qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

ptw.c (97516B)


      1 /*
      2  * ARM page table walking.
      3  *
      4  * This code is licensed under the GNU GPL v2 or later.
      5  *
      6  * SPDX-License-Identifier: GPL-2.0-or-later
      7  */
      8 
      9 #include "qemu/osdep.h"
     10 #include "qemu/log.h"
     11 #include "qemu/range.h"
     12 #include "qemu/main-loop.h"
     13 #include "exec/exec-all.h"
     14 #include "cpu.h"
     15 #include "internals.h"
     16 #include "idau.h"
     17 
     18 
     19 typedef struct S1Translate {
     20     ARMMMUIdx in_mmu_idx;
     21     ARMMMUIdx in_ptw_idx;
     22     bool in_secure;
     23     bool in_debug;
     24     bool out_secure;
     25     bool out_rw;
     26     bool out_be;
     27     hwaddr out_virt;
     28     hwaddr out_phys;
     29     void *out_host;
     30 } S1Translate;
     31 
     32 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
     33                                uint64_t address,
     34                                MMUAccessType access_type, bool s1_is_el0,
     35                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
     36     __attribute__((nonnull));
     37 
     38 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
     39                                       target_ulong address,
     40                                       MMUAccessType access_type,
     41                                       GetPhysAddrResult *result,
     42                                       ARMMMUFaultInfo *fi)
     43     __attribute__((nonnull));
     44 
     45 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
     46 static const uint8_t pamax_map[] = {
     47     [0] = 32,
     48     [1] = 36,
     49     [2] = 40,
     50     [3] = 42,
     51     [4] = 44,
     52     [5] = 48,
     53     [6] = 52,
     54 };
     55 
     56 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
     57 unsigned int arm_pamax(ARMCPU *cpu)
     58 {
     59     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
     60         unsigned int parange =
     61             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
     62 
     63         /*
     64          * id_aa64mmfr0 is a read-only register so values outside of the
     65          * supported mappings can be considered an implementation error.
     66          */
     67         assert(parange < ARRAY_SIZE(pamax_map));
     68         return pamax_map[parange];
     69     }
     70 
     71     /*
     72      * In machvirt_init, we call arm_pamax on a cpu that is not fully
     73      * initialized, so we can't rely on the propagation done in realize.
     74      */
     75     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
     76         arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
     77         /* v7 with LPAE */
     78         return 40;
     79     }
     80     /* Anything else */
     81     return 32;
     82 }
     83 
     84 /*
     85  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
     86  */
     87 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
     88 {
     89     switch (mmu_idx) {
     90     case ARMMMUIdx_E10_0:
     91         return ARMMMUIdx_Stage1_E0;
     92     case ARMMMUIdx_E10_1:
     93         return ARMMMUIdx_Stage1_E1;
     94     case ARMMMUIdx_E10_1_PAN:
     95         return ARMMMUIdx_Stage1_E1_PAN;
     96     default:
     97         return mmu_idx;
     98     }
     99 }
    100 
    101 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
    102 {
    103     return stage_1_mmu_idx(arm_mmu_idx(env));
    104 }
    105 
    106 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
    107 {
    108     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
    109 }
    110 
    111 /* Return the TTBR associated with this translation regime */
    112 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
    113 {
    114     if (mmu_idx == ARMMMUIdx_Stage2) {
    115         return env->cp15.vttbr_el2;
    116     }
    117     if (mmu_idx == ARMMMUIdx_Stage2_S) {
    118         return env->cp15.vsttbr_el2;
    119     }
    120     if (ttbrn == 0) {
    121         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
    122     } else {
    123         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
    124     }
    125 }
    126 
    127 /* Return true if the specified stage of address translation is disabled */
    128 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
    129                                         bool is_secure)
    130 {
    131     uint64_t hcr_el2;
    132 
    133     if (arm_feature(env, ARM_FEATURE_M)) {
    134         switch (env->v7m.mpu_ctrl[is_secure] &
    135                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
    136         case R_V7M_MPU_CTRL_ENABLE_MASK:
    137             /* Enabled, but not for HardFault and NMI */
    138             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
    139         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
    140             /* Enabled for all cases */
    141             return false;
    142         case 0:
    143         default:
    144             /*
    145              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
    146              * we warned about that in armv7m_nvic.c when the guest set it.
