qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

macros.h (25734B)


      1 /*
      2  *  Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
      3  *
      4  *  This program is free software; you can redistribute it and/or modify
      5  *  it under the terms of the GNU General Public License as published by
      6  *  the Free Software Foundation; either version 2 of the License, or
      7  *  (at your option) any later version.
      8  *
      9  *  This program is distributed in the hope that it will be useful,
     10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     12  *  GNU General Public License for more details.
     13  *
     14  *  You should have received a copy of the GNU General Public License
     15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
     16  */
     17 
     18 #ifndef HEXAGON_MACROS_H
     19 #define HEXAGON_MACROS_H
     20 
     21 #include "cpu.h"
     22 #include "hex_regs.h"
     23 #include "reg_fields.h"
     24 
     25 #ifdef QEMU_GENERATE
     26 #define READ_REG(dest, NUM)              gen_read_reg(dest, NUM)
     27 #else
     28 #define READ_REG(NUM)                    (env->gpr[(NUM)])
     29 #define READ_PREG(NUM)                   (env->pred[NUM])
     30 
     31 #define WRITE_RREG(NUM, VAL)             log_reg_write(env, NUM, VAL, slot)
     32 #define WRITE_PREG(NUM, VAL)             log_pred_write(env, NUM, VAL)
     33 #endif
     34 
     35 #define PCALIGN 4
     36 #define PCALIGN_MASK (PCALIGN - 1)
     37 
     38 #define GET_FIELD(FIELD, REGIN) \
     39     fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
     40                    reg_field_info[FIELD].offset)
     41 
     42 #ifdef QEMU_GENERATE
     43 #define GET_USR_FIELD(FIELD, DST) \
     44     tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
     45                        reg_field_info[FIELD].offset, \
     46                        reg_field_info[FIELD].width)
     47 
     48 #define TYPE_INT(X)          __builtin_types_compatible_p(typeof(X), int)
     49 #define TYPE_TCGV(X)         __builtin_types_compatible_p(typeof(X), TCGv)
     50 #define TYPE_TCGV_I64(X)     __builtin_types_compatible_p(typeof(X), TCGv_i64)
     51 
     52 #define SET_USR_FIELD_FUNC(X) \
     53     __builtin_choose_expr(TYPE_INT(X), \
     54         gen_set_usr_fieldi, \
     55         __builtin_choose_expr(TYPE_TCGV(X), \
     56             gen_set_usr_field, (void)0))
     57 #define SET_USR_FIELD(FIELD, VAL) \
     58     SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
     59 #else
     60 #define GET_USR_FIELD(FIELD) \
     61     fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
     62                    reg_field_info[FIELD].offset)
     63 
     64 #define SET_USR_FIELD(FIELD, VAL) \
     65     fINSERT_BITS(env->new_value[HEX_REG_USR], reg_field_info[FIELD].width, \
     66                  reg_field_info[FIELD].offset, (VAL))
     67 #endif
     68 
     69 #ifdef QEMU_GENERATE
     70 /*
     71  * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
     72  *
     73  * Slot 1 store with slot 0 load
     74  * A slot 1 store operation with a slot 0 load operation can appear in a packet.
     75  * The packet attribute :mem_noshuf inhibits the instruction reordering that
     76  * would otherwise be done by the assembler. For example:
     77  *     {
     78  *         memw(R5) = R2 // slot 1 store
     79  *         R3 = memh(R6) // slot 0 load
     80  *     }:mem_noshuf
     81  * Unlike most packetized operations, these memory operations are not executed
     82  * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
     83  * effectively executes first, followed by the load instruction in Slot 0. If
     84  * the addresses of the two operations are overlapping, the load will receive
     85  * the newly stored data. This feature is supported in processor versions
     86  * V65 or greater.
     87  *
     88  *
     89  * For qemu, we look for a load in slot 0 when there is  a store in slot 1
     90  * in the same packet.  When we see this, we call a helper that probes the
     91  * load to make sure it doesn't fault.  Then, we process the store ahead of
     92  * the actual load.
