qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

hvf.c (21639B)


      1 /* Copyright 2008 IBM Corporation
      2  *           2008 Red Hat, Inc.
      3  * Copyright 2011 Intel Corporation
      4  * Copyright 2016 Veertu, Inc.
      5  * Copyright 2017 The Android Open Source Project
      6  *
      7  * QEMU Hypervisor.framework support
      8  *
      9  * This program is free software; you can redistribute it and/or
     10  * modify it under the terms of version 2 of the GNU General Public
     11  * License as published by the Free Software Foundation.
     12  *
     13  * This program is distributed in the hope that it will be useful,
     14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     16  * General Public License for more details.
     17  *
     18  * You should have received a copy of the GNU General Public License
     19  * along with this program; if not, see <http://www.gnu.org/licenses/>.
     20  *
     21  * This file contain code under public domain from the hvdos project:
     22  * https://github.com/mist64/hvdos
     23  *
     24  * Parts Copyright (c) 2011 NetApp, Inc.
     25  * All rights reserved.
     26  *
     27  * Redistribution and use in source and binary forms, with or without
     28  * modification, are permitted provided that the following conditions
     29  * are met:
     30  * 1. Redistributions of source code must retain the above copyright
     31  *    notice, this list of conditions and the following disclaimer.
     32  * 2. Redistributions in binary form must reproduce the above copyright
     33  *    notice, this list of conditions and the following disclaimer in the
     34  *    documentation and/or other materials provided with the distribution.
     35  *
     36  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
     37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     39  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
     40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     46  * SUCH DAMAGE.
     47  */
     48 
     49 #include "qemu/osdep.h"
     50 #include "qemu/error-report.h"
     51 #include "qemu/memalign.h"
     52 
     53 #include "sysemu/hvf.h"
     54 #include "sysemu/hvf_int.h"
     55 #include "sysemu/runstate.h"
     56 #include "sysemu/cpus.h"
     57 #include "hvf-i386.h"
     58 #include "vmcs.h"
     59 #include "vmx.h"
     60 #include "x86.h"
     61 #include "x86_descr.h"
     62 #include "x86_mmu.h"
     63 #include "x86_decode.h"
     64 #include "x86_emu.h"
     65 #include "x86_task.h"
     66 #include "x86hvf.h"
     67 
     68 #include <Hypervisor/hv.h>
     69 #include <Hypervisor/hv_vmx.h>
     70 #include <sys/sysctl.h>
     71 
     72 #include "hw/i386/apic_internal.h"
     73 #include "qemu/main-loop.h"
     74 #include "qemu/accel.h"
     75 #include "target/i386/cpu.h"
     76 
     77 void vmx_update_tpr(CPUState *cpu)
     78 {
     79     /* TODO: need integrate APIC handling */
     80     X86CPU *x86_cpu = X86_CPU(cpu);
     81     int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
     82     int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
     83 
     84     wreg(cpu->hvf->fd, HV_X86_TPR, tpr);
     85     if (irr == -1) {
     86         wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0);
     87     } else {
     88         wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
     89               irr >> 4);
     90     }
     91 }
     92 
     93 static void update_apic_tpr(CPUState *cpu)
     94 {
     95     X86CPU *x86_cpu = X86_CPU(cpu);
     96     int tpr = rreg(cpu->hvf->fd, HV_X86_TPR) >> 4;
     97     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
     98 }
     99 
    100 #define VECTORING_INFO_VECTOR_MASK     0xff
    101 
    102 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
    103                   int direction, int size, int count)
    104 {
    105     int i;
    106     uint8_t *ptr = buffer;
    107 
    108     for (i = 0; i < count; i++) {
    109         address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
    110                          ptr, size,
    111                          direction);
    112         ptr += size;
    113     }
    114 }
    115 
    116 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
    117 {
    118     int read, write;
    119 
    120     /* EPT fault on an instruction fetch doesn't make sense here */
    121     if (ept_qual & EPT_VIOLATION_INST_FETCH) {
    122         return false;
    123     }
    124 
    125     /* EPT fault must be a read fault or a write fault */
    126     read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
    127     write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
    128     if ((read | write) == 0) {
    129         return false;
    130     }
    131 
    132     if (write && slot) {
    133         if (slot->flags & HVF_SLOT_LOG) {
    134             memory_region_set_dirty(slot->region, gpa - slot->start, 1);
    135             hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
    136                           HV_MEMORY_READ | HV_MEMORY_WRITE);
    137         }
    138     }
    139 
    140     /*
    141      * The EPT violation must have been caused by accessing a
    142      * guest-physical address that is a translation of a guest-linear
    143      * address.
