qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

monitor.c (23960B)


      1 /*
      2  * QEMU monitor
      3  *
      4  * Copyright (c) 2003-2004 Fabrice Bellard
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a copy
      7  * of this software and associated documentation files (the "Software"), to deal
      8  * in the Software without restriction, including without limitation the rights
      9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10  * copies of the Software, and to permit persons to whom the Software is
     11  * furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22  * THE SOFTWARE.
     23  */
     24 
     25 #include "qemu/osdep.h"
     26 #include "cpu.h"
     27 #include "monitor/monitor.h"
     28 #include "monitor/hmp-target.h"
     29 #include "monitor/hmp.h"
     30 #include "qapi/qmp/qdict.h"
     31 #include "qapi/qmp/qerror.h"
     32 #include "sysemu/kvm.h"
     33 #include "qapi/error.h"
     34 #include "qapi/qapi-commands-misc-target.h"
     35 #include "qapi/qapi-commands-misc.h"
     36 #include "hw/i386/pc.h"
     37 
     38 /* Perform linear address sign extension */
     39 static hwaddr addr_canonical(CPUArchState *env, hwaddr addr)
     40 {
     41 #ifdef TARGET_X86_64
     42     if (env->cr[4] & CR4_LA57_MASK) {
     43         if (addr & (1ULL << 56)) {
     44             addr |= (hwaddr)-(1LL << 57);
     45         }
     46     } else {
     47         if (addr & (1ULL << 47)) {
     48             addr |= (hwaddr)-(1LL << 48);
     49         }
     50     }
     51 #endif
     52     return addr;
     53 }
     54 
     55 static void print_pte(Monitor *mon, CPUArchState *env, hwaddr addr,
     56                       hwaddr pte, hwaddr mask)
     57 {
     58     addr = addr_canonical(env, addr);
     59 
     60     monitor_printf(mon, TARGET_FMT_plx ": " TARGET_FMT_plx
     61                    " %c%c%c%c%c%c%c%c%c\n",
     62                    addr,
     63                    pte & mask,
     64                    pte & PG_NX_MASK ? 'X' : '-',
     65                    pte & PG_GLOBAL_MASK ? 'G' : '-',
     66                    pte & PG_PSE_MASK ? 'P' : '-',
     67                    pte & PG_DIRTY_MASK ? 'D' : '-',
     68                    pte & PG_ACCESSED_MASK ? 'A' : '-',
     69                    pte & PG_PCD_MASK ? 'C' : '-',
     70                    pte & PG_PWT_MASK ? 'T' : '-',
     71                    pte & PG_USER_MASK ? 'U' : '-',
     72                    pte & PG_RW_MASK ? 'W' : '-');
     73 }
     74 
     75 static void tlb_info_32(Monitor *mon, CPUArchState *env)
     76 {
     77     unsigned int l1, l2;
     78     uint32_t pgd, pde, pte;
     79 
     80     pgd = env->cr[3] & ~0xfff;
     81     for(l1 = 0; l1 < 1024; l1++) {
     82         cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
     83         pde = le32_to_cpu(pde);
     84         if (pde & PG_PRESENT_MASK) {
     85             if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
     86                 /* 4M pages */
     87                 print_pte(mon, env, (l1 << 22), pde, ~((1 << 21) - 1));
     88             } else {
     89                 for(l2 = 0; l2 < 1024; l2++) {
     90                     cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
     91                     pte = le32_to_cpu(pte);
     92                     if (pte & PG_PRESENT_MASK) {
     93                         print_pte(mon, env, (l1 << 22) + (l2 << 12),
     94                                   pte & ~PG_PSE_MASK,
     95                                   ~0xfff);
     96                     }
     97                 }
     98             }
     99         }
    100     }
    101 }
    102 
    103 static void tlb_info_pae32(Monitor *mon, CPUArchState *env)
    104 {
    105     unsigned int l1, l2, l3;
    106     uint64_t pdpe, pde, pte;
    107     uint64_t pdp_addr, pd_addr, pt_addr;
    108 
    109     pdp_addr = env->cr[3] & ~0x1f;
    110     for (l1 = 0; l1 < 4; l1++) {
    111         cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