     93 
     94  */
     95 #define CHECK_NOSHUF(VA, SIZE) \
     96     do { \
     97         if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
     98             probe_noshuf_load(VA, SIZE, ctx->mem_idx); \
     99             process_store(ctx, pkt, 1); \
    100         } \
    101     } while (0)
    102 
    103 #define CHECK_NOSHUF_PRED(GET_EA, SIZE, PRED) \
    104     do { \
    105         TCGLabel *label = gen_new_label(); \
    106         tcg_gen_brcondi_tl(TCG_COND_EQ, PRED, 0, label); \
    107         GET_EA; \
    108         if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
    109             probe_noshuf_load(EA, SIZE, ctx->mem_idx); \
    110         } \
    111         gen_set_label(label); \
    112         if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
    113             process_store(ctx, pkt, 1); \
    114         } \
    115     } while (0)
    116 
    117 #define MEM_LOAD1s(DST, VA) \
    118     do { \
    119         CHECK_NOSHUF(VA, 1); \
    120         tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
    121     } while (0)
    122 #define MEM_LOAD1u(DST, VA) \
    123     do { \
    124         CHECK_NOSHUF(VA, 1); \
    125         tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
    126     } while (0)
    127 #define MEM_LOAD2s(DST, VA) \
    128     do { \
    129         CHECK_NOSHUF(VA, 2); \
    130         tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
    131     } while (0)
    132 #define MEM_LOAD2u(DST, VA) \
    133     do { \
    134         CHECK_NOSHUF(VA, 2); \
    135         tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
    136     } while (0)
    137 #define MEM_LOAD4s(DST, VA) \
    138     do { \
    139         CHECK_NOSHUF(VA, 4); \
    140         tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
    141     } while (0)
    142 #define MEM_LOAD4u(DST, VA) \
    143     do { \
    144         CHECK_NOSHUF(VA, 4); \
    145         tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
    146     } while (0)
    147 #define MEM_LOAD8u(DST, VA) \
    148     do { \
    149         CHECK_NOSHUF(VA, 8); \
    150         tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
    151     } while (0)
    152 
    153 #define MEM_STORE1_FUNC(X) \
    154     __builtin_choose_expr(TYPE_INT(X), \
    155         gen_store1i, \
    156         __builtin_choose_expr(TYPE_TCGV(X), \
    157             gen_store1, (void)0))
    158 #define MEM_STORE1(VA, DATA, SLOT) \
    159     MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
    160 
    161 #define MEM_STORE2_FUNC(X) \
    162     __builtin_choose_expr(TYPE_INT(X), \
    163         gen_store2i, \
    164         __builtin_choose_expr(TYPE_TCGV(X), \
    165             gen_store2, (void)0))
    166 #define MEM_STORE2(VA, DATA, SLOT) \
    167     MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
    168 
    169 #define MEM_STORE4_FUNC(X) \
    170     __builtin_choose_expr(TYPE_INT(X), \
    171         gen_store4i, \
    172         __builtin_choose_expr(TYPE_TCGV(X), \
    173             gen_store4, (void)0))
    174 #define MEM_STORE4(VA, DATA, SLOT) \
    175     MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
    176 
    177 #define MEM_STORE8_FUNC(X) \
    178     __builtin_choose_expr(TYPE_INT(X), \
    179         gen_store8i, \
    180         __builtin_choose_expr(TYPE_TCGV_I64(X), \
    181             gen_store8, (void)0))
    182 #define MEM_STORE8(VA, DATA, SLOT) \
    183     MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
    184 #else
    185 #define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
    186 #define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
    187 #define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
    188 #define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
    189 #define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
    190 #define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
    191 #define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
    192 #define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
    193 
    194 #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
    195 #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
    196 #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
    197 #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
    198 #endif
    199 
    200 #define CANCEL cancel_slot(env, slot)
    201 
    202 #define LOAD_CANCEL(EA) do { CANCEL; } while (0)
    203 
    204 #ifdef QEMU_GENERATE