    144      */
    145     if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
    146         (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
    147         return false;
    148     }
    149 
    150     if (!slot) {
    151         return true;
    152     }
    153     if (!memory_region_is_ram(slot->region) &&
    154         !(read && memory_region_is_romd(slot->region))) {
    155         return true;
    156     }
    157     return false;
    158 }
    159 
    160 void hvf_arch_vcpu_destroy(CPUState *cpu)
    161 {
    162     X86CPU *x86_cpu = X86_CPU(cpu);
    163     CPUX86State *env = &x86_cpu->env;
    164 
    165     g_free(env->hvf_mmio_buf);
    166 }
    167 
    168 static void init_tsc_freq(CPUX86State *env)
    169 {
    170     size_t length;
    171     uint64_t tsc_freq;
    172 
    173     if (env->tsc_khz != 0) {
    174         return;
    175     }
    176 
    177     length = sizeof(uint64_t);
    178     if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) {
    179         return;
    180     }
    181     env->tsc_khz = tsc_freq / 1000;  /* Hz to KHz */
    182 }
    183 
    184 static void init_apic_bus_freq(CPUX86State *env)
    185 {
    186     size_t length;
    187     uint64_t bus_freq;
    188 
    189     if (env->apic_bus_freq != 0) {
    190         return;
    191     }
    192 
    193     length = sizeof(uint64_t);
    194     if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) {
    195         return;
    196     }
    197     env->apic_bus_freq = bus_freq;
    198 }
    199 
    200 static inline bool tsc_is_known(CPUX86State *env)
    201 {
    202     return env->tsc_khz != 0;
    203 }
    204 
    205 static inline bool apic_bus_freq_is_known(CPUX86State *env)
    206 {
    207     return env->apic_bus_freq != 0;
    208 }
    209 
    210 void hvf_kick_vcpu_thread(CPUState *cpu)
    211 {
    212     cpus_kick_thread(cpu);
    213 }
    214 
    215 int hvf_arch_init(void)
    216 {
    217     return 0;
    218 }
    219 
    220 int hvf_arch_init_vcpu(CPUState *cpu)
    221 {
    222     X86CPU *x86cpu = X86_CPU(cpu);
    223     CPUX86State *env = &x86cpu->env;
    224     uint64_t reqCap;
    225 
    226     init_emu();
    227     init_decoder();
    228 
    229     hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
    230     env->hvf_mmio_buf = g_new(char, 4096);
    231 
    232     if (x86cpu->vmware_cpuid_freq) {
    233         init_tsc_freq(env);
    234         init_apic_bus_freq(env);
    235 
    236         if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
    237             error_report("vmware-cpuid-freq: feature couldn't be enabled");
    238         }
    239     }
    240 
    241     if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
    242         &hvf_state->hvf_caps->vmx_cap_pinbased)) {
    243         abort();
    244     }
    245     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
    246         &hvf_state->hvf_caps->vmx_cap_procbased)) {
    247         abort();
    248     }
    249     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
    250         &hvf_state->hvf_caps->vmx_cap_procbased2)) {
    251         abort();
    252     }
    253     if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
    254         &hvf_state->hvf_caps->vmx_cap_entry)) {
    255         abort();
    256     }
    257 
    258     /* set VMCS control fields */
    259     wvmcs(cpu->hvf->fd, VMCS_PIN_BASED_CTLS,
    260           cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
    261                    VMCS_PIN_BASED_CTLS_EXTINT |
    262                    VMCS_PIN_BASED_CTLS_NMI |
    263                    VMCS_PIN_BASED_CTLS_VNMI));
    264     wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS,
    265           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
    266                    VMCS_PRI_PROC_BASED_CTLS_HLT |
    267                    VMCS_PRI_PROC_BASED_CTLS_MWAIT |
    268                    VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
    269                    VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
    270           VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
    271 
    272     reqCap = VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES;
    273 
    274     /* Is RDTSCP support in CPUID?  If so, enable it in the VMCS. */
    275     if (hvf_get_supported_cpuid(0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) {
    276         reqCap |= VMCS_PRI_PROC_BASED2_CTLS_RDTSCP;
    277     }
    278 
    279     wvmcs(cpu->hvf->fd, VMCS_SEC_PROC_BASED_CTLS,
    280           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2, reqCap));
    281 
    282     wvmcs(cpu->hvf->fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
    283           0));
    284     wvmcs(cpu->hvf->fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
    285 
    286     wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0);
    287 
    288     x86cpu = X86_CPU(cpu);
    289     x86cpu->env.xsave_buf_len = 4096;
    290     x86cpu->env.xsave_buf = qemu_memalign(4096, x86cpu->env.xsave_buf_len);
    291 
    292     /*
    293      * The allocated storage must be large enough for all of the
    294      * possible XSAVE state components.