    112         pdpe = le64_to_cpu(pdpe);
    113         if (pdpe & PG_PRESENT_MASK) {
    114             pd_addr = pdpe & 0x3fffffffff000ULL;
    115             for (l2 = 0; l2 < 512; l2++) {
    116                 cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
    117                 pde = le64_to_cpu(pde);
    118                 if (pde & PG_PRESENT_MASK) {
    119                     if (pde & PG_PSE_MASK) {
    120                         /* 2M pages with PAE, CR4.PSE is ignored */
    121                         print_pte(mon, env, (l1 << 30) + (l2 << 21), pde,
    122                                   ~((hwaddr)(1 << 20) - 1));
    123                     } else {
    124                         pt_addr = pde & 0x3fffffffff000ULL;
    125                         for (l3 = 0; l3 < 512; l3++) {
    126                             cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
    127                             pte = le64_to_cpu(pte);
    128                             if (pte & PG_PRESENT_MASK) {
    129                                 print_pte(mon, env, (l1 << 30) + (l2 << 21)
    130                                           + (l3 << 12),
    131                                           pte & ~PG_PSE_MASK,
    132                                           ~(hwaddr)0xfff);
    133                             }
    134                         }
    135                     }
    136                 }
    137             }
    138         }
    139     }
    140 }
    141 
    142 #ifdef TARGET_X86_64
    143 static void tlb_info_la48(Monitor *mon, CPUArchState *env,
    144         uint64_t l0, uint64_t pml4_addr)
    145 {
    146     uint64_t l1, l2, l3, l4;
    147     uint64_t pml4e, pdpe, pde, pte;
    148     uint64_t pdp_addr, pd_addr, pt_addr;
    149 
    150     for (l1 = 0; l1 < 512; l1++) {
    151         cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
    152         pml4e = le64_to_cpu(pml4e);
    153         if (!(pml4e & PG_PRESENT_MASK)) {
    154             continue;
    155         }
    156 
    157         pdp_addr = pml4e & 0x3fffffffff000ULL;
    158         for (l2 = 0; l2 < 512; l2++) {
    159             cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
    160             pdpe = le64_to_cpu(pdpe);
    161             if (!(pdpe & PG_PRESENT_MASK)) {
    162                 continue;
    163             }
    164 
    165             if (pdpe & PG_PSE_MASK) {
    166                 /* 1G pages, CR4.PSE is ignored */
    167                 print_pte(mon, env, (l0 << 48) + (l1 << 39) + (l2 << 30),
    168                         pdpe, 0x3ffffc0000000ULL);
    169                 continue;
    170             }
    171 
    172             pd_addr = pdpe & 0x3fffffffff000ULL;
    173             for (l3 = 0; l3 < 512; l3++) {
    174                 cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
    175                 pde = le64_to_cpu(pde);
    176                 if (!(pde & PG_PRESENT_MASK)) {
    177                     continue;
    178                 }
    179 
    180                 if (pde & PG_PSE_MASK) {
    181                     /* 2M pages, CR4.PSE is ignored */
    182                     print_pte(mon, env, (l0 << 48) + (l1 << 39) + (l2 << 30) +
    183                             (l3 << 21), pde, 0x3ffffffe00000ULL);
    184                     continue;
    185                 }
    186 
    187                 pt_addr = pde & 0x3fffffffff000ULL;
    188                 for (l4 = 0; l4 < 512; l4++) {
    189                     cpu_physical_memory_read(pt_addr
    190                             + l4 * 8,
    191                             &pte, 8);
    192                     pte = le64_to_cpu(pte);
    193                     if (pte & PG_PRESENT_MASK) {
    194                         print_pte(mon, env, (l0 << 48) + (l1 << 39) +
    195                                 (l2 << 30) + (l3 << 21) + (l4 << 12),
    196                                 pte & ~PG_PSE_MASK, 0x3fffffffff000ULL);
    197                     }