    205 static inline void gen_pred_cancel(TCGv pred, int slot_num)
    206  {
    207     TCGv slot_mask = tcg_temp_new();
    208     TCGv tmp = tcg_temp_new();
    209     TCGv zero = tcg_constant_tl(0);
    210     tcg_gen_ori_tl(slot_mask, hex_slot_cancelled, 1 << slot_num);
    211     tcg_gen_andi_tl(tmp, pred, 1);
    212     tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
    213                        slot_mask, hex_slot_cancelled);
    214     tcg_temp_free(slot_mask);
    215     tcg_temp_free(tmp);
    216 }
    217 #define PRED_LOAD_CANCEL(PRED, EA) \
    218     gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
    219 #endif
    220 
    221 #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
    222 
    223 #define fMAX(A, B) (((A) > (B)) ? (A) : (B))
    224 
    225 #define fMIN(A, B) (((A) < (B)) ? (A) : (B))
    226 
    227 #define fABS(A) (((A) < 0) ? (-(A)) : (A))
    228 #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
    229     REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
    230 #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
    231     ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
    232 #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
    233     (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
    234 #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
    235     (((HIBIT) - (LOWBIT) + 1) ? \
    236         extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
    237         0LL)
    238 #define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
    239     do { \
    240         int width = ((HIBIT) - (LOWBIT) + 1); \
    241         INREG = (width >= 0 ? \
    242             deposit64((INREG), (LOWBIT), width, (INVAL)) : \
    243             INREG); \
    244     } while (0)
    245 
    246 #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
    247 
    248 #ifdef QEMU_GENERATE
    249 #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
    250 #else
    251 #define fLSBOLD(VAL)  ((VAL) & 1)
    252 #endif
    253 
    254 #ifdef QEMU_GENERATE
    255 #define fLSBNEW(PVAL)   tcg_gen_andi_tl(LSB, (PVAL), 1)
    256 #define fLSBNEW0        tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1)
    257 #define fLSBNEW1        tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1)
    258 #else
    259 #define fLSBNEW(PVAL)   ((PVAL) & 1)
    260 #define fLSBNEW0        (env->new_pred_value[0] & 1)
    261 #define fLSBNEW1        (env->new_pred_value[1] & 1)
    262 #endif
    263 
    264 #ifdef QEMU_GENERATE
    265 #define fLSBOLDNOT(VAL) \
    266     do { \
    267         tcg_gen_andi_tl(LSB, (VAL), 1); \
    268         tcg_gen_xori_tl(LSB, LSB, 1); \
    269     } while (0)
    270 #define fLSBNEWNOT(PNUM) \
    271     do { \
    272         tcg_gen_andi_tl(LSB, (PNUM), 1); \
    273         tcg_gen_xori_tl(LSB, LSB, 1); \
    274     } while (0)
    275 #else
    276 #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
    277 #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
    278 #define fLSBNEW0NOT (!fLSBNEW0)
    279 #define fLSBNEW1NOT (!fLSBNEW1)
    280 #endif
    281 
    282 #define fNEWREG(VAL) ((int32_t)(VAL))
    283 
    284 #define fNEWREG_ST(VAL) (VAL)
    285 
    286 #define fVSATUVALN(N, VAL) \
    287     ({ \
    288         (((int64_t)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \
    289     })
    290 #define fSATUVALN(N, VAL) \
    291     ({ \
    292         fSET_OVERFLOW(); \
    293         ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
    294     })
    295 #define fSATVALN(N, VAL) \
    296     ({ \
    297         fSET_OVERFLOW(); \
    298         ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
    299     })
    300 #define fVSATVALN(N, VAL) \
    301     ({ \
    302         ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
    303     })
    304 #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
    305 #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
    306 #define fSATN(N, VAL) \
    307     ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
    308 #define fVSATN(N, VAL) \
    309     ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL))
    310 #define fADDSAT64(DST, A, B) \
    311     do { \
    312         uint64_t __a = fCAST8u(A); \
    313         uint64_t __b = fCAST8u(B); \
    314         uint64_t __sum = __a + __b; \
    315         uint64_t __xor = __a ^ __b; \
    316         const uint64_t __mask = 0x8000000000000000ULL; \
    317         if (__xor & __mask) { \