    295      */
    296     assert(hvf_get_supported_cpuid(0xd, 0, R_ECX) <= x86cpu->env.xsave_buf_len);
    297 
    298     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_STAR, 1);
    299     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_LSTAR, 1);
    300     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_CSTAR, 1);
    301     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FMASK, 1);
    302     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FSBASE, 1);
    303     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_GSBASE, 1);
    304     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_KERNELGSBASE, 1);
    305     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_TSC_AUX, 1);
    306     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_TSC, 1);
    307     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_CS, 1);
    308     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_EIP, 1);
    309     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_ESP, 1);
    310 
    311     return 0;
    312 }
    313 
    314 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
    315 {
    316     X86CPU *x86_cpu = X86_CPU(cpu);
    317     CPUX86State *env = &x86_cpu->env;
    318 
    319     env->exception_nr = -1;
    320     env->exception_pending = 0;
    321     env->exception_injected = 0;
    322     env->interrupt_injected = -1;
    323     env->nmi_injected = false;
    324     env->ins_len = 0;
    325     env->has_error_code = false;
    326     if (idtvec_info & VMCS_IDT_VEC_VALID) {
    327         switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
    328         case VMCS_IDT_VEC_HWINTR:
    329         case VMCS_IDT_VEC_SWINTR:
    330             env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
    331             break;
    332         case VMCS_IDT_VEC_NMI:
    333             env->nmi_injected = true;
    334             break;
    335         case VMCS_IDT_VEC_HWEXCEPTION:
    336         case VMCS_IDT_VEC_SWEXCEPTION:
    337             env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
    338             env->exception_injected = 1;
    339             break;
    340         case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
    341         default:
    342             abort();
    343         }
    344         if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
    345             (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
    346             env->ins_len = ins_len;
    347         }
    348         if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
    349             env->has_error_code = true;
    350             env->error_code = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_ERROR);
    351         }
    352     }
    353     if ((rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) &
    354         VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
    355         env->hflags2 |= HF2_NMI_MASK;
    356     } else {
    357         env->hflags2 &= ~HF2_NMI_MASK;
    358     }
    359     if (rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) &
    360          (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
    361          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
    362         env->hflags |= HF_INHIBIT_IRQ_MASK;
    363     } else {
    364         env->hflags &= ~HF_INHIBIT_IRQ_MASK;
    365     }
    366 }
    367 
    368 static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
    369                               uint32_t *eax, uint32_t *ebx,
    370                               uint32_t *ecx, uint32_t *edx)
    371 {
    372     /*
    373      * A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs,
    374      * leafs 0x40000001-0x4000000F are filled with zeros
    375      * Provides vmware-cpuid-freq support to hvf
    376      *
    377      * Note: leaf 0x40000000 not exposes HVF,
    378      * leaving hypervisor signature empty
    379      */
    380 
    381     if (index < 0x40000000 || index > 0x40000010 ||
    382         !tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
    383 
    384         cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx);
    385         return;
    386     }
    387 
    388     switch (index) {
    389     case 0x40000000:
    390         *eax = 0x40000010;    /* Max available cpuid leaf */
    391         *ebx = 0;             /* Leave signature empty */
    392         *ecx = 0;
    393         *edx = 0;
    394         break;
    395     case 0x40000010:
    396         *eax = env->tsc_khz;
    397         *ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
    398         *ecx = 0;
    399         *edx = 0;
    400         break;
    401     default:
    402         *eax = 0;
    403         *ebx = 0;
    404         *ecx = 0;
    405         *edx = 0;
    406         break;
    407     }
    408 }
    409 
    410 int hvf_vcpu_exec(CPUState *cpu)
    411 {
    412     X86CPU *x86_cpu = X86_CPU(cpu);
    413     CPUX86State *env = &x86_cpu->env;
    414     int ret = 0;
    415     uint64_t rip = 0;
    416 
    417     if (hvf_process_events(cpu)) {
    418         return EXCP_HLT;
    419     }
    420 
    421     do {
    422         if (cpu->vcpu_dirty) {
    423             hvf_put_registers(cpu);
    424             cpu->vcpu_dirty = false;