    198                 }
    199             }
    200         }
    201     }
    202 }
    203 
    204 static void tlb_info_la57(Monitor *mon, CPUArchState *env)
    205 {
    206     uint64_t l0;
    207     uint64_t pml5e;
    208     uint64_t pml5_addr;
    209 
    210     pml5_addr = env->cr[3] & 0x3fffffffff000ULL;
    211     for (l0 = 0; l0 < 512; l0++) {
    212         cpu_physical_memory_read(pml5_addr + l0 * 8, &pml5e, 8);
    213         pml5e = le64_to_cpu(pml5e);
    214         if (pml5e & PG_PRESENT_MASK) {
    215             tlb_info_la48(mon, env, l0, pml5e & 0x3fffffffff000ULL);
    216         }
    217     }
    218 }
    219 #endif /* TARGET_X86_64 */
    220 
    221 void hmp_info_tlb(Monitor *mon, const QDict *qdict)
    222 {
    223     CPUArchState *env;
    224 
    225     env = mon_get_cpu_env(mon);
    226     if (!env) {
    227         monitor_printf(mon, "No CPU available\n");
    228         return;
    229     }
    230 
    231     if (!(env->cr[0] & CR0_PG_MASK)) {
    232         monitor_printf(mon, "PG disabled\n");
    233         return;
    234     }
    235     if (env->cr[4] & CR4_PAE_MASK) {
    236 #ifdef TARGET_X86_64
    237         if (env->hflags & HF_LMA_MASK) {
    238             if (env->cr[4] & CR4_LA57_MASK) {
    239                 tlb_info_la57(mon, env);
    240             } else {
    241                 tlb_info_la48(mon, env, 0, env->cr[3] & 0x3fffffffff000ULL);
    242             }
    243         } else
    244 #endif
    245         {
    246             tlb_info_pae32(mon, env);
    247         }
    248     } else {
    249         tlb_info_32(mon, env);
    250     }
    251 }
    252 
    253 static void mem_print(Monitor *mon, CPUArchState *env,
    254                       hwaddr *pstart, int *plast_prot,
    255                       hwaddr end, int prot)
    256 {
    257     int prot1;
    258     prot1 = *plast_prot;
    259     if (prot != prot1) {
    260         if (*pstart != -1) {
    261             monitor_printf(mon, TARGET_FMT_plx "-" TARGET_FMT_plx " "
    262                            TARGET_FMT_plx " %c%c%c\n",
    263                            addr_canonical(env, *pstart),
    264                            addr_canonical(env, end),
    265                            addr_canonical(env, end - *pstart),
    266                            prot1 & PG_USER_MASK ? 'u' : '-',
    267                            'r',
    268                            prot1 & PG_RW_MASK ? 'w' : '-');
    269         }
    270         if (prot != 0)
    271             *pstart = end;
    272         else
    273             *pstart = -1;
    274         *plast_prot = prot;
    275     }
    276 }
    277 
    278 static void mem_info_32(Monitor *mon, CPUArchState *env)
    279 {
    280     unsigned int l1, l2;
    281     int prot, last_prot;
    282     uint32_t pgd, pde, pte;
    283     hwaddr start, end;
    284 
    285     pgd = env->cr[3] & ~0xfff;
    286     last_prot = 0;
    287     start = -1;
    288     for(l1 = 0; l1 < 1024; l1++) {
    289         cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
    290         pde = le32_to_cpu(pde);
    291         end = l1 << 22;
    292         if (pde & PG_PRESENT_MASK) {
    293             if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
    294                 prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
    295                 mem_print(mon, env, &start, &last_prot, end, prot);
    296             } else {
    297                 for(l2 = 0; l2 < 1024; l2++) {
    298                     cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
    299                     pte = le32_to_cpu(pte);
    300                     end = (l1 << 22) + (l2 << 12);
    301                     if (pte & PG_PRESENT_MASK) {
    302                         prot = pte & pde &
    303                             (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
    304                     } else {
    305                         prot = 0;
    306                     }
