qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

cpu.h (6572B)


      1 /*
      2  * QEMU AVR CPU
      3  *
      4  * Copyright (c) 2016-2020 Michael Rolnik
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2.1 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see
     18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
     19  */
     20 
     21 #ifndef QEMU_AVR_CPU_H
     22 #define QEMU_AVR_CPU_H
     23 
     24 #include "cpu-qom.h"
     25 #include "exec/cpu-defs.h"
     26 
     27 #ifdef CONFIG_USER_ONLY
     28 #error "AVR 8-bit does not support user mode"
     29 #endif
     30 
     31 #define AVR_CPU_TYPE_SUFFIX "-" TYPE_AVR_CPU
     32 #define AVR_CPU_TYPE_NAME(name) (name AVR_CPU_TYPE_SUFFIX)
     33 #define CPU_RESOLVING_TYPE TYPE_AVR_CPU
     34 
     35 #define TCG_GUEST_DEFAULT_MO 0
     36 
     37 /*
     38  * AVR has two memory spaces, data & code.
     39  * e.g. both have 0 address
     40  * ST/LD instructions access data space
     41  * LPM/SPM and instruction fetching access code memory space
     42  */
     43 #define MMU_CODE_IDX 0
     44 #define MMU_DATA_IDX 1
     45 
     46 #define EXCP_RESET 1
     47 #define EXCP_INT(n) (EXCP_RESET + (n) + 1)
     48 
     49 /* Number of CPU registers */
     50 #define NUMBER_OF_CPU_REGISTERS 32
     51 /* Number of IO registers accessible by ld/st/in/out */
     52 #define NUMBER_OF_IO_REGISTERS 64
     53 
     54 /*
     55  * Offsets of AVR memory regions in host memory space.
     56  *
     57  * This is needed because the AVR has separate code and data address
     58  * spaces that both have start from zero but have to go somewhere in
     59  * host memory.
     60  *
     61  * It's also useful to know where some things are, like the IO registers.
     62  */
     63 /* Flash program memory */
     64 #define OFFSET_CODE 0x00000000
     65 /* CPU registers, IO registers, and SRAM */
     66 #define OFFSET_DATA 0x00800000
     67 /* CPU registers specifically, these are mapped at the start of data */
     68 #define OFFSET_CPU_REGISTERS OFFSET_DATA
     69 /*
     70  * IO registers, including status register, stack pointer, and memory
     71  * mapped peripherals, mapped just after CPU registers
     72  */
     73 #define OFFSET_IO_REGISTERS (OFFSET_DATA + NUMBER_OF_CPU_REGISTERS)
     74 
     75 typedef enum AVRFeature {
     76     AVR_FEATURE_SRAM,
     77 
     78     AVR_FEATURE_1_BYTE_PC,
     79     AVR_FEATURE_2_BYTE_PC,
     80     AVR_FEATURE_3_BYTE_PC,
     81 
     82     AVR_FEATURE_1_BYTE_SP,
     83     AVR_FEATURE_2_BYTE_SP,
     84 
     85     AVR_FEATURE_BREAK,
     86     AVR_FEATURE_DES,
     87     AVR_FEATURE_RMW, /* Read Modify Write - XCH LAC LAS LAT */
     88 
     89     AVR_FEATURE_EIJMP_EICALL,
     90     AVR_FEATURE_IJMP_ICALL,
     91     AVR_FEATURE_JMP_CALL,
     92 
     93     AVR_FEATURE_ADIW_SBIW,
     94 
     95     AVR_FEATURE_SPM,
     96     AVR_FEATURE_SPMX,
     97 
     98     AVR_FEATURE_ELPMX,
     99     AVR_FEATURE_ELPM,
    100     AVR_FEATURE_LPMX,
    101     AVR_FEATURE_LPM,
    102 
    103     AVR_FEATURE_MOVW,
    104     AVR_FEATURE_MUL,
    105     AVR_FEATURE_RAMPD,
    106     AVR_FEATURE_RAMPX,
    107     AVR_FEATURE_RAMPY,
    108     AVR_FEATURE_RAMPZ,
    109 } AVRFeature;
    110 
    111 typedef struct CPUArchState {
    112     uint32_t pc_w; /* 0x003fffff up to 22 bits */
    113 
    114     uint32_t sregC; /* 0x00000001 1 bit */
    115     uint32_t sregZ; /* 0x00000001 1 bit */
    116     uint32_t sregN; /* 0x00000001 1 bit */
    117     uint32_t sregV; /* 0x00000001 1 bit */
    118     uint32_t sregS; /* 0x00000001 1 bit */
    119     uint32_t sregH; /* 0x00000001 1 bit */
    120     uint32_t sregT; /* 0x00000001 1 bit */
    121     uint32_t sregI; /* 0x00000001 1 bit */
    122 
    123     uint32_t rampD; /* 0x00ff0000 8 bits */
    124     uint32_t rampX; /* 0x00ff0000 8 bits */
    125     uint32_t rampY; /* 0x00ff0000 8 bits */
    126     uint32_t rampZ; /* 0x00ff0000 8 bits */
    127     uint32_t eind; /* 0x00ff0000 8 bits */
    128 
    129     uint32_t r[NUMBER_OF_CPU_REGISTERS]; /* 8 bits each */
    130     uint32_t sp; /* 16 bits */
    131 
    132     uint32_t skip; /* if set skip instruction */
    133 
    134     uint64_t intsrc; /* interrupt sources */
    135     bool fullacc; /* CPU/MEM if true MEM only otherwise */
    136 
    137     uint64_t features;
    138 } CPUAVRState;
    139 
    140 /**
    141  *  AVRCPU:
    142  *  @env: #CPUAVRState
    143  *
    144  *  A AVR CPU.
