qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

helper.c (10461B)


      1 /*
      2  * QEMU AVR CPU helpers
      3  *
      4  * Copyright (c) 2016-2020 Michael Rolnik
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2.1 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see
     18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
     19  */
     20 
     21 #include "qemu/osdep.h"
     22 #include "qemu/log.h"
     23 #include "cpu.h"
     24 #include "hw/core/tcg-cpu-ops.h"
     25 #include "exec/exec-all.h"
     26 #include "exec/address-spaces.h"
     27 #include "exec/helper-proto.h"
     28 
     29 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
     30 {
     31     AVRCPU *cpu = AVR_CPU(cs);
     32     CPUAVRState *env = &cpu->env;
     33 
     34     /*
     35      * We cannot separate a skip from the next instruction,
     36      * as the skip would not be preserved across the interrupt.
     37      * Separating the two insn normally only happens at page boundaries.
     38      */
     39     if (env->skip) {
     40         return false;
     41     }
     42 
     43     if (interrupt_request & CPU_INTERRUPT_RESET) {
     44         if (cpu_interrupts_enabled(env)) {
     45             cs->exception_index = EXCP_RESET;
     46             avr_cpu_do_interrupt(cs);
     47 
     48             cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
     49             return true;
     50         }
     51     }
     52     if (interrupt_request & CPU_INTERRUPT_HARD) {
     53         if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
     54             int index = ctz32(env->intsrc);
     55             cs->exception_index = EXCP_INT(index);
     56             avr_cpu_do_interrupt(cs);
     57 
     58             env->intsrc &= env->intsrc - 1; /* clear the interrupt */
     59             if (!env->intsrc) {
     60                 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
     61             }
     62             return true;
     63         }
     64     }
     65     return false;
     66 }
     67 
     68 void avr_cpu_do_interrupt(CPUState *cs)
     69 {
     70     AVRCPU *cpu = AVR_CPU(cs);
     71     CPUAVRState *env = &cpu->env;
     72 
     73     uint32_t ret = env->pc_w;
     74     int vector = 0;
     75     int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
     76     int base = 0;
     77 
     78     if (cs->exception_index == EXCP_RESET) {
     79         vector = 0;
     80     } else if (env->intsrc != 0) {
     81         vector = ctz32(env->intsrc) + 1;
     82     }
     83 
     84     if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
     85         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
     86         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
     87         cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
     88     } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
     89         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
     90         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
     91     } else {
     92         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
     93     }
     94 
     95     env->pc_w = base + vector * size;
     96     env->sregI = 0; /* clear Global Interrupt Flag */
     97 
     98     cs->exception_index = -1;
     99 }
    100 
    101 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
    102 {
    103     return addr; /* I assume 1:1 address correspondence */
    104 }
    105 
    106 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
    107                       MMUAccessType access_type, int mmu_idx,
    108                       bool probe, uintptr_t retaddr)
    109 {
    110     int prot, page_size = TARGET_PAGE_SIZE;
    111     uint32_t paddr;
    112 
    113     address &= TARGET_PAGE_MASK;
    114 
    115     if (mmu_idx == MMU_CODE_IDX) {
    116         /* Access to code in flash. */
    117         paddr = OFFSET_CODE + address;
    118         prot = PAGE_READ | PAGE_EXEC;
    119         if (paddr >= OFFSET_DATA) {
    120             /*
    121              * This should not be possible via any architectural operations.
    122              * There is certainly not an exception that we can deliver.
    123              * Accept probing that might come from generic code.
    124              */
    125             if (probe) {
    126                 return false;
    127             }
    128             error_report("execution left flash memory");
    129             abort();
    130         }
    131     } else {
    132         /* Access to memory. */
    133         paddr = OFFSET_DATA + address;
    134         prot = PAGE_READ | PAGE_WRITE;
    135         if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
    136             /*
    137              * Access to CPU registers, exit and rebuilt this TB to use
    138              * full access in case it touches specially handled registers
    139              * like SREG or SP.  For probing, set page_size = 1, in order
    140              * to force tlb_fill to be called for the next access.
    141              */
    142             if (probe) {
    143                 page_size = 1;
    144             } else {
    145                 AVRCPU *cpu = AVR_CPU(cs);
    146                 CPUAVRState *env = &cpu->env;
    147                 env->fullacc = 1;
    148                 cpu_loop_exit_restore(cs, retaddr);
    149             }
    150         }
    151     }
    152 
    153     tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size);
    154     return true;
    155 }
    156 
    157 /*
    158  *  helpers
    159  */
    160 
    161 void helper_sleep(CPUAVRState *env)
    162 {
    163     CPUState *cs = env_cpu(env);
    164 
    165     cs->exception_index = EXCP_HLT;
    166     cpu_loop_exit(cs);
    167 }
    168 
    169 void helper_unsupported(CPUAVRState *env)
    170 {
    171     CPUState *cs = env_cpu(env);
    172 
    173     /*
    174      *  I count not find what happens on the real platform, so
    175      *  it's EXCP_DEBUG for meanwhile
    176      */
    177     cs->exception_index = EXCP_DEBUG;
    178     if (qemu_loglevel_mask(LOG_UNIMP)) {
    179         qemu_log("UNSUPPORTED\n");
    180         cpu_dump_state(cs, stderr, 0);
    181     }
    182     cpu_loop_exit(cs);
    183 }
    184 
    185 void helper_debug(CPUAVRState *env)
    186 {
    187     CPUState *cs = env_cpu(env);
    188 
    189     cs->exception_index = EXCP_DEBUG;
    190     cpu_loop_exit(cs);
    191 }
    192 
    193 void helper_break(CPUAVRState *env)
    194 {
    195     CPUState *cs = env_cpu(env);
    196 
    197     cs->exception_index = EXCP_DEBUG;
    198     cpu_loop_exit(cs);
    199 }
    200 
    201 void helper_wdr(CPUAVRState *env)
    202 {
    203     qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
    204 }
    205 
    206 /*
    207  * This function implements IN instruction
    208  *
    209  * It does the following
    210  * a.  if an IO register belongs to CPU, its value is read and returned
    211  * b.  otherwise io address is translated to mem address and physical memory
    212  *     is read.
