qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

cpu.c (11472B)


      1 /*
      2  *  Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
      3  *
      4  *  This program is free software; you can redistribute it and/or modify
      5  *  it under the terms of the GNU General Public License as published by
      6  *  the Free Software Foundation; either version 2 of the License, or
      7  *  (at your option) any later version.
      8  *
      9  *  This program is distributed in the hope that it will be useful,
     10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     12  *  GNU General Public License for more details.
     13  *
     14  *  You should have received a copy of the GNU General Public License
     15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
     16  */
     17 
     18 #include "qemu/osdep.h"
     19 #include "qemu/qemu-print.h"
     20 #include "cpu.h"
     21 #include "internal.h"
     22 #include "exec/exec-all.h"
     23 #include "qapi/error.h"
     24 #include "hw/qdev-properties.h"
     25 #include "fpu/softfloat-helpers.h"
     26 
     27 static void hexagon_v67_cpu_init(Object *obj)
     28 {
     29 }
     30 
     31 static ObjectClass *hexagon_cpu_class_by_name(const char *cpu_model)
     32 {
     33     ObjectClass *oc;
     34     char *typename;
     35     char **cpuname;
     36 
     37     cpuname = g_strsplit(cpu_model, ",", 1);
     38     typename = g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname[0]);
     39     oc = object_class_by_name(typename);
     40     g_strfreev(cpuname);
     41     g_free(typename);
     42     if (!oc || !object_class_dynamic_cast(oc, TYPE_HEXAGON_CPU) ||
     43         object_class_is_abstract(oc)) {
     44         return NULL;
     45     }
     46     return oc;
     47 }
     48 
     49 static Property hexagon_lldb_compat_property =
     50     DEFINE_PROP_BOOL("lldb-compat", HexagonCPU, lldb_compat, false);
     51 static Property hexagon_lldb_stack_adjust_property =
     52     DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU, lldb_stack_adjust,
     53                          0, qdev_prop_uint32, target_ulong);
     54 
     55 const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS] = {
     56    "r0", "r1",  "r2",  "r3",  "r4",   "r5",  "r6",  "r7",
     57    "r8", "r9",  "r10", "r11", "r12",  "r13", "r14", "r15",
     58   "r16", "r17", "r18", "r19", "r20",  "r21", "r22", "r23",
     59   "r24", "r25", "r26", "r27", "r28",  "r29", "r30", "r31",
     60   "sa0", "lc0", "sa1", "lc1", "p3_0", "c5",  "m0",  "m1",
     61   "usr", "pc",  "ugp", "gp",  "cs0",  "cs1", "c14", "c15",
     62   "c16", "c17", "c18", "c19", "pkt_cnt",  "insn_cnt", "hvx_cnt", "c23",
     63   "c24", "c25", "c26", "c27", "c28",  "c29", "c30", "c31",
     64 };
     65 
     66 /*
     67  * One of the main debugging techniques is to use "-d cpu" and compare against
     68  * LLDB output when single stepping.  However, the target and qemu put the
     69  * stacks at different locations.  This is used to compensate so the diff is
     70  * cleaner.