    147              */
    148             return true;
    149         }
    150     }
    151 
    152     hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
    153 
    154     switch (mmu_idx) {
    155     case ARMMMUIdx_Stage2:
    156     case ARMMMUIdx_Stage2_S:
    157         /* HCR.DC means HCR.VM behaves as 1 */
    158         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
    159 
    160     case ARMMMUIdx_E10_0:
    161     case ARMMMUIdx_E10_1:
    162     case ARMMMUIdx_E10_1_PAN:
    163         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
    164         if (hcr_el2 & HCR_TGE) {
    165             return true;
    166         }
    167         break;
    168 
    169     case ARMMMUIdx_Stage1_E0:
    170     case ARMMMUIdx_Stage1_E1:
    171     case ARMMMUIdx_Stage1_E1_PAN:
    172         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
    173         if (hcr_el2 & HCR_DC) {
    174             return true;
    175         }
    176         break;
    177 
    178     case ARMMMUIdx_E20_0:
    179     case ARMMMUIdx_E20_2:
    180     case ARMMMUIdx_E20_2_PAN:
    181     case ARMMMUIdx_E2:
    182     case ARMMMUIdx_E3:
    183         break;
    184 
    185     case ARMMMUIdx_Phys_NS:
    186     case ARMMMUIdx_Phys_S:
    187         /* No translation for physical address spaces. */
    188         return true;
    189 
    190     default:
    191         g_assert_not_reached();
    192     }
    193 
    194     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
    195 }
    196 
    197 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
    198 {
    199     /*
    200      * For an S1 page table walk, the stage 1 attributes are always
    201      * some form of "this is Normal memory". The combined S1+S2
    202      * attributes are therefore only Device if stage 2 specifies Device.
    203      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
    204      * ie when cacheattrs.attrs bits [3:2] are 0b00.
    205      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
    206      * when cacheattrs.attrs bit [2] is 0.
    207      */
    208     if (hcr & HCR_FWB) {
    209         return (attrs & 0x4) == 0;
    210     } else {
    211         return (attrs & 0xc) == 0;
    212     }
    213 }
    214 
    215 /* Translate a S1 pagetable walk through S2 if needed.  */
    216 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
    217                              hwaddr addr, ARMMMUFaultInfo *fi)
    218 {
    219     bool is_secure = ptw->in_secure;
    220     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
    221     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
    222     uint8_t pte_attrs;
    223     bool pte_secure;
    224 
    225     ptw->out_virt = addr;
    226 
    227     if (unlikely(ptw->in_debug)) {
    228         /*
    229          * From gdbstub, do not use softmmu so that we don't modify the
    230          * state of the cpu at all, including softmmu tlb contents.
    231          */
    232         if (regime_is_stage2(s2_mmu_idx)) {
    233             S1Translate s2ptw = {
    234                 .in_mmu_idx = s2_mmu_idx,
    235                 .in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS,
    236                 .in_secure = is_secure,
    237                 .in_debug = true,
    238             };
    239             GetPhysAddrResult s2 = { };
    240 
    241             if (!get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
    242                                     false, &s2, fi)) {
    243                 goto fail;
    244             }
    245             ptw->out_phys = s2.f.phys_addr;
    246             pte_attrs = s2.cacheattrs.attrs;
    247             pte_secure = s2.f.attrs.secure;
    248         } else {
    249             /* Regime is physical. */
    250             ptw->out_phys = addr;
    251             pte_attrs = 0;
    252             pte_secure = is_secure;
    253         }
    254         ptw->out_host = NULL;
    255         ptw->out_rw = false;
    256     } else {
    257         CPUTLBEntryFull *full;
    258         int flags;
    259 
    260         env->tlb_fi = fi;
    261         flags = probe_access_full(env, addr, MMU_DATA_LOAD,
    262                                   arm_to_core_mmu_idx(s2_mmu_idx),
    263                                   true, &ptw->out_host, &full, 0);
    264         env->tlb_fi = NULL;
    265 
    266         if (unlikely(flags & TLB_INVALID_MASK)) {
    267             goto fail;
    268         }
    269         ptw->out_phys = full->phys_addr;
    270         ptw->out_rw = full->prot & PAGE_WRITE;
    271         pte_attrs = full->pte_attrs;
    272         pte_secure = full->attrs.secure;
    273     }
    274 
    275     if (regime_is_stage2(s2_mmu_idx)) {
    276         uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
    277 
    278         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
    279             /*
    280              * PTW set and S1 walk touched S2 Device memory:
    281              * generate Permission fault.