    318             DST = __sum; \
    319         } \
    320         else if ((__a ^ __sum) & __mask) { \
    321             if (__sum & __mask) { \
    322                 DST = 0x7FFFFFFFFFFFFFFFLL; \
    323                 fSET_OVERFLOW(); \
    324             } else { \
    325                 DST = 0x8000000000000000LL; \
    326                 fSET_OVERFLOW(); \
    327             } \
    328         } else { \
    329             DST = __sum; \
    330         } \
    331     } while (0)
    332 #define fVSATUN(N, VAL) \
    333     ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL))
    334 #define fSATUN(N, VAL) \
    335     ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
    336 #define fSATH(VAL) (fSATN(16, VAL))
    337 #define fSATUH(VAL) (fSATUN(16, VAL))
    338 #define fVSATH(VAL) (fVSATN(16, VAL))
    339 #define fVSATUH(VAL) (fVSATUN(16, VAL))
    340 #define fSATUB(VAL) (fSATUN(8, VAL))
    341 #define fSATB(VAL) (fSATN(8, VAL))
    342 #define fVSATUB(VAL) (fVSATUN(8, VAL))
    343 #define fVSATB(VAL) (fVSATN(8, VAL))
    344 #define fIMMEXT(IMM) (IMM = IMM)
    345 #define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
    346 
    347 #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
    348 
    349 #ifdef QEMU_GENERATE
    350 static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
    351 {
    352     /*
    353      * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
    354      *
    355      *  The "I" value from a modifier register is divided into two pieces
    356      *      LSB         bits 23:17
    357      *      MSB         bits 31:28
    358      * The value is signed
    359      *
    360      * At the end we shift the result according to the shift argument
    361      */
    362     TCGv msb = tcg_temp_new();
    363     TCGv lsb = tcg_temp_new();
    364 
    365     tcg_gen_extract_tl(lsb, val, 17, 7);
    366     tcg_gen_sari_tl(msb, val, 21);
    367     tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
    368 
    369     tcg_gen_shli_tl(result, result, shift);
    370 
    371     tcg_temp_free(msb);
    372     tcg_temp_free(lsb);
    373 
    374     return result;
    375 }
    376 #define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
    377 #else
    378 #define fREAD_IREG(VAL) \
    379     (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
    380 #endif
    381 
    382 #define fREAD_LR() (READ_REG(HEX_REG_LR))
    383 
    384 #define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
    385 #define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
    386 #define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
    387 
    388 #define fREAD_SP() (READ_REG(HEX_REG_SP))
    389 #define fREAD_LC0 (READ_REG(HEX_REG_LC0))
    390 #define fREAD_LC1 (READ_REG(HEX_REG_LC1))
    391 #define fREAD_SA0 (READ_REG(HEX_REG_SA0))
    392 #define fREAD_SA1 (READ_REG(HEX_REG_SA1))
    393 #define fREAD_FP() (READ_REG(HEX_REG_FP))
    394 #ifdef FIXME
    395 /* Figure out how to get insn->extension_valid to helper */
    396 #define fREAD_GP() \
    397     (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
    398 #else
    399 #define fREAD_GP() READ_REG(HEX_REG_GP)
    400 #endif
    401 #define fREAD_PC() (READ_REG(HEX_REG_PC))
    402 
    403 #define fREAD_NPC() (env->next_PC & (0xfffffffe))
    404 
    405 #define fREAD_P0() (READ_PREG(0))
    406 #define fREAD_P3() (READ_PREG(3))
    407 
    408 #define fCHECK_PCALIGN(A)
    409 
    410 #define fWRITE_NPC(A) write_new_pc(env, A)
    411 
    412 #define fBRANCH(LOC, TYPE)          fWRITE_NPC(LOC)
    413 #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
    414 #define fHINTJR(TARGET) { /* Not modelled in qemu */}
    415 #define fCALL(A) \
    416     do { \
    417         fWRITE_LR(fREAD_NPC()); \
    418         fBRANCH(A, COF_TYPE_CALL); \
    419     } while (0)
    420 #define fCALLR(A) \
    421     do { \
    422         fWRITE_LR(fREAD_NPC()); \
    423         fBRANCH(A, COF_TYPE_CALLR); \
    424     } while (0)
    425 #define fWRITE_LOOP_REGS0(START, COUNT) \
    426     do { \
    427         WRITE_RREG(HEX_REG_LC0, COUNT);  \
    428         WRITE_RREG(HEX_REG_SA0, START); \
    429     } while (0)
    430 #define fWRITE_LOOP_REGS1(START, COUNT) \
    431     do { \
    432         WRITE_RREG(HEX_REG_LC1, COUNT);  \
    433         WRITE_RREG(HEX_REG_SA1, START);\
    434     } while (0)
    435 #define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
    436 #define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