    145  */
    146 struct ArchCPU {
    147     /*< private >*/
    148     CPUState parent_obj;
    149     /*< public >*/
    150 
    151     CPUNegativeOffsetState neg;
    152     CPUAVRState env;
    153 };
    154 
    155 extern const struct VMStateDescription vms_avr_cpu;
    156 
    157 void avr_cpu_do_interrupt(CPUState *cpu);
    158 bool avr_cpu_exec_interrupt(CPUState *cpu, int int_req);
    159 hwaddr avr_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
    160 int avr_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
    161 int avr_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
    162 int avr_print_insn(bfd_vma addr, disassemble_info *info);
    163 vaddr avr_cpu_gdb_adjust_breakpoint(CPUState *cpu, vaddr addr);
    164 
    165 static inline int avr_feature(CPUAVRState *env, AVRFeature feature)
    166 {
    167     return (env->features & (1U << feature)) != 0;
    168 }
    169 
    170 static inline void set_avr_feature(CPUAVRState *env, int feature)
    171 {
    172     env->features |= (1U << feature);
    173 }
    174 
    175 #define cpu_list avr_cpu_list
    176 #define cpu_mmu_index avr_cpu_mmu_index
    177 
    178 static inline int avr_cpu_mmu_index(CPUAVRState *env, bool ifetch)
    179 {
    180     return ifetch ? MMU_CODE_IDX : MMU_DATA_IDX;
    181 }
    182 
    183 void avr_cpu_tcg_init(void);
    184 
    185 void avr_cpu_list(void);
    186 int cpu_avr_exec(CPUState *cpu);
    187 
    188 enum {
    189     TB_FLAGS_FULL_ACCESS = 1,
    190     TB_FLAGS_SKIP = 2,
    191 };
    192 
    193 static inline void cpu_get_tb_cpu_state(CPUAVRState *env, target_ulong *pc,
    194                                         target_ulong *cs_base, uint32_t *pflags)
    195 {
    196     uint32_t flags = 0;
    197 
    198     *pc = env->pc_w * 2;
    199     *cs_base = 0;
    200 
    201     if (env->fullacc) {
    202         flags |= TB_FLAGS_FULL_ACCESS;
    203     }
    204     if (env->skip) {
    205         flags |= TB_FLAGS_SKIP;
    206     }
    207 
    208     *pflags = flags;
    209 }
    210 
    211 static inline int cpu_interrupts_enabled(CPUAVRState *env)
    212 {
    213     return env->sregI != 0;
    214 }
    215 
    216 static inline uint8_t cpu_get_sreg(CPUAVRState *env)
    217 {
    218     uint8_t sreg;
    219     sreg = (env->sregC) << 0
    220          | (env->sregZ) << 1
    221          | (env->sregN) << 2
    222          | (env->sregV) << 3
    223          | (env->sregS) << 4
    224          | (env->sregH) << 5
    225          | (env->sregT) << 6
    226          | (env->sregI) << 7;
    227     return sreg;
    228 }
    229 
    230 static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg)
    231 {
    232     env->sregC = (sreg >> 0) & 0x01;
    233     env->sregZ = (sreg >> 1) & 0x01;
    234     env->sregN = (sreg >> 2) & 0x01;
    235     env->sregV = (sreg >> 3) & 0x01;
    236     env->sregS = (sreg >> 4) & 0x01;
    237     env->sregH = (sreg >> 5) & 0x01;
    238     env->sregT = (sreg >> 6) & 0x01;
    239     env->sregI = (sreg >> 7) & 0x01;
    240 }
    241 
    242 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
    243                       MMUAccessType access_type, int mmu_idx,
    244                       bool probe, uintptr_t retaddr);
    245 
    246 #include "exec/cpu-all.h"
    247 
    248 #endif /* QEMU_AVR_CPU_H */