     71  */
     72 static target_ulong adjust_stack_ptrs(CPUHexagonState *env, target_ulong addr)
     73 {
     74     HexagonCPU *cpu = env_archcpu(env);
     75     target_ulong stack_adjust = cpu->lldb_stack_adjust;
     76     target_ulong stack_start = env->stack_start;
     77     target_ulong stack_size = 0x10000;
     78 
     79     if (stack_adjust == 0) {
     80         return addr;
     81     }
     82 
     83     if (stack_start + 0x1000 >= addr && addr >= (stack_start - stack_size)) {
     84         return addr - stack_adjust;
     85     }
     86     return addr;
     87 }
     88 
     89 /* HEX_REG_P3_0 (aka C4) is an alias for the predicate registers */
     90 static target_ulong read_p3_0(CPUHexagonState *env)
     91 {
     92     int32_t control_reg = 0;
     93     int i;
     94     for (i = NUM_PREGS - 1; i >= 0; i--) {
     95         control_reg <<= 8;
     96         control_reg |= env->pred[i] & 0xff;
     97     }
     98     return control_reg;
     99 }
    100 
    101 static void print_reg(FILE *f, CPUHexagonState *env, int regnum)
    102 {
    103     target_ulong value;
    104 
    105     if (regnum == HEX_REG_P3_0) {
    106         value = read_p3_0(env);
    107     } else {
    108         value = regnum < 32 ? adjust_stack_ptrs(env, env->gpr[regnum])
    109                             : env->gpr[regnum];
    110     }
    111 
    112     qemu_fprintf(f, "  %s = 0x" TARGET_FMT_lx "\n",
    113                  hexagon_regnames[regnum], value);
    114 }
    115 
    116 static void print_vreg(FILE *f, CPUHexagonState *env, int regnum,
    117                        bool skip_if_zero)
    118 {
    119     if (skip_if_zero) {
    120         bool nonzero_found = false;
    121         for (int i = 0; i < MAX_VEC_SIZE_BYTES; i++) {
    122             if (env->VRegs[regnum].ub[i] != 0) {
    123                 nonzero_found = true;
    124                 break;
    125             }
    126         }
    127         if (!nonzero_found) {
    128             return;
    129         }
    130     }
    131 
    132     qemu_fprintf(f, "  v%d = ( ", regnum);
    133     qemu_fprintf(f, "0x%02x", env->VRegs[regnum].ub[MAX_VEC_SIZE_BYTES - 1]);
    134     for (int i = MAX_VEC_SIZE_BYTES - 2; i >= 0; i--) {
    135         qemu_fprintf(f, ", 0x%02x", env->VRegs[regnum].ub[i]);
    136     }
    137     qemu_fprintf(f, " )\n");
    138 }
    139 
    140 void hexagon_debug_vreg(CPUHexagonState *env, int regnum)
    141 {
    142     print_vreg(stdout, env, regnum, false);
    143 }
    144 
    145 static void print_qreg(FILE *f, CPUHexagonState *env, int regnum,
    146                        bool skip_if_zero)
    147 {
    148     if (skip_if_zero) {
    149         bool nonzero_found = false;
    150         for (int i = 0; i < MAX_VEC_SIZE_BYTES / 8; i++) {
    151             if (env->QRegs[regnum].ub[i] != 0) {
    152                 nonzero_found = true;
    153                 break;
    154             }
    155         }
    156         if (!nonzero_found) {
    157             return;
    158         }
    159     }
    160 
    161     qemu_fprintf(f, "  q%d = ( ", regnum);
    162     qemu_fprintf(f, "0x%02x",
    163                  env->QRegs[regnum].ub[MAX_VEC_SIZE_BYTES / 8 - 1]);
    164     for (int i = MAX_VEC_SIZE_BYTES / 8 - 2; i >= 0; i--) {
    165         qemu_fprintf(f, ", 0x%02x", env->QRegs[regnum].ub[i]);
    166     }
    167     qemu_fprintf(f, " )\n");
    168 }
    169 
    170 void hexagon_debug_qreg(CPUHexagonState *env, int regnum)
    171 {
    172     print_qreg(stdout, env, regnum, false);
    173 }
    174 
    175 static void hexagon_dump(CPUHexagonState *env, FILE *f, int flags)
    176 {
    177     HexagonCPU *cpu = env_archcpu(env);