    437 
    438 #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
    439 #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
    440 #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
    441 #define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
    442 #define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
    443 #define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
    444 #define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
    445 #define fPART1(WORK) if (part1) { WORK; return; }
    446 #define fCAST4u(A) ((uint32_t)(A))
    447 #define fCAST4s(A) ((int32_t)(A))
    448 #define fCAST8u(A) ((uint64_t)(A))
    449 #define fCAST8s(A) ((int64_t)(A))
    450 #define fCAST2_2s(A) ((int16_t)(A))
    451 #define fCAST2_2u(A) ((uint16_t)(A))
    452 #define fCAST4_4s(A) ((int32_t)(A))
    453 #define fCAST4_4u(A) ((uint32_t)(A))
    454 #define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
    455 #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
    456 #define fCAST8_8s(A) ((int64_t)(A))
    457 #define fCAST8_8u(A) ((uint64_t)(A))
    458 #define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
    459 #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
    460 #define fZE8_16(A) ((int16_t)((uint8_t)(A)))
    461 #define fSE8_16(A) ((int16_t)((int8_t)(A)))
    462 #define fSE16_32(A) ((int32_t)((int16_t)(A)))
    463 #define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
    464 #define fSE32_64(A) ((int64_t)((int32_t)(A)))
    465 #define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
    466 #define fSE8_32(A) ((int32_t)((int8_t)(A)))
    467 #define fZE8_32(A) ((int32_t)((uint8_t)(A)))
    468 #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
    469 #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
    470 #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
    471 #define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
    472 #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
    473 #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
    474 #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
    475 #define fMPY16US(A, B) fMPY16SU(B, A)
    476 #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
    477 #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
    478 #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
    479 #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
    480 #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
    481 #define fROUND(A) (A + 0x8000)
    482 #define fCLIP(DST, SRC, U) \
    483     do { \
    484         int32_t maxv = (1 << U) - 1; \
    485         int32_t minv = -(1 << U); \
    486         DST = fMIN(maxv, fMAX(SRC, minv)); \
    487     } while (0)
    488 #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
    489 #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
    490 #define fCRNDN(A, N) (conv_round(A, N))
    491 #define fADD128(A, B) (int128_add(A, B))
    492 #define fSUB128(A, B) (int128_sub(A, B))
    493 #define fSHIFTR128(A, B) (int128_rshift(A, B))
    494 #define fSHIFTL128(A, B) (int128_lshift(A, B))
    495 #define fAND128(A, B) (int128_and(A, B))
    496 #define fCAST8S_16S(A) (int128_exts64(A))
    497 #define fCAST16S_8S(A) (int128_getlo(A))
    498 
    499 #ifdef QEMU_GENERATE
    500 #define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
    501 #define fEA_RRs(REG, REG2, SCALE) \
    502     do { \
    503         TCGv tmp = tcg_temp_new(); \
    504         tcg_gen_shli_tl(tmp, REG2, SCALE); \
    505         tcg_gen_add_tl(EA, REG, tmp); \
    506         tcg_temp_free(tmp); \
    507     } while (0)
    508 #define fEA_IRs(IMM, REG, SCALE) \
    509     do { \
    510         tcg_gen_shli_tl(EA, REG, SCALE); \
    511         tcg_gen_addi_tl(EA, EA, IMM); \
    512     } while (0)
    513 #else
    514 #define fEA_RI(REG, IMM) \
    515     do { \
    516         EA = REG + IMM; \
    517     } while (0)
    518 #define fEA_RRs(REG, REG2, SCALE) \
    519     do { \
    520         EA = REG + (REG2 << SCALE); \
    521     } while (0)
    522 #define fEA_IRs(IMM, REG, SCALE) \
    523     do { \
    524         EA = IMM + (REG << SCALE); \
    525     } while (0)
    526 #endif
    527 
    528 #ifdef QEMU_GENERATE
    529 #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
    530 #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
    531 #define fEA_BREVR(REG)      gen_helper_fbrev(EA, REG)
    532 #define fPM_I(REG, IMM)     tcg_gen_addi_tl(REG, REG, IMM)
    533 #define fPM_M(REG, MVAL)    tcg_gen_add_tl(REG, REG, MVAL)