    213  * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
    214  *
    215  */
    216 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
    217 {
    218     target_ulong data = 0;
    219 
    220     switch (port) {
    221     case 0x38: /* RAMPD */
    222         data = 0xff & (env->rampD >> 16);
    223         break;
    224     case 0x39: /* RAMPX */
    225         data = 0xff & (env->rampX >> 16);
    226         break;
    227     case 0x3a: /* RAMPY */
    228         data = 0xff & (env->rampY >> 16);
    229         break;
    230     case 0x3b: /* RAMPZ */
    231         data = 0xff & (env->rampZ >> 16);
    232         break;
    233     case 0x3c: /* EIND */
    234         data = 0xff & (env->eind >> 16);
    235         break;
    236     case 0x3d: /* SPL */
    237         data = env->sp & 0x00ff;
    238         break;
    239     case 0x3e: /* SPH */
    240         data = env->sp >> 8;
    241         break;
    242     case 0x3f: /* SREG */
    243         data = cpu_get_sreg(env);
    244         break;
    245     default:
    246         /* not a special register, pass to normal memory access */
    247         data = address_space_ldub(&address_space_memory,
    248                                   OFFSET_IO_REGISTERS + port,
    249                                   MEMTXATTRS_UNSPECIFIED, NULL);
    250     }
    251 
    252     return data;
    253 }
    254 
    255 /*
    256  *  This function implements OUT instruction
    257  *
    258  *  It does the following
    259  *  a.  if an IO register belongs to CPU, its value is written into the register
    260  *  b.  otherwise io address is translated to mem address and physical memory
    261  *      is written.
    262  *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
    263  *
    264  */
    265 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
    266 {
    267     data &= 0x000000ff;
    268 
    269     switch (port) {
    270     case 0x38: /* RAMPD */
    271         if (avr_feature(env, AVR_FEATURE_RAMPD)) {
    272             env->rampD = (data & 0xff) << 16;
    273         }
    274         break;
    275     case 0x39: /* RAMPX */
    276         if (avr_feature(env, AVR_FEATURE_RAMPX)) {
    277             env->rampX = (data & 0xff) << 16;
    278         }
    279         break;
    280     case 0x3a: /* RAMPY */
    281         if (avr_feature(env, AVR_FEATURE_RAMPY)) {
    282             env->rampY = (data & 0xff) << 16;
    283         }
    284         break;
    285     case 0x3b: /* RAMPZ */
    286         if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
    287             env->rampZ = (data & 0xff) << 16;
    288         }
    289         break;
    290     case 0x3c: /* EIDN */
    291         env->eind = (data & 0xff) << 16;
    292         break;
    293     case 0x3d: /* SPL */
    294         env->sp = (env->sp & 0xff00) | (data);
    295         break;
    296     case 0x3e: /* SPH */
    297         if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
    298             env->sp = (env->sp & 0x00ff) | (data << 8);
    299         }
    300         break;
    301     case 0x3f: /* SREG */
    302         cpu_set_sreg(env, data);
    303         break;
    304     default:
    305         /* not a special register, pass to normal memory access */
    306         address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
    307                           data, MEMTXATTRS_UNSPECIFIED, NULL);
    308     }
    309 }
    310 
    311 /*
    312  *  this function implements LD instruction when there is a possibility to read
    313  *  from a CPU register
    314  */
    315 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
    316 {
    317     uint8_t data;
    318 
    319     env->fullacc = false;
    320 
    321     if (addr < NUMBER_OF_CPU_REGISTERS) {
    322         /* CPU registers */
    323         data = env->r[addr];
    324     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
    325         /* IO registers */
    326         data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
    327     } else {
    328         /* memory */
    329         data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
    330                                   MEMTXATTRS_UNSPECIFIED, NULL);
    331     }
    332     return data;
    333 }
    334 
    335 /*
    336  *  this function implements ST instruction when there is a possibility to write
    337  *  into a CPU register
    338  */
    339 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
    340 {
    341     env->fullacc = false;
    342 
    343     /* Following logic assumes this: */
    344     assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
    345     assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
    346                                   NUMBER_OF_CPU_REGISTERS);
    347 
    348     if (addr < NUMBER_OF_CPU_REGISTERS) {
    349         /* CPU registers */
    350         env->r[addr] = data;
    351     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
    352         /* IO registers */
    353         helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
    354     } else {
    355         /* memory */
    356         address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
    357                           MEMTXATTRS_UNSPECIFIED, NULL);
    358     }
    359 }