    307                     mem_print(mon, env, &start, &last_prot, end, prot);
    308                 }
    309             }
    310         } else {
    311             prot = 0;
    312             mem_print(mon, env, &start, &last_prot, end, prot);
    313         }
    314     }
    315     /* Flush last range */
    316     mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 32, 0);
    317 }
    318 
    319 static void mem_info_pae32(Monitor *mon, CPUArchState *env)
    320 {
    321     unsigned int l1, l2, l3;
    322     int prot, last_prot;
    323     uint64_t pdpe, pde, pte;
    324     uint64_t pdp_addr, pd_addr, pt_addr;
    325     hwaddr start, end;
    326 
    327     pdp_addr = env->cr[3] & ~0x1f;
    328     last_prot = 0;
    329     start = -1;
    330     for (l1 = 0; l1 < 4; l1++) {
    331         cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
    332         pdpe = le64_to_cpu(pdpe);
    333         end = l1 << 30;
    334         if (pdpe & PG_PRESENT_MASK) {
    335             pd_addr = pdpe & 0x3fffffffff000ULL;
    336             for (l2 = 0; l2 < 512; l2++) {
    337                 cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
    338                 pde = le64_to_cpu(pde);
    339                 end = (l1 << 30) + (l2 << 21);
    340                 if (pde & PG_PRESENT_MASK) {
    341                     if (pde & PG_PSE_MASK) {
    342                         prot = pde & (PG_USER_MASK | PG_RW_MASK |
    343                                       PG_PRESENT_MASK);
    344                         mem_print(mon, env, &start, &last_prot, end, prot);
    345                     } else {
    346                         pt_addr = pde & 0x3fffffffff000ULL;
    347                         for (l3 = 0; l3 < 512; l3++) {
    348                             cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
    349                             pte = le64_to_cpu(pte);
    350                             end = (l1 << 30) + (l2 << 21) + (l3 << 12);
    351                             if (pte & PG_PRESENT_MASK) {
    352                                 prot = pte & pde & (PG_USER_MASK | PG_RW_MASK |
    353                                                     PG_PRESENT_MASK);
    354                             } else {
    355                                 prot = 0;
    356                             }
    357                             mem_print(mon, env, &start, &last_prot, end, prot);
    358                         }
    359                     }
    360                 } else {
    361                     prot = 0;
    362                     mem_print(mon, env, &start, &last_prot, end, prot);
    363                 }
    364             }
    365         } else {
    366             prot = 0;
    367             mem_print(mon, env, &start, &last_prot, end, prot);
    368         }
    369     }
    370     /* Flush last range */
    371     mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 32, 0);
    372 }
    373 
    374 
    375 #ifdef TARGET_X86_64
    376 static void mem_info_la48(Monitor *mon, CPUArchState *env)
    377 {
    378     int prot, last_prot;
    379     uint64_t l1, l2, l3, l4;
    380     uint64_t pml4e, pdpe, pde, pte;
    381     uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr, start, end;
    382 
    383     pml4_addr = env->cr[3] & 0x3fffffffff000ULL;
    384     last_prot = 0;
    385     start = -1;
    386     for (l1 = 0; l1 < 512; l1++) {
    387         cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
    388         pml4e = le64_to_cpu(pml4e);
    389         end = l1 << 39;
    390         if (pml4e & PG_PRESENT_MASK) {
    391             pdp_addr = pml4e & 0x3fffffffff000ULL;
    392             for (l2 = 0; l2 < 512; l2++) {
    393                 cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
    394                 pdpe = le64_to_cpu(pdpe);
    395                 end = (l1 << 39) + (l2 << 30);
    396                 if (pdpe & PG_PRESENT_MASK) {
    397                     if (pdpe & PG_PSE_MASK) {