    534 #define fPM_CIRI(REG, IMM, MVAL) \
    535     do { \
    536         TCGv tcgv_siV = tcg_constant_tl(siV); \
    537         gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
    538                             hex_gpr[HEX_REG_CS0 + MuN]); \
    539     } while (0)
    540 #else
    541 #define fEA_IMM(IMM)        do { EA = (IMM); } while (0)
    542 #define fEA_REG(REG)        do { EA = (REG); } while (0)
    543 #define fEA_GPI(IMM)        do { EA = (fREAD_GP() + (IMM)); } while (0)
    544 #define fPM_I(REG, IMM)     do { REG = REG + (IMM); } while (0)
    545 #define fPM_M(REG, MVAL)    do { REG = REG + (MVAL); } while (0)
    546 #endif
    547 #define fSCALE(N, A) (((int64_t)(A)) << N)
    548 #define fVSATW(A) fVSATN(32, ((long long)A))
    549 #define fSATW(A) fSATN(32, ((long long)A))
    550 #define fVSAT(A) fVSATN(32, (A))
    551 #define fSAT(A) fSATN(32, (A))
    552 #define fSAT_ORIG_SHL(A, ORIG_REG) \
    553     ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
    554         ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
    555         : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
    556                                             : fSAT(A)))
    557 #define fPASS(A) A
    558 #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
    559     (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
    560                    : (fCAST##REGSTYPE(SRC) << (SHAMT)))
    561 #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
    562     fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
    563 #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
    564     fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
    565 #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
    566     (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
    567                    : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
    568 #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
    569     (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
    570                    : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
    571 #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
    572     fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
    573 #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
    574     fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
    575 #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
    576     (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
    577                         << ((-(SHAMT)) - 1)) << 1, (SRC)) \
    578                    : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
    579 #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
    580 #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
    581     (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
    582 #define fROTL(SRC, SHAMT, REGSTYPE) \
    583     (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
    584                               ((fCAST##REGSTYPE##u(SRC) >> \
    585                                  ((sizeof(SRC) * 8) - (SHAMT))))))
    586 #define fROTR(SRC, SHAMT, REGSTYPE) \
    587     (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
    588                               ((fCAST##REGSTYPE##u(SRC) << \
    589                                  ((sizeof(SRC) * 8) - (SHAMT))))))
    590 #define fASHIFTL(SRC, SHAMT, REGSTYPE) \
    591     (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
    592 
    593 #ifdef QEMU_GENERATE
    594 #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
    595 #else
    596 #define fLOAD(NUM, SIZE, SIGN, EA, DST) \
    597     DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
    598 #endif
    599 
    600 #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
    601 
    602 #define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
    603 #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
    604 #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
    605 
    606 #ifdef CONFIG_USER_ONLY
    607 #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
    608 #else
    609 /* System mode not implemented yet */
    610 #define fFRAMECHECK(ADDR, EA)  g_assert_not_reached();
    611 #endif
    612 
    613 #ifdef QEMU_GENERATE
    614 #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
    615     gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
    616 #endif
    617 
    618 #ifdef QEMU_GENERATE
    619 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
    620 #else