    282              */
    283             fi->type = ARMFault_Permission;
    284             fi->s2addr = addr;
    285             fi->stage2 = true;
    286             fi->s1ptw = true;
    287             fi->s1ns = !is_secure;
    288             return false;
    289         }
    290     }
    291 
    292     /* Check if page table walk is to secure or non-secure PA space. */
    293     ptw->out_secure = (is_secure
    294                        && !(pte_secure
    295                             ? env->cp15.vstcr_el2 & VSTCR_SW
    296                             : env->cp15.vtcr_el2 & VTCR_NSW));
    297     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
    298     return true;
    299 
    300  fail:
    301     assert(fi->type != ARMFault_None);
    302     fi->s2addr = addr;
    303     fi->stage2 = true;
    304     fi->s1ptw = true;
    305     fi->s1ns = !is_secure;
    306     return false;
    307 }
    308 
    309 /* All loads done in the course of a page table walk go through here. */
    310 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
    311                             ARMMMUFaultInfo *fi)
    312 {
    313     CPUState *cs = env_cpu(env);
    314     void *host = ptw->out_host;
    315     uint32_t data;
    316 
    317     if (likely(host)) {
    318         /* Page tables are in RAM, and we have the host address. */
    319         data = qatomic_read((uint32_t *)host);
    320         if (ptw->out_be) {
    321             data = be32_to_cpu(data);
    322         } else {
    323             data = le32_to_cpu(data);
    324         }
    325     } else {
    326         /* Page tables are in MMIO. */
    327         MemTxAttrs attrs = { .secure = ptw->out_secure };
    328         AddressSpace *as = arm_addressspace(cs, attrs);
    329         MemTxResult result = MEMTX_OK;
    330 
    331         if (ptw->out_be) {
    332             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
    333         } else {
    334             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
    335         }
    336         if (unlikely(result != MEMTX_OK)) {
    337             fi->type = ARMFault_SyncExternalOnWalk;
    338             fi->ea = arm_extabort_type(result);
    339             return 0;
    340         }
    341     }
    342     return data;
    343 }
    344 
    345 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
    346                             ARMMMUFaultInfo *fi)
    347 {
    348     CPUState *cs = env_cpu(env);
    349     void *host = ptw->out_host;
    350     uint64_t data;
    351 
    352     if (likely(host)) {
    353         /* Page tables are in RAM, and we have the host address. */
    354 #ifdef CONFIG_ATOMIC64
    355         data = qatomic_read__nocheck((uint64_t *)host);
    356         if (ptw->out_be) {
    357             data = be64_to_cpu(data);
    358         } else {
    359             data = le64_to_cpu(data);
    360         }
    361 #else
    362         if (ptw->out_be) {
    363             data = ldq_be_p(host);
    364         } else {
    365             data = ldq_le_p(host);
    366         }
    367 #endif
    368     } else {
    369         /* Page tables are in MMIO. */
    370         MemTxAttrs attrs = { .secure = ptw->out_secure };
    371         AddressSpace *as = arm_addressspace(cs, attrs);
    372         MemTxResult result = MEMTX_OK;
    373 
    374         if (ptw->out_be) {
    375             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
    376         } else {
    377             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
    378         }
    379         if (unlikely(result != MEMTX_OK)) {
    380             fi->type = ARMFault_SyncExternalOnWalk;
    381             fi->ea = arm_extabort_type(result);
    382             return 0;
    383         }
    384     }
    385     return data;
    386 }
    387 
    388 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
    389                              uint64_t new_val, S1Translate *ptw,
    390                              ARMMMUFaultInfo *fi)
    391 {
    392     uint64_t cur_val;
    393     void *host = ptw->out_host;
    394 
    395     if (unlikely(!host)) {
    396         fi->type = ARMFault_UnsuppAtomicUpdate;
    397         fi->s1ptw = true;
    398         return 0;
    399     }
    400 
    401     /*
    402      * Raising a stage2 Protection fault for an atomic update to a read-only
    403      * page is delayed until it is certain that there is a change to make.
    404      */
    405     if (unlikely(!ptw->out_rw)) {
    406         int flags;
    407         void *discard;
    408 
    409         env->tlb_fi = fi;
    410         flags = probe_access_flags(env, ptw->out_virt, MMU_DATA_STORE,
    411                                    arm_to_core_mmu_idx(ptw->in_ptw_idx),
    412                                    true, &discard, 0);
    413         env->tlb_fi = NULL;
    414 
    415         if (unlikely(flags & TLB_INVALID_MASK)) {
    416             assert(fi->type != ARMFault_None);
    417             fi->s2addr = ptw->out_virt;
    418             fi->stage2 = true;
    419             fi->s1ptw = true;
    420             fi->s1ns = !ptw->in_secure;
    421             return 0;
    422         }
    423 
    424         /* In case CAS mismatches and we loop, remember writability. */
    425         ptw->out_rw = true;
    426     }
    427 
    428 #ifdef CONFIG_ATOMIC64
    429     if (ptw->out_be) {
    430         old_val = cpu_to_be64(old_val);
    431         new_val = cpu_to_be64(new_val);
    432         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
    433         cur_val = be64_to_cpu(cur_val);
    434     } else {
    435         old_val = cpu_to_le64(old_val);
    436         new_val = cpu_to_le64(new_val);
    437         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
    438         cur_val = le64_to_cpu(cur_val);
    439     }
    440 #else
    441     /*
    442      * We can't support the full 64-bit atomic cmpxchg on the host.