    398                         prot = pdpe & (PG_USER_MASK | PG_RW_MASK |
    399                                        PG_PRESENT_MASK);
    400                         prot &= pml4e;
    401                         mem_print(mon, env, &start, &last_prot, end, prot);
    402                     } else {
    403                         pd_addr = pdpe & 0x3fffffffff000ULL;
    404                         for (l3 = 0; l3 < 512; l3++) {
    405                             cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
    406                             pde = le64_to_cpu(pde);
    407                             end = (l1 << 39) + (l2 << 30) + (l3 << 21);
    408                             if (pde & PG_PRESENT_MASK) {
    409                                 if (pde & PG_PSE_MASK) {
    410                                     prot = pde & (PG_USER_MASK | PG_RW_MASK |
    411                                                   PG_PRESENT_MASK);
    412                                     prot &= pml4e & pdpe;
    413                                     mem_print(mon, env, &start,
    414                                               &last_prot, end, prot);
    415                                 } else {
    416                                     pt_addr = pde & 0x3fffffffff000ULL;
    417                                     for (l4 = 0; l4 < 512; l4++) {
    418                                         cpu_physical_memory_read(pt_addr
    419                                                                  + l4 * 8,
    420                                                                  &pte, 8);
    421                                         pte = le64_to_cpu(pte);
    422                                         end = (l1 << 39) + (l2 << 30) +
    423                                             (l3 << 21) + (l4 << 12);
    424                                         if (pte & PG_PRESENT_MASK) {
    425                                             prot = pte & (PG_USER_MASK | PG_RW_MASK |
    426                                                           PG_PRESENT_MASK);
    427                                             prot &= pml4e & pdpe & pde;
    428                                         } else {
    429                                             prot = 0;
    430                                         }
    431                                         mem_print(mon, env, &start,
    432                                                   &last_prot, end, prot);
    433                                     }
    434                                 }
    435                             } else {
    436                                 prot = 0;
    437                                 mem_print(mon, env, &start,
    438                                           &last_prot, end, prot);
    439                             }
    440                         }
    441                     }
    442                 } else {
    443                     prot = 0;
    444                     mem_print(mon, env, &start, &last_prot, end, prot);
    445                 }
    446             }
    447         } else {
    448             prot = 0;
    449             mem_print(mon, env, &start, &last_prot, end, prot);
    450         }
    451     }
    452     /* Flush last range */
    453     mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 48, 0);
    454 }
    455 
    456 static void mem_info_la57(Monitor *mon, CPUArchState *env)
    457 {
    458     int prot, last_prot;
    459     uint64_t l0, l1, l2, l3, l4;
    460     uint64_t pml5e, pml4e, pdpe, pde, pte;
    461     uint64_t pml5_addr, pml4_addr, pdp_addr, pd_addr, pt_addr, start, end;
    462 
    463     pml5_addr = env->cr[3] & 0x3fffffffff000ULL;
    464     last_prot = 0;
    465     start = -1;
    466     for (l0 = 0; l0 < 512; l0++) {
    467         cpu_physical_memory_read(pml5_addr + l0 * 8, &pml5e, 8);
    468         pml5e = le64_to_cpu(pml5e);
    469         end = l0 << 48;
    470         if (!(pml5e & PG_PRESENT_MASK)) {