    425         }
    426 
    427         if (hvf_inject_interrupts(cpu)) {
    428             return EXCP_INTERRUPT;
    429         }
    430         vmx_update_tpr(cpu);
    431 
    432         qemu_mutex_unlock_iothread();
    433         if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
    434             qemu_mutex_lock_iothread();
    435             return EXCP_HLT;
    436         }
    437 
    438         hv_return_t r  = hv_vcpu_run(cpu->hvf->fd);
    439         assert_hvf_ok(r);
    440 
    441         /* handle VMEXIT */
    442         uint64_t exit_reason = rvmcs(cpu->hvf->fd, VMCS_EXIT_REASON);
    443         uint64_t exit_qual = rvmcs(cpu->hvf->fd, VMCS_EXIT_QUALIFICATION);
    444         uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf->fd,
    445                                            VMCS_EXIT_INSTRUCTION_LENGTH);
    446 
    447         uint64_t idtvec_info = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO);
    448 
    449         hvf_store_events(cpu, ins_len, idtvec_info);
    450         rip = rreg(cpu->hvf->fd, HV_X86_RIP);
    451         env->eflags = rreg(cpu->hvf->fd, HV_X86_RFLAGS);
    452 
    453         qemu_mutex_lock_iothread();
    454 
    455         update_apic_tpr(cpu);
    456         current_cpu = cpu;
    457 
    458         ret = 0;
    459         switch (exit_reason) {
    460         case EXIT_REASON_HLT: {
    461             macvm_set_rip(cpu, rip + ins_len);
    462             if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
    463                 (env->eflags & IF_MASK))
    464                 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
    465                 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
    466                 cpu->halted = 1;
    467                 ret = EXCP_HLT;
    468                 break;
    469             }
    470             ret = EXCP_INTERRUPT;
    471             break;
    472         }
    473         case EXIT_REASON_MWAIT: {
    474             ret = EXCP_INTERRUPT;
    475             break;
    476         }
    477         /* Need to check if MMIO or unmapped fault */
    478         case EXIT_REASON_EPT_FAULT:
    479         {
    480             hvf_slot *slot;
    481             uint64_t gpa = rvmcs(cpu->hvf->fd, VMCS_GUEST_PHYSICAL_ADDRESS);
    482 
    483             if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
    484                 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
    485                 vmx_set_nmi_blocking(cpu);
    486             }
    487 
    488             slot = hvf_find_overlap_slot(gpa, 1);
    489             /* mmio */
    490             if (ept_emulation_fault(slot, gpa, exit_qual)) {
    491                 struct x86_decode decode;
    492 
    493                 load_regs(cpu);
    494                 decode_instruction(env, &decode);
    495                 exec_instruction(env, &decode);
    496                 store_regs(cpu);
    497                 break;
    498             }
    499             break;
    500         }
    501         case EXIT_REASON_INOUT:
    502         {
    503             uint32_t in = (exit_qual & 8) != 0;
    504             uint32_t size =  (exit_qual & 7) + 1;
    505             uint32_t string =  (exit_qual & 16) != 0;
    506             uint32_t port =  exit_qual >> 16;
    507             /*uint32_t rep = (exit_qual & 0x20) != 0;*/
    508 
    509             if (!string && in) {
    510                 uint64_t val = 0;
    511                 load_regs(cpu);
    512                 hvf_handle_io(env, port, &val, 0, size, 1);
    513                 if (size == 1) {
    514                     AL(env) = val;
    515                 } else if (size == 2) {
    516                     AX(env) = val;
    517                 } else if (size == 4) {
    518                     RAX(env) = (uint32_t)val;
    519                 } else {
    520                     RAX(env) = (uint64_t)val;
    521                 }
    522                 env->eip += ins_len;
    523                 store_regs(cpu);
    524                 break;
    525             } else if (!string && !in) {
    526                 RAX(env) = rreg(cpu->hvf->fd, HV_X86_RAX);
    527                 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
    528                 macvm_set_rip(cpu, rip + ins_len);
    529                 break;
    530             }
    531             struct x86_decode decode;
    532 
    533             load_regs(cpu);
    534             decode_instruction(env, &decode);
    535             assert(ins_len == decode.len);
    536             exec_instruction(env, &decode);
    537             store_regs(cpu);
    538 
    539             break;
    540         }
    541         case EXIT_REASON_CPUID: {
    542             uint32_t rax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX);
    543             uint32_t rbx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RBX);
    544             uint32_t rcx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX);
    545             uint32_t rdx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX);
    546 
    547             if (rax == 1) {
    548                 /* CPUID1.ecx.OSXSAVE needs to know CR4 */
    549                 env->cr[4] = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR4);