    443      * Because this is only used for FEAT_HAFDBS, which is only for AA64,
    444      * we know that TCG_OVERSIZED_GUEST is set, which means that we are
    445      * running in round-robin mode and could only race with dma i/o.
    446      */
    447 #ifndef TCG_OVERSIZED_GUEST
    448 # error "Unexpected configuration"
    449 #endif
    450     bool locked = qemu_mutex_iothread_locked();
    451     if (!locked) {
    452        qemu_mutex_lock_iothread();
    453     }
    454     if (ptw->out_be) {
    455         cur_val = ldq_be_p(host);
    456         if (cur_val == old_val) {
    457             stq_be_p(host, new_val);
    458         }
    459     } else {
    460         cur_val = ldq_le_p(host);
    461         if (cur_val == old_val) {
    462             stq_le_p(host, new_val);
    463         }
    464     }
    465     if (!locked) {
    466         qemu_mutex_unlock_iothread();
    467     }
    468 #endif
    469 
    470     return cur_val;
    471 }
    472 
    473 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
    474                                      uint32_t *table, uint32_t address)
    475 {
    476     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
    477     uint64_t tcr = regime_tcr(env, mmu_idx);
    478     int maskshift = extract32(tcr, 0, 3);
    479     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    480     uint32_t base_mask;
    481 
    482     if (address & mask) {
    483         if (tcr & TTBCR_PD1) {
    484             /* Translation table walk disabled for TTBR1 */
    485             return false;
    486         }
    487         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
    488     } else {
    489         if (tcr & TTBCR_PD0) {
    490             /* Translation table walk disabled for TTBR0 */
    491             return false;
    492         }
    493         base_mask = ~((uint32_t)0x3fffu >> maskshift);
    494         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
    495     }
    496     *table |= (address >> 18) & 0x3ffc;
    497     return true;
    498 }
    499 
    500 /*
    501  * Translate section/page access permissions to page R/W protection flags
    502  * @env:         CPUARMState
    503  * @mmu_idx:     MMU index indicating required translation regime
    504  * @ap:          The 3-bit access permissions (AP[2:0])
    505  * @domain_prot: The 2-bit domain access permissions
    506  * @is_user: TRUE if accessing from PL0
    507  */
    508 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
    509                          int ap, int domain_prot, bool is_user)
    510 {
    511     if (domain_prot == 3) {
    512         return PAGE_READ | PAGE_WRITE;
    513     }
    514 
    515     switch (ap) {
    516     case 0:
    517         if (arm_feature(env, ARM_FEATURE_V7)) {
    518             return 0;
    519         }
    520         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
    521         case SCTLR_S:
    522             return is_user ? 0 : PAGE_READ;
    523         case SCTLR_R:
    524             return PAGE_READ;
    525         default:
    526             return 0;
    527         }
    528     case 1:
    529         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    530     case 2:
    531         if (is_user) {
    532             return PAGE_READ;
    533         } else {
    534             return PAGE_READ | PAGE_WRITE;
    535         }
    536     case 3:
    537         return PAGE_READ | PAGE_WRITE;
    538     case 4: /* Reserved.  */
    539         return 0;
    540     case 5:
    541         return is_user ? 0 : PAGE_READ;
    542     case 6:
    543         return PAGE_READ;
    544     case 7:
    545         if (!arm_feature(env, ARM_FEATURE_V6K)) {
    546             return 0;
    547         }
    548         return PAGE_READ;
    549     default:
    550         g_assert_not_reached();
    551     }
    552 }
    553 
    554 /*
    555  * Translate section/page access permissions to page R/W protection flags
    556  * @env:         CPUARMState
    557  * @mmu_idx:     MMU index indicating required translation regime
    558  * @ap:          The 3-bit access permissions (AP[2:0])
    559  * @domain_prot: The 2-bit domain access permissions
    560  */
    561 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
    562                          int ap, int domain_prot)
    563 {
    564    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
    565                                 regime_is_user(env, mmu_idx));
    566 }
    567 
    568 /*
    569  * Translate section/page access permissions to page R/W protection flags.
