvd_mask) {
    354         goto do_fault_rsvd;
    355     }
    356     ptep ^= PG_NX_MASK;
    357 
    358     /* can the page can be put in the TLB?  prot will tell us */
    359     if (is_user && !(ptep & PG_USER_MASK)) {
    360         goto do_fault_protect;
    361     }
    362 
    363     int prot = 0;
    364     if (in->mmu_idx != MMU_KSMAP_IDX || !(ptep & PG_USER_MASK)) {
    365         prot |= PAGE_READ;
    366         if ((ptep & PG_RW_MASK) || !(is_user || (pg_mode & PG_MODE_WP))) {
    367             prot |= PAGE_WRITE;
    368         }
    369     }
    370     if (!(ptep & PG_NX_MASK) &&
    371         (is_user ||
    372          !((pg_mode & PG_MODE_SMEP) && (ptep & PG_USER_MASK)))) {
    373         prot |= PAGE_EXEC;
    374     }
    375 
    376     if (ptep & PG_USER_MASK) {
    377         pkr = pg_mode & PG_MODE_PKE ? env->pkru : 0;
    378     } else {
    379         pkr = pg_mode & PG_MODE_PKS ? env->pkrs : 0;
    380     }
    381     if (pkr) {
    382         uint32_t pk = (pte & PG_PKRU_MASK) >> PG_PKRU_BIT;
    383         uint32_t pkr_ad = (pkr >> pk * 2) & 1;
    384         uint32_t pkr_wd = (pkr >> pk * 2) & 2;
    385         uint32_t pkr_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    386 
    387         if (pkr_ad) {
    388             pkr_prot &= ~(PAGE_READ | PAGE_WRITE);
    389         } else if (pkr_wd && (is_user || (pg_mode & PG_MODE_WP))) {
    390             pkr_prot &= ~PAGE_WRITE;
    391         }
    392         if ((pkr_prot & (1 << access_type)) == 0) {
    393             goto do_fault_pk_protect;
    394         }
    395         prot &= pkr_prot;
    396     }
    397 
    398     if ((prot & (1 << access_type)) == 0) {
    399         goto do_fault_protect;
    400     }
    401 
    402     /* yes, it can! */
    403     {
    404         uint32_t set = PG_ACCESSED_MASK;
    405         if (access_type == MMU_DATA_STORE) {
    406             set |= PG_DIRTY_MASK;
    407         } else if (!(pte & PG_DIRTY_MASK)) {
    408             /*
    409              * Only set write access if already dirty...
    410              * otherwise wait for dirty access.
    411              */
    412             prot &= ~PAGE_WRITE;
    413         }
    414         if (!ptw_setl(&pte_trans, pte, set)) {
    415             /*
    416              * We can arrive here from any of 3 levels and 2 formats.
    417              * The only safe thing is to restart the entire lookup.
    418              */
    419             goto restart_all;
    420         }
    421     }
    422 
    423     /* align to page_size */
    424     paddr = (pte & a20_mask & PG_ADDRESS_MASK & ~(page_size - 1))
    425           | (addr & (page_size - 1));
    426 
    427     if (in->ptw_idx == MMU_NESTED_IDX) {
    428         CPUTLBEntryFull *full;
    429         int flags, nested_page_size;
    430 
    431         flags = probe_access_full(env, paddr, access_type,
    432                                   MMU_NESTED_IDX, true,
    433                                   &pte_trans.haddr, &full, 0);
    434         if (unlikely(flags & TLB_INVALID_MASK)) {
    435             *err = (TranslateFault){
    436                 .error_code = env->error_code,
    437                 .cr2 = paddr,
    438                 .stage2 = S2_GPA,
    439             };
    440             return false;
    441         }
    442 
    443         /* Merge stage1 & stage2 protection bits. */
    444         prot &= full->prot;
    445 
    446         /* Re-verify resulting protection. */
    447         if ((prot & (1 << access_type)) == 0) {
    448             goto do_fault_protect;
    449         }
    450 
    451         /* Merge stage1 & stage2 addresses to final physical address. */
    452         nested_page_size = 1 << full->lg_page_size;
    453         paddr = (full->phys_addr & ~(nested_page_size - 1))
    454               | (paddr & (nested_page_size - 1));
    455 
    456         /*
    457          * Use the larger of stage1 & stage2 page sizes, so that
    458          * invalidation works.