    550             }
    551             hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
    552 
    553             wreg(cpu->hvf->fd, HV_X86_RAX, rax);
    554             wreg(cpu->hvf->fd, HV_X86_RBX, rbx);
    555             wreg(cpu->hvf->fd, HV_X86_RCX, rcx);
    556             wreg(cpu->hvf->fd, HV_X86_RDX, rdx);
    557 
    558             macvm_set_rip(cpu, rip + ins_len);
    559             break;
    560         }
    561         case EXIT_REASON_XSETBV: {
    562             X86CPU *x86_cpu = X86_CPU(cpu);
    563             CPUX86State *env = &x86_cpu->env;
    564             uint32_t eax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX);
    565             uint32_t ecx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX);
    566             uint32_t edx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX);
    567 
    568             if (ecx) {
    569                 macvm_set_rip(cpu, rip + ins_len);
    570                 break;
    571             }
    572             env->xcr0 = ((uint64_t)edx << 32) | eax;
    573             wreg(cpu->hvf->fd, HV_X86_XCR0, env->xcr0 | 1);
    574             macvm_set_rip(cpu, rip + ins_len);
    575             break;
    576         }
    577         case EXIT_REASON_INTR_WINDOW:
    578             vmx_clear_int_window_exiting(cpu);
    579             ret = EXCP_INTERRUPT;
    580             break;
    581         case EXIT_REASON_NMI_WINDOW:
    582             vmx_clear_nmi_window_exiting(cpu);
    583             ret = EXCP_INTERRUPT;
    584             break;
    585         case EXIT_REASON_EXT_INTR:
    586             /* force exit and allow io handling */
    587             ret = EXCP_INTERRUPT;
    588             break;
    589         case EXIT_REASON_RDMSR:
    590         case EXIT_REASON_WRMSR:
    591         {
    592             load_regs(cpu);
    593             if (exit_reason == EXIT_REASON_RDMSR) {
    594                 simulate_rdmsr(cpu);
    595             } else {
    596                 simulate_wrmsr(cpu);
    597             }
    598             env->eip += ins_len;
    599             store_regs(cpu);
    600             break;
    601         }
    602         case EXIT_REASON_CR_ACCESS: {
    603             int cr;
    604             int reg;
    605 
    606             load_regs(cpu);
    607             cr = exit_qual & 15;
    608             reg = (exit_qual >> 8) & 15;
    609 
    610             switch (cr) {
    611             case 0x0: {
    612                 macvm_set_cr0(cpu->hvf->fd, RRX(env, reg));
    613                 break;
    614             }
    615             case 4: {
    616                 macvm_set_cr4(cpu->hvf->fd, RRX(env, reg));
    617                 break;
    618             }
    619             case 8: {
    620                 X86CPU *x86_cpu = X86_CPU(cpu);
    621                 if (exit_qual & 0x10) {
    622                     RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
    623                 } else {
    624                     int tpr = RRX(env, reg);
    625                     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
    626                     ret = EXCP_INTERRUPT;
    627                 }
    628                 break;
    629             }
    630             default:
    631                 error_report("Unrecognized CR %d", cr);
    632                 abort();
    633             }
    634             env->eip += ins_len;
    635             store_regs(cpu);
    636             break;
    637         }
    638         case EXIT_REASON_APIC_ACCESS: { /* TODO */
    639             struct x86_decode decode;
    640 
    641             load_regs(cpu);
    642             decode_instruction(env, &decode);
    643             exec_instruction(env, &decode);
    644             store_regs(cpu);
    645             break;
    646         }
    647         case EXIT_REASON_TPR: {
    648             ret = 1;
    649             break;
    650         }
    651         case EXIT_REASON_TASK_SWITCH: {
    652             uint64_t vinfo = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO);
    653             x68_segment_selector sel = {.sel = exit_qual & 0xffff};
    654             vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
    655              vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
    656              & VMCS_INTR_T_MASK);
    657             break;
    658         }
    659         case EXIT_REASON_TRIPLE_FAULT: {
    660             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
    661             ret = EXCP_INTERRUPT;
    662             break;
    663         }
    664         case EXIT_REASON_RDPMC:
    665             wreg(cpu->hvf->fd, HV_X86_RAX, 0);
    666             wreg(cpu->hvf->fd, HV_X86_RDX, 0);
    667             macvm_set_rip(cpu, rip + ins_len);
    668             break;
    669         case VMX_REASON_VMCALL:
    670             env->exception_nr = EXCP0D_GPF;
    671             env->exception_injected = 1;
    672             env->has_error_code = true;
    673             env->error_code = 0;
    674             break;
    675         default:
    676             error_report("%llx: unhandled exit %llx", rip, exit_reason);
    677         }
    678     } while (ret == 0);
    679 
    680     return ret;
    681 }