    570  * @ap:      The 2-bit simple AP (AP[2:1])
    571  * @is_user: TRUE if accessing from PL0
    572  */
    573 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
    574 {
    575     switch (ap) {
    576     case 0:
    577         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    578     case 1:
    579         return PAGE_READ | PAGE_WRITE;
    580     case 2:
    581         return is_user ? 0 : PAGE_READ;
    582     case 3:
    583         return PAGE_READ;
    584     default:
    585         g_assert_not_reached();
    586     }
    587 }
    588 
    589 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
    590 {
    591     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
    592 }
    593 
    594 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
    595                              uint32_t address, MMUAccessType access_type,
    596                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
    597 {
    598     int level = 1;
    599     uint32_t table;
    600     uint32_t desc;
    601     int type;
    602     int ap;
    603     int domain = 0;
    604     int domain_prot;
    605     hwaddr phys_addr;
    606     uint32_t dacr;
    607 
    608     /* Pagetable walk.  */
    609     /* Lookup l1 descriptor.  */
    610     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
    611         /* Section translation fault if page walk is disabled by PD0 or PD1 */
    612         fi->type = ARMFault_Translation;
    613         goto do_fault;
    614     }
    615     if (!S1_ptw_translate(env, ptw, table, fi)) {
    616         goto do_fault;
    617     }
    618     desc = arm_ldl_ptw(env, ptw, fi);
    619     if (fi->type != ARMFault_None) {
    620         goto do_fault;
    621     }
    622     type = (desc & 3);
    623     domain = (desc >> 5) & 0x0f;
    624     if (regime_el(env, ptw->in_mmu_idx) == 1) {
    625         dacr = env->cp15.dacr_ns;
    626     } else {
    627         dacr = env->cp15.dacr_s;
    628     }
    629     domain_prot = (dacr >> (domain * 2)) & 3;
    630     if (type == 0) {
    631         /* Section translation fault.  */
    632         fi->type = ARMFault_Translation;
    633         goto do_fault;
    634     }
    635     if (type != 2) {
    636         level = 2;
    637     }
    638     if (domain_prot == 0 || domain_prot == 2) {
    639         fi->type = ARMFault_Domain;
    640         goto do_fault;
    641     }
    642     if (type == 2) {
    643         /* 1Mb section.  */
    644         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
    645         ap = (desc >> 10) & 3;
    646         result->f.lg_page_size = 20; /* 1MB */
    647     } else {
    648         /* Lookup l2 entry.  */
    649         if (type == 1) {
    650             /* Coarse pagetable.  */
    651             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
    652         } else {
    653             /* Fine pagetable.  */
    654             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
    655         }
    656         if (!S1_ptw_translate(env, ptw, table, fi)) {
    657             goto do_fault;
    658         }
    659         desc = arm_ldl_ptw(env, ptw, fi);
    660         if (fi->type != ARMFault_None) {
    661             goto do_fault;
    662         }
    663         switch (desc & 3) {
    664         case 0: /* Page translation fault.  */
    665             fi->type = ARMFault_Translation;
    666             goto do_fault;
    667         case 1: /* 64k page.  */
    668             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
    669             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
    670             result->f.lg_page_size = 16;
    671             break;
    672         case 2: /* 4k page.  */
    673             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
    674             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
    675             result->f.lg_page_size = 12;
    676             break;
    677         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
    678             if (type == 1) {
    679                 /* ARMv6/XScale extended small page format */
    680                 if (arm_feature(env, ARM_FEATURE_XSCALE)
    681                     || arm_feature(env, ARM_FEATURE_V6)) {
    682                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
    683                     result->f.lg_page_size = 12;
    684                 } else {
    685                     /*
    686                      * UNPREDICTABLE in ARMv5; we choose to take a
    687                      * page translation fault.
    688                      */
    689                     fi->type = ARMFault_Translation;
    690                     goto do_fault;
    691                 }
    692             } else {
    693                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
    694                 result->f.lg_page_size = 10;
    695             }
    696             ap = (desc >> 4) & 3;
    697             break;
    698         default:
    699             /* Never happens, but compiler isn't smart enough to tell.  */
    700             g_assert_not_reached();
    701         }
    702     }
    703     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
    704     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
    705     if (!(result->f.prot & (1 << access_type))) {
    706         /* Access permission fault.  */
    707         fi->type = ARMFault_Permission;
    708         goto do_fault;
    709     }
    710     result->f.phys_addr = phys_addr;
    711     return false;
    712 do_fault:
    713     fi->domain = domain;
    714     fi->level = level;
    715     return true;
    716 }
    717 
    718 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
    719                              uint32_t address, MMUAccessType access_type,
    720                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
    721 {
    722     ARMCPU *cpu = env_archcpu(env);
    723     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
    724     int level = 1;
    725     uint32_t table;
    726     uint32_t desc;
    727     uint32_t xn;
    728     uint32_t pxn = 0;
    729     int type;
    730     int ap;
    731     int domain = 0;
    732     int domain_prot;
    733     hwaddr phys_addr;
    734     uint32_t dacr;
    735     bool ns;
    736     int user_prot;
    737 
    738     /* Pagetable walk.  */
    739     /* Lookup l1 descriptor.  */
    740     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
    741         /* Section translation fault if page walk is disabled by PD0 or PD1 */
    742         fi->type = ARMFault_Translation;
    743         goto do_fault;
    744     }
    745     if (!S1_ptw_translate(env, ptw, table, fi)) {
    746         goto do_fault;
    747     }
    748     desc = arm_ldl_ptw(env, ptw, fi);
    749     if (fi->type != ARMFault_None) {
    750         goto do_fault;
    751     }
    752     type = (desc & 3);
    753     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
    754         /* Section translation fault, or attempt to use the encoding
    755          * which is Reserved on implementations without PXN.