    178 
    179     if (cpu->lldb_compat) {
    180         /*
    181          * When comparing with LLDB, it doesn't step through single-cycle
    182          * hardware loops the same way.  So, we just skip them here
    183          */
    184         if (env->gpr[HEX_REG_PC] == env->last_pc_dumped) {
    185             return;
    186         }
    187         env->last_pc_dumped = env->gpr[HEX_REG_PC];
    188     }
    189 
    190     qemu_fprintf(f, "General Purpose Registers = {\n");
    191     for (int i = 0; i < 32; i++) {
    192         print_reg(f, env, i);
    193     }
    194     print_reg(f, env, HEX_REG_SA0);
    195     print_reg(f, env, HEX_REG_LC0);
    196     print_reg(f, env, HEX_REG_SA1);
    197     print_reg(f, env, HEX_REG_LC1);
    198     print_reg(f, env, HEX_REG_M0);
    199     print_reg(f, env, HEX_REG_M1);
    200     print_reg(f, env, HEX_REG_USR);
    201     print_reg(f, env, HEX_REG_P3_0);
    202     print_reg(f, env, HEX_REG_GP);
    203     print_reg(f, env, HEX_REG_UGP);
    204     print_reg(f, env, HEX_REG_PC);
    205 #ifdef CONFIG_USER_ONLY
    206     /*
    207      * Not modelled in user mode, print junk to minimize the diff's
    208      * with LLDB output
    209      */
    210     qemu_fprintf(f, "  cause = 0x000000db\n");
    211     qemu_fprintf(f, "  badva = 0x00000000\n");
    212     qemu_fprintf(f, "  cs0 = 0x00000000\n");
    213     qemu_fprintf(f, "  cs1 = 0x00000000\n");
    214 #else
    215     print_reg(f, env, HEX_REG_CAUSE);
    216     print_reg(f, env, HEX_REG_BADVA);
    217     print_reg(f, env, HEX_REG_CS0);
    218     print_reg(f, env, HEX_REG_CS1);
    219 #endif
    220     qemu_fprintf(f, "}\n");
    221 
    222     if (flags & CPU_DUMP_FPU) {
    223         qemu_fprintf(f, "Vector Registers = {\n");
    224         for (int i = 0; i < NUM_VREGS; i++) {
    225             print_vreg(f, env, i, true);
    226         }
    227         for (int i = 0; i < NUM_QREGS; i++) {
    228             print_qreg(f, env, i, true);
    229         }
    230         qemu_fprintf(f, "}\n");
    231     }
    232 }
    233 
    234 static void hexagon_dump_state(CPUState *cs, FILE *f, int flags)
    235 {
    236     HexagonCPU *cpu = HEXAGON_CPU(cs);
    237     CPUHexagonState *env = &cpu->env;
    238 
    239     hexagon_dump(env, f, flags);
    240 }
    241 
    242 void hexagon_debug(CPUHexagonState *env)
    243 {
    244     hexagon_dump(env, stdout, CPU_DUMP_FPU);
    245 }
    246 
    247 static void hexagon_cpu_set_pc(CPUState *cs, vaddr value)
    248 {
    249     HexagonCPU *cpu = HEXAGON_CPU(cs);
    250     CPUHexagonState *env = &cpu->env;
    251     env->gpr[HEX_REG_PC] = value;
    252 }
    253 
    254 static vaddr hexagon_cpu_get_pc(CPUState *cs)
    255 {
    256     HexagonCPU *cpu = HEXAGON_CPU(cs);
    257     CPUHexagonState *env = &cpu->env;
    258     return env->gpr[HEX_REG_PC];
    259 }
    260 
    261 static void hexagon_cpu_synchronize_from_tb(CPUState *cs,
    262                                             const TranslationBlock *tb)
    263 {
    264     HexagonCPU *cpu = HEXAGON_CPU(cs);
    265     CPUHexagonState *env = &cpu->env;
    266     env->gpr[HEX_REG_PC] = tb_pc(tb);
    267 }
    268 
    269 static bool hexagon_cpu_has_work(CPUState *cs)
    270 {
    271     return true;
    272 }
    273 
    274 static void hexagon_restore_state_to_opc(CPUState *cs,
    275                                          const TranslationBlock *tb,
    276                                          const uint64_t *data)
    277 {
    278     HexagonCPU *cpu = HEXAGON_CPU(cs);
    279     CPUHexagonState *env = &cpu->env;
    280 
    281     env->gpr[HEX_REG_PC] = data[0];
    282 }
    283 