    621 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
    622 #endif
    623 
    624 #ifdef QEMU_GENERATE
    625 #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
    626     gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
    627 #endif
    628 
    629 #ifdef QEMU_GENERATE
    630 #define GETBYTE_FUNC(X) \
    631     __builtin_choose_expr(TYPE_TCGV(X), \
    632         gen_get_byte, \
    633         __builtin_choose_expr(TYPE_TCGV_I64(X), \
    634             gen_get_byte_i64, (void)0))
    635 #define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
    636 #define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
    637 #else
    638 #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
    639 #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
    640 #endif
    641 
    642 #define fSETBYTE(N, DST, VAL) \
    643     do { \
    644         DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
    645         (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
    646     } while (0)
    647 
    648 #ifdef QEMU_GENERATE
    649 #define fGETHALF(N, SRC)  gen_get_half(HALF, N, SRC, true)
    650 #define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
    651 #else
    652 #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
    653 #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
    654 #endif
    655 #define fSETHALF(N, DST, VAL) \
    656     do { \
    657         DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
    658         (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
    659     } while (0)
    660 #define fSETHALFw fSETHALF
    661 #define fSETHALFd fSETHALF
    662 
    663 #define fGETWORD(N, SRC) \
    664     ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
    665 #define fGETUWORD(N, SRC) \
    666     ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
    667 
    668 #define fSETWORD(N, DST, VAL) \
    669     do { \
    670         DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
    671               (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
    672     } while (0)
    673 
    674 #define fSETBIT(N, DST, VAL) \
    675     do { \
    676         DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
    677     } while (0)
    678 
    679 #define fGETBIT(N, SRC) (((SRC) >> N) & 1)
    680 #define fSETBITS(HI, LO, DST, VAL) \
    681     do { \
    682         int j; \
    683         for (j = LO; j <= HI; j++) { \
    684             fSETBIT(j, DST, VAL); \
    685         } \
    686     } while (0)
    687 #define fCOUNTONES_2(VAL) ctpop16(VAL)
    688 #define fCOUNTONES_4(VAL) ctpop32(VAL)
    689 #define fCOUNTONES_8(VAL) ctpop64(VAL)
    690 #define fBREV_8(VAL) revbit64(VAL)
    691 #define fBREV_4(VAL) revbit32(VAL)
    692 #define fCL1_8(VAL) clo64(VAL)
    693 #define fCL1_4(VAL) clo32(VAL)
    694 #define fCL1_2(VAL) (clz32(~(uint16_t)(VAL) & 0xffff) - 16)
    695 #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
    696 #define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
    697 #define fHIDE(A) A
    698 #define fCONSTLL(A) A##LL
    699 #define fECHO(A) (A)
    700 
    701 #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
    702 #define fPAUSE(IMM)
    703 
    704 #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
    705     ((VAL) << reg_field_info[FIELD].offset)
    706 #define fGET_REG_FIELD_MASK(FIELD) \
    707     (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
    708 #define fREAD_REG_FIELD(REG, FIELD) \
    709     fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
    710                    reg_field_info[FIELD].width, \
    711                    reg_field_info[FIELD].offset)
    712 #define fGET_FIELD(VAL, FIELD)
    713 #define fSET_FIELD(VAL, FIELD, NEWVAL)
    714 #define fBARRIER()
    715 #define fSYNCH()
    716 #define fISYNC()
    717 #define fDCFETCH(REG) \
    718     do { (void)REG; } while (0) /* Nothing to do in qemu */
    719 #define fICINVA(REG) \
    720     do { (void)REG; } while (0) /* Nothing to do in qemu */
    721 #define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
    722 #define fDCCLEANA(REG) \
    723     do { (void)REG; } while (0) /* Nothing to do in qemu */
    724 #define fDCCLEANINVA(REG) \
    725     do { (void)REG; } while (0) /* Nothing to do in qemu */
    726 
    727 #define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
    728 
    729 #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
    730                                 STRBITNUM) /* Nothing */
    731 
    732 
    733 #endif