    756          */
    757         fi->type = ARMFault_Translation;
    758         goto do_fault;
    759     }
    760     if ((type == 1) || !(desc & (1 << 18))) {
    761         /* Page or Section.  */
    762         domain = (desc >> 5) & 0x0f;
    763     }
    764     if (regime_el(env, mmu_idx) == 1) {
    765         dacr = env->cp15.dacr_ns;
    766     } else {
    767         dacr = env->cp15.dacr_s;
    768     }
    769     if (type == 1) {
    770         level = 2;
    771     }
    772     domain_prot = (dacr >> (domain * 2)) & 3;
    773     if (domain_prot == 0 || domain_prot == 2) {
    774         /* Section or Page domain fault */
    775         fi->type = ARMFault_Domain;
    776         goto do_fault;
    777     }
    778     if (type != 1) {
    779         if (desc & (1 << 18)) {
    780             /* Supersection.  */
    781             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
    782             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
    783             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
    784             result->f.lg_page_size = 24;  /* 16MB */
    785         } else {
    786             /* Section.  */
    787             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
    788             result->f.lg_page_size = 20;  /* 1MB */
    789         }
    790         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
    791         xn = desc & (1 << 4);
    792         pxn = desc & 1;
    793         ns = extract32(desc, 19, 1);
    794     } else {
    795         if (cpu_isar_feature(aa32_pxn, cpu)) {
    796             pxn = (desc >> 2) & 1;
    797         }
    798         ns = extract32(desc, 3, 1);
    799         /* Lookup l2 entry.  */
    800         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
    801         if (!S1_ptw_translate(env, ptw, table, fi)) {
    802             goto do_fault;
    803         }
    804         desc = arm_ldl_ptw(env, ptw, fi);
    805         if (fi->type != ARMFault_None) {
    806             goto do_fault;
    807         }
    808         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
    809         switch (desc & 3) {
    810         case 0: /* Page translation fault.  */
    811             fi->type = ARMFault_Translation;
    812             goto do_fault;
    813         case 1: /* 64k page.  */
    814             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
    815             xn = desc & (1 << 15);
    816             result->f.lg_page_size = 16;
    817             break;
    818         case 2: case 3: /* 4k page.  */
    819             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
    820             xn = desc & 1;
    821             result->f.lg_page_size = 12;
    822             break;
    823         default:
    824             /* Never happens, but compiler isn't smart enough to tell.  */
    825             g_assert_not_reached();
    826         }
    827     }
    828     if (domain_prot == 3) {
    829         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    830     } else {
    831         if (pxn && !regime_is_user(env, mmu_idx)) {
    832             xn = 1;
    833         }
    834         if (xn && access_type == MMU_INST_FETCH) {
    835             fi->type = ARMFault_Permission;
    836             goto do_fault;
    837         }
    838 
    839         if (arm_feature(env, ARM_FEATURE_V6K) &&
    840                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
    841             /* The simplified model uses AP[0] as an access control bit.  */
    842             if ((ap & 1) == 0) {
    843                 /* Access flag fault.  */
    844                 fi->type = ARMFault_AccessFlag;
    845                 goto do_fault;
    846             }
    847             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
    848             user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
    849         } else {
    850             result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
    851             user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
    852         }
    853         if (result->f.prot && !xn) {
    854             result->f.prot |= PAGE_EXEC;
    855         }
    856         if (!(result->f.prot & (1 << access_type))) {
    857             /* Access permission fault.  */
    858             fi->type = ARMFault_Permission;
    859             goto do_fault;
    860         }
    861         if (regime_is_pan(env, mmu_idx) &&
    862             !regime_is_user(env, mmu_idx) &&
    863             user_prot &&
    864             access_type != MMU_INST_FETCH) {
    865             /* Privileged Access Never fault */
    866             fi->type = ARMFault_Permission;
    867             goto do_fault;
    868         }
    869     }
    870     if (ns) {
    871         /* The NS bit will (as required by the architecture) have no effect if
    872          * the CPU doesn't support TZ or this is a non-secure translation
    873          * regime, because the attribute will already be non-secure.