    284 static void hexagon_cpu_reset(DeviceState *dev)
    285 {
    286     CPUState *cs = CPU(dev);
    287     HexagonCPU *cpu = HEXAGON_CPU(cs);
    288     HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(cpu);
    289     CPUHexagonState *env = &cpu->env;
    290 
    291     mcc->parent_reset(dev);
    292 
    293     set_default_nan_mode(1, &env->fp_status);
    294     set_float_detect_tininess(float_tininess_before_rounding, &env->fp_status);
    295 }
    296 
    297 static void hexagon_cpu_disas_set_info(CPUState *s, disassemble_info *info)
    298 {
    299     info->print_insn = print_insn_hexagon;
    300 }
    301 
    302 static void hexagon_cpu_realize(DeviceState *dev, Error **errp)
    303 {
    304     CPUState *cs = CPU(dev);
    305     HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(dev);
    306     Error *local_err = NULL;
    307 
    308     cpu_exec_realizefn(cs, &local_err);
    309     if (local_err != NULL) {
    310         error_propagate(errp, local_err);
    311         return;
    312     }
    313 
    314     qemu_init_vcpu(cs);
    315     cpu_reset(cs);
    316 
    317     mcc->parent_realize(dev, errp);
    318 }
    319 
    320 static void hexagon_cpu_init(Object *obj)
    321 {
    322     HexagonCPU *cpu = HEXAGON_CPU(obj);
    323 
    324     cpu_set_cpustate_pointers(cpu);
    325     qdev_property_add_static(DEVICE(obj), &hexagon_lldb_compat_property);
    326     qdev_property_add_static(DEVICE(obj), &hexagon_lldb_stack_adjust_property);
    327 }
    328 
    329 #include "hw/core/tcg-cpu-ops.h"
    330 
    331 static const struct TCGCPUOps hexagon_tcg_ops = {
    332     .initialize = hexagon_translate_init,
    333     .synchronize_from_tb = hexagon_cpu_synchronize_from_tb,
    334     .restore_state_to_opc = hexagon_restore_state_to_opc,
    335 };
    336 
    337 static void hexagon_cpu_class_init(ObjectClass *c, void *data)
    338 {
    339     HexagonCPUClass *mcc = HEXAGON_CPU_CLASS(c);
    340     CPUClass *cc = CPU_CLASS(c);
    341     DeviceClass *dc = DEVICE_CLASS(c);
    342 
    343     device_class_set_parent_realize(dc, hexagon_cpu_realize,
    344                                     &mcc->parent_realize);
    345 
    346     device_class_set_parent_reset(dc, hexagon_cpu_reset, &mcc->parent_reset);
    347 
    348     cc->class_by_name = hexagon_cpu_class_by_name;
    349     cc->has_work = hexagon_cpu_has_work;
    350     cc->dump_state = hexagon_dump_state;
    351     cc->set_pc = hexagon_cpu_set_pc;
    352     cc->get_pc = hexagon_cpu_get_pc;
    353     cc->gdb_read_register = hexagon_gdb_read_register;
    354     cc->gdb_write_register = hexagon_gdb_write_register;
    355     cc->gdb_num_core_regs = TOTAL_PER_THREAD_REGS + NUM_VREGS + NUM_QREGS;
    356     cc->gdb_stop_before_watchpoint = true;
    357     cc->disas_set_info = hexagon_cpu_disas_set_info;
    358     cc->tcg_ops = &hexagon_tcg_ops;
    359 }
    360 
    361 #define DEFINE_CPU(type_name, initfn)      \
    362     {                                      \
    363         .name = type_name,                 \
    364         .parent = TYPE_HEXAGON_CPU,        \
    365         .instance_init = initfn            \
    366     }
    367 
    368 static const TypeInfo hexagon_cpu_type_infos[] = {
    369     {
    370         .name = TYPE_HEXAGON_CPU,
    371         .parent = TYPE_CPU,
    372         .instance_size = sizeof(HexagonCPU),
    373         .instance_init = hexagon_cpu_init,
    374         .abstract = true,
    375         .class_size = sizeof(HexagonCPUClass),
    376         .class_init = hexagon_cpu_class_init,
    377     },
    378     DEFINE_CPU(TYPE_HEXAGON_CPU_V67,              hexagon_v67_cpu_init),
    379 };
    380 
    381 DEFINE_TYPES(hexagon_cpu_type_infos)