    471             prot = 0;
    472             mem_print(mon, env, &start, &last_prot, end, prot);
    473             continue;
    474         }
    475 
    476         pml4_addr = pml5e & 0x3fffffffff000ULL;
    477         for (l1 = 0; l1 < 512; l1++) {
    478             cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
    479             pml4e = le64_to_cpu(pml4e);
    480             end = (l0 << 48) + (l1 << 39);
    481             if (!(pml4e & PG_PRESENT_MASK)) {
    482                 prot = 0;
    483                 mem_print(mon, env, &start, &last_prot, end, prot);
    484                 continue;
    485             }
    486 
    487             pdp_addr = pml4e & 0x3fffffffff000ULL;
    488             for (l2 = 0; l2 < 512; l2++) {
    489                 cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
    490                 pdpe = le64_to_cpu(pdpe);
    491                 end = (l0 << 48) + (l1 << 39) + (l2 << 30);
    492                 if (pdpe & PG_PRESENT_MASK) {
    493                     prot = 0;
    494                     mem_print(mon, env, &start, &last_prot, end, prot);
    495                     continue;
    496                 }
    497 
    498                 if (pdpe & PG_PSE_MASK) {
    499                     prot = pdpe & (PG_USER_MASK | PG_RW_MASK |
    500                             PG_PRESENT_MASK);
    501                     prot &= pml5e & pml4e;
    502                     mem_print(mon, env, &start, &last_prot, end, prot);
    503                     continue;
    504                 }
    505 
    506                 pd_addr = pdpe & 0x3fffffffff000ULL;
    507                 for (l3 = 0; l3 < 512; l3++) {
    508                     cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
    509                     pde = le64_to_cpu(pde);
    510                     end = (l0 << 48) + (l1 << 39) + (l2 << 30) + (l3 << 21);
    511                     if (pde & PG_PRESENT_MASK) {
    512                         prot = 0;
    513                         mem_print(mon, env, &start, &last_prot, end, prot);
    514                         continue;
    515                     }
    516 
    517                     if (pde & PG_PSE_MASK) {
    518                         prot = pde & (PG_USER_MASK | PG_RW_MASK |
    519                                 PG_PRESENT_MASK);
    520                         prot &= pml5e & pml4e & pdpe;
    521                         mem_print(mon, env, &start, &last_prot, end, prot);
    522                         continue;
    523                     }
    524 
    525                     pt_addr = pde & 0x3fffffffff000ULL;
    526                     for (l4 = 0; l4 < 512; l4++) {
    527                         cpu_physical_memory_read(pt_addr + l4 * 8, &pte, 8);
    528                         pte = le64_to_cpu(pte);
    529                         end = (l0 << 48) + (l1 << 39) + (l2 << 30) +
    530                             (l3 << 21) + (l4 << 12);
    531                         if (pte & PG_PRESENT_MASK) {
    532                             prot = pte & (PG_USER_MASK | PG_RW_MASK |
    533                                     PG_PRESENT_MASK);
    534                             prot &= pml5e & pml4e & pdpe & pde;
    535                         } else {
    536                             prot = 0;
    537                         }
    538                         mem_print(mon, env, &start, &last_prot, end, prot);
    539                     }
    540                 }
    541             }
    542         }
    543     }
    544     /* Flush last range */
    545     mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 57, 0);
    546 }
    547 #endif /* TARGET_X86_64 */
    548 
    549 void hmp_info_mem(Monitor *mon, const QDict *qdict)
    550 {
    551     CPUArchState *env;
    552 
    553     env = mon_get_cpu_env(mon);
    554     if (!env) {
    555         monitor_printf(mon, "No CPU available\n");
    556         return;
    557     }
    558 
    559     if (!(env->cr[0] & CR0_PG_MASK)) {