    874          */
    875         result->f.attrs.secure = false;
    876     }
    877     result->f.phys_addr = phys_addr;
    878     return false;
    879 do_fault:
    880     fi->domain = domain;
    881     fi->level = level;
    882     return true;
    883 }
    884 
    885 /*
    886  * Translate S2 section/page access permissions to protection flags
    887  * @env:     CPUARMState
    888  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
    889  * @xn:      XN (execute-never) bits
    890  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
    891  */
    892 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
    893 {
    894     int prot = 0;
    895 
    896     if (s2ap & 1) {
    897         prot |= PAGE_READ;
    898     }
    899     if (s2ap & 2) {
    900         prot |= PAGE_WRITE;
    901     }
    902 
    903     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
    904         switch (xn) {
    905         case 0:
    906             prot |= PAGE_EXEC;
    907             break;
    908         case 1:
    909             if (s1_is_el0) {
    910                 prot |= PAGE_EXEC;
    911             }
    912             break;
    913         case 2:
    914             break;
    915         case 3:
    916             if (!s1_is_el0) {
    917                 prot |= PAGE_EXEC;
    918             }
    919             break;
    920         default:
    921             g_assert_not_reached();
    922         }
    923     } else {
    924         if (!extract32(xn, 1, 1)) {
    925             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
    926                 prot |= PAGE_EXEC;
    927             }
    928         }
    929     }
    930     return prot;
    931 }
    932 
    933 /*
    934  * Translate section/page access permissions to protection flags
    935  * @env:     CPUARMState
    936  * @mmu_idx: MMU index indicating required translation regime
    937  * @is_aa64: TRUE if AArch64
    938  * @ap:      The 2-bit simple AP (AP[2:1])
    939  * @ns:      NS (non-secure) bit
    940  * @xn:      XN (execute-never) bit
    941  * @pxn:     PXN (privileged execute-never) bit
    942  */
    943 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
    944                       int ap, int ns, int xn, int pxn)
    945 {
    946     bool is_user = regime_is_user(env, mmu_idx);
    947     int prot_rw, user_rw;
    948     bool have_wxn;
    949     int wxn = 0;
    950 
    951     assert(!regime_is_stage2(mmu_idx));
    952 
    953     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
    954     if (is_user) {
    955         prot_rw = user_rw;
    956     } else {
    957         if (user_rw && regime_is_pan(env, mmu_idx)) {
    958             /* PAN forbids data accesses but doesn't affect insn fetch */
    959             prot_rw = 0;
    960         } else {
    961             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
    962         }
    963     }
    964 
    965     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
    966         return prot_rw;
    967     }
    968 
    969     /* TODO have_wxn should be replaced with
    970      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
    971      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
    972      * compatible processors have EL2, which is required for [U]WXN.
    973      */
    974     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
    975 
    976     if (have_wxn) {
    977         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
    978     }
    979 
    980     if (is_aa64) {
    981         if (regime_has_2_ranges(mmu_idx) && !is_user) {
    982             xn = pxn || (user_rw & PAGE_WRITE);
    983         }
    984     } else if (arm_feature(env, ARM_FEATURE_V7)) {
    985         switch (regime_el(env, mmu_idx)) {
    986         case 1:
    987         case 3:
    988             if (is_user) {
    989                 xn = xn || !(user_rw & PAGE_READ);
    990             } else {
    991                 int uwxn = 0;
    992                 if (have_wxn) {
    993                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
    994                 }
    995                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
    996                      (uwxn && (user_rw & PAGE_WRITE));
    997             }
    998             break;
    999         case 2:
   1000             break;
   1001         }
   1002     } else {
   1003         xn = wxn = 0;
   1004     }
   1005 
   1006     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
   1007         return prot_rw;
   1008     }
   1009     return prot_rw | PAGE_EXEC;
   1010 }
   1011 
   1012 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
   1013                                           ARMMMUIdx mmu_idx)
   1014 {
   1015     uint64_t tcr = regime_tcr(env, mmu_idx);
   1016     uint32_t el = regime_el(env, mmu_idx);
   1017     int select, tsz;
   1018     bool epd, hpd;
   1019 
   1020     assert(mmu_idx != ARMMMUIdx_Stage2_S);
   1021 
   1022     if (mmu_idx == ARMMMUIdx_Stage2) {
   1023         /* VTCR */
   1024         bool sext = extract32(tcr, 4, 1);
   1025         bool sign = extract32(tcr, 3, 1);
   1026 
   1027         /*
   1028          * If the sign-extend bit is not the same as t0sz[3], the result
   1029          * is unpredictable. Flag this as a guest error.