    459          */
    460         if (nested_page_size > page_size) {
    461             page_size = nested_page_size;
    462         }
    463     }
    464 
    465     out->paddr = paddr;
    466     out->prot = prot;
    467     out->page_size = page_size;
    468     return true;
    469 
    470     int error_code;
    471  do_fault_rsvd:
    472     error_code = PG_ERROR_RSVD_MASK;
    473     goto do_fault_cont;
    474  do_fault_protect:
    475     error_code = PG_ERROR_P_MASK;
    476     goto do_fault_cont;
    477  do_fault_pk_protect:
    478     assert(access_type != MMU_INST_FETCH);
    479     error_code = PG_ERROR_PK_MASK | PG_ERROR_P_MASK;
    480     goto do_fault_cont;
    481  do_fault:
    482     error_code = 0;
    483  do_fault_cont:
    484     if (is_user) {
    485         error_code |= PG_ERROR_U_MASK;
    486     }
    487     switch (access_type) {
    488     case MMU_DATA_LOAD:
    489         break;
    490     case MMU_DATA_STORE:
    491         error_code |= PG_ERROR_W_MASK;
    492         break;
    493     case MMU_INST_FETCH:
    494         if (pg_mode & (PG_MODE_NXE | PG_MODE_SMEP)) {
    495             error_code |= PG_ERROR_I_D_MASK;
    496         }
    497         break;
    498     }
    499     *err = (TranslateFault){
    500         .exception_index = EXCP0E_PAGE,
    501         .error_code = error_code,
    502         .cr2 = addr,
    503     };
    504     return false;
    505 }
    506 
    507 static G_NORETURN void raise_stage2(CPUX86State *env, TranslateFault *err,
    508                                     uintptr_t retaddr)
    509 {
    510     uint64_t exit_info_1 = err->error_code;
    511 
    512     switch (err->stage2) {
    513     case S2_GPT:
    514         exit_info_1 |= SVM_NPTEXIT_GPT;
    515         break;
    516     case S2_GPA:
    517         exit_info_1 |= SVM_NPTEXIT_GPA;
    518         break;
    519     default:
    520         g_assert_not_reached();
    521     }
    522 
    523     x86_stq_phys(env_cpu(env),
    524                  env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
    525                  err->cr2);
    526     cpu_vmexit(env, SVM_EXIT_NPF, exit_info_1, retaddr);
    527 }
    528 
    529 static bool get_physical_address(CPUX86State *env, vaddr addr,
    530                                  MMUAccessType access_type, int mmu_idx,
    531                                  TranslateResult *out, TranslateFault *err)
    532 {
    533     TranslateParams in;
    534     bool use_stage2 = env->hflags2 & HF2_NPT_MASK;
    535 
    536     in.addr = addr;
    537     in.access_type = access_type;
    538 
    539     switch (mmu_idx) {
    540     case MMU_PHYS_IDX:
    541         break;
    542 
    543     case MMU_NESTED_IDX:
    544         if (likely(use_stage2)) {
    545             in.cr3 = env->nested_cr3;
    546             in.pg_mode = env->nested_pg_mode;
    547             in.mmu_idx = MMU_USER_IDX;
    548             in.ptw_idx = MMU_PHYS_IDX;
    549 
    550             if (!mmu_translate(env, &in, out, err)) {
    551                 err->stage2 = S2_GPA;
    552                 return false;
    553             }
    554             return true;
    555         }
    556         break;
    557 
    558     default:
    559         if (likely(env->cr[0] & CR0_PG_MASK)) {
    560             in.cr3 = env->cr[3];
    561             in.mmu_idx = mmu_idx;
    562             in.ptw_idx = use_stage2 ? MMU_NESTED_IDX : MMU_PHYS_IDX;
    563             in.pg_mode = get_pg_mode(env);
    564 
    565             if (in.pg_mode & PG_MODE_LMA) {
    566                 /* test virtual address sign extension */
    567                 int shift = in.pg_mode & PG_MODE_LA57 ? 56 : 47;
    568                 int64_t sext = (int64_t)addr >> shift;
    569                 if (sext != 0 && sext != -1) {
    570                     *err = (TranslateFault){
    571                         .exception_index = EXCP0D_GPF,
    572                         .cr2 = addr,
    573                     };
    574                     return false;
    575                 }
    576             }
    577             return mmu_translate(env, &in, out, err);
    578         }
    579         break;
    580     }
    581 
    582     /* Translation disabled. */
    583     out->paddr = addr & x86_get_a20_mask(env);
    584 #ifdef TARGET_X86_64
    585     if (!(env->hflags & HF_LMA_MASK)) {
    586         /* Without long mode we can only address 32bits in real mode */
    587         out->paddr = (uint32_t)out->paddr;
    588     }
    589 #endif
    590     out->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    591     out->page_size = TARGET_PAGE_SIZE;
    592     return true;
    593 }
    594 
    595 bool x86_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
    596                       MMUAccessType access_type, int mmu_idx,
    597                       bool probe, uintptr_t retaddr)
    598 {
    599     CPUX86State *env = cs->env_ptr;
    600     TranslateResult out;
    601     TranslateFault err;
    602 
    603     if (get_physical_address(env, addr, access_type, mmu_idx, &out, &err)) {
    604         /*
    605          * Even if 4MB pages, we map only one 4KB page in the cache to
    606          * avoid filling it too fast.
    607          */
    608         assert(out.prot & (1 << access_type));
    609         tlb_set_page_with_attrs(cs, addr & TARGET_PAGE_MASK,
    610                                 out.paddr & TARGET_PAGE_MASK,
    611                                 cpu_get_mem_attrs(env),
    612                                 out.prot, mmu_idx, out.page_size);
    613         return true;
    614     }
    615 
    616     if (probe) {
    617         /* This will be used if recursing for stage2 translation. */
    618         env->error_code = err.error_code;
    619         return false;
    620     }
    621 
    622     if (err.stage2 != S2_NONE) {
    623         raise_stage2(env, &err, retaddr);
    624     }
    625 
    626     if (env->intercept_exceptions & (1 << err.exception_index)) {
    627         /* cr2 is not modified in case of exceptions */
    628         x86_stq_phys(cs, env->vm_vmcb +
    629                      offsetof(struct vmcb, control.exit_info_2),
    630                      err.cr2);
    631     } else {
    632         env->cr[2] = err.cr2;
    633     }
    634     raise_exception_err_ra(env, err.exception_index, err.error_code, retaddr);
    635 }
    636 
    637 G_NORETURN void x86_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
    638                                             MMUAccessType access_type,
    639                                             int mmu_idx, uintptr_t retaddr)
    640 {
    641     X86CPU *cpu = X86_CPU(cs);
    642     handle_unaligned_access(&cpu->env, vaddr, access_type, retaddr);
    643 }