    560         monitor_printf(mon, "PG disabled\n");
    561         return;
    562     }
    563     if (env->cr[4] & CR4_PAE_MASK) {
    564 #ifdef TARGET_X86_64
    565         if (env->hflags & HF_LMA_MASK) {
    566             if (env->cr[4] & CR4_LA57_MASK) {
    567                 mem_info_la57(mon, env);
    568             } else {
    569                 mem_info_la48(mon, env);
    570             }
    571         } else
    572 #endif
    573         {
    574             mem_info_pae32(mon, env);
    575         }
    576     } else {
    577         mem_info_32(mon, env);
    578     }
    579 }
    580 
    581 void hmp_mce(Monitor *mon, const QDict *qdict)
    582 {
    583     X86CPU *cpu;
    584     CPUState *cs;
    585     int cpu_index = qdict_get_int(qdict, "cpu_index");
    586     int bank = qdict_get_int(qdict, "bank");
    587     uint64_t status = qdict_get_int(qdict, "status");
    588     uint64_t mcg_status = qdict_get_int(qdict, "mcg_status");
    589     uint64_t addr = qdict_get_int(qdict, "addr");
    590     uint64_t misc = qdict_get_int(qdict, "misc");
    591     int flags = MCE_INJECT_UNCOND_AO;
    592 
    593     if (qdict_get_try_bool(qdict, "broadcast", false)) {
    594         flags |= MCE_INJECT_BROADCAST;
    595     }
    596     cs = qemu_get_cpu(cpu_index);
    597     if (cs != NULL) {
    598         cpu = X86_CPU(cs);
    599         cpu_x86_inject_mce(mon, cpu, bank, status, mcg_status, addr, misc,
    600                            flags);
    601     }
    602 }
    603 
    604 static target_long monitor_get_pc(Monitor *mon, const struct MonitorDef *md,
    605                                   int val)
    606 {
    607     CPUArchState *env = mon_get_cpu_env(mon);
    608     return env->eip + env->segs[R_CS].base;
    609 }
    610 
    611 const MonitorDef monitor_defs[] = {
    612 #define SEG(name, seg) \
    613     { name, offsetof(CPUX86State, segs[seg].selector), NULL, MD_I32 },\
    614     { name ".base", offsetof(CPUX86State, segs[seg].base) },\
    615     { name ".limit", offsetof(CPUX86State, segs[seg].limit), NULL, MD_I32 },
    616 
    617     { "eax", offsetof(CPUX86State, regs[0]) },
    618     { "ecx", offsetof(CPUX86State, regs[1]) },
    619     { "edx", offsetof(CPUX86State, regs[2]) },
    620     { "ebx", offsetof(CPUX86State, regs[3]) },
    621     { "esp|sp", offsetof(CPUX86State, regs[4]) },
    622     { "ebp|fp", offsetof(CPUX86State, regs[5]) },
    623     { "esi", offsetof(CPUX86State, regs[6]) },
    624     { "edi", offsetof(CPUX86State, regs[7]) },
    625 #ifdef TARGET_X86_64
    626     { "r8", offsetof(CPUX86State, regs[8]) },
    627     { "r9", offsetof(CPUX86State, regs[9]) },
    628     { "r10", offsetof(CPUX86State, regs[10]) },
    629     { "r11", offsetof(CPUX86State, regs[11]) },
    630     { "r12", offsetof(CPUX86State, regs[12]) },
    631     { "r13", offsetof(CPUX86State, regs[13]) },
    632     { "r14", offsetof(CPUX86State, regs[14]) },
    633     { "r15", offsetof(CPUX86State, regs[15]) },
    634 #endif
    635     { "eflags", offsetof(CPUX86State, eflags) },
    636     { "eip", offsetof(CPUX86State, eip) },
    637     SEG("cs", R_CS)
    638     SEG("ds", R_DS)
    639     SEG("es", R_ES)
    640     SEG("ss", R_SS)
    641     SEG("fs", R_FS)
    642     SEG("gs", R_GS)
    643     { "pc", 0, monitor_get_pc, },
    644     { NULL },
    645 };
    646 
    647 const MonitorDef *target_monitor_defs(void)
    648 {
    649     return monitor_defs;
    650 }
    651 
    652 void hmp_info_local_apic(Monitor *mon, const QDict *qdict)
    653 {
    654     CPUState *cs;
    655 
    656     if (qdict_haskey(qdict, "apic-id")) {
    657         int id = qdict_get_try_int(qdict, "apic-id", 0);
    658         cs = cpu_by_arch_id(id);
    659     } else {
    660         cs = mon_get_cpu(mon);
    661     }
    662 
    663 
    664     if (!cs) {
    665         monitor_printf(mon, "No CPU available\n");
    666         return;
    667     }
    668     x86_cpu_dump_local_apic_state(cs, CPU_DUMP_FPU);
    669 }