   1030          */
   1031         if (sign != sext) {
   1032             qemu_log_mask(LOG_GUEST_ERROR,
   1033                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
   1034         }
   1035         tsz = sextract32(tcr, 0, 4) + 8;
   1036         select = 0;
   1037         hpd = false;
   1038         epd = false;
   1039     } else if (el == 2) {
   1040         /* HTCR */
   1041         tsz = extract32(tcr, 0, 3);
   1042         select = 0;
   1043         hpd = extract64(tcr, 24, 1);
   1044         epd = false;
   1045     } else {
   1046         int t0sz = extract32(tcr, 0, 3);
   1047         int t1sz = extract32(tcr, 16, 3);
   1048 
   1049         if (t1sz == 0) {
   1050             select = va > (0xffffffffu >> t0sz);
   1051         } else {
   1052             /* Note that we will detect errors later.  */
   1053             select = va >= ~(0xffffffffu >> t1sz);
   1054         }
   1055         if (!select) {
   1056             tsz = t0sz;
   1057             epd = extract32(tcr, 7, 1);
   1058             hpd = extract64(tcr, 41, 1);
   1059         } else {
   1060             tsz = t1sz;
   1061             epd = extract32(tcr, 23, 1);
   1062             hpd = extract64(tcr, 42, 1);
   1063         }
   1064         /* For aarch32, hpd0 is not enabled without t2e as well.  */
   1065         hpd &= extract32(tcr, 6, 1);
   1066     }
   1067 
   1068     return (ARMVAParameters) {
   1069         .tsz = tsz,
   1070         .select = select,
   1071         .epd = epd,
   1072         .hpd = hpd,
   1073     };
   1074 }
   1075 
   1076 /*
   1077  * check_s2_mmu_setup
   1078  * @cpu:        ARMCPU
   1079  * @is_aa64:    True if the translation regime is in AArch64 state
   1080  * @startlevel: Suggested starting level
   1081  * @inputsize:  Bitsize of IPAs
   1082  * @stride:     Page-table stride (See the ARM ARM)
   1083  *
   1084  * Returns true if the suggested S2 translation parameters are OK and
   1085  * false otherwise.
   1086  */
   1087 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
   1088                                int inputsize, int stride, int outputsize)
   1089 {
   1090     const int grainsize = stride + 3;
   1091     int startsizecheck;
   1092 
   1093     /*
   1094      * Negative levels are usually not allowed...
   1095      * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
   1096      * begins with level -1.  Note that previous feature tests will have
   1097      * eliminated this combination if it is not enabled.
   1098      */
   1099     if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
   1100         return false;
   1101     }
   1102 
   1103     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
   1104     if (startsizecheck < 1 || startsizecheck > stride + 4) {
   1105         return false;
   1106     }
   1107 
   1108     if (is_aa64) {
   1109         switch (stride) {
   1110         case 13: /* 64KB Pages.  */
   1111             if (level == 0 || (level == 1 && outputsize <= 42)) {
   1112                 return false;
   1113             }
   1114             break;
   1115         case 11: /* 16KB Pages.  */
   1116             if (level == 0 || (level == 1 && outputsize <= 40)) {
   1117                 return false;
   1118             }
   1119             break;
   1120         case 9: /* 4KB Pages.  */
   1121             if (level == 0 && outputsize <= 42) {
   1122                 return false;
   1123             }
   1124             break;
   1125         default:
   1126             g_assert_not_reached();
   1127         }
   1128 
   1129         /* Inputsize checks.  */
   1130         if (inputsize > outputsize &&
   1131             (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
   1132             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
   1133             return false;
   1134         }
   1135     } else {
   1136         /* AArch32 only supports 4KB pages. Assert on that.  */
   1137         assert(stride == 9);
   1138 
   1139         if (level == 0) {
   1140             return false;
   1141         }
   1142     }
   1143     return true;
   1144 }
   1145 
   1146 /**
   1147  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
   1148  *
   1149  * Returns false if the translation was successful. Otherwise, phys_ptr,
   1150  * attrs, prot and page_size may not be filled in, and the populated fsr
   1151  * value provides information on why the translation aborted, in the format
   1152  * of a long-format DFSR/IFSR fault register, with the following caveat:
   1153  * the WnR bit is never set (the caller must do this).
   1154  *
   1155  * @env: CPUARMState
   1156  * @ptw: Current and next stage parameters for the walk.
   1157  * @address: virtual address to get physical address for
   1158  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
   1159  * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
   1160  *             (so this is a stage 2 page table walk),
   1161  *             must be true if this is stage 2 of a stage 1+2
   1162  *             walk for an EL0 access. If @mmu_idx is anything else,
   1163  *             @s1_is_el0 is ignored.
   1164  * @result: set on translation success,
   1165  * @fi: set to fault info if the translation fails
   1166  */
   1167 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
   1168                                uint64_t address,
   1169                                MMUAccessType access_type, bool s1_is_el0,
   1170                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
   1171 {
   1172     ARMCPU *cpu = env_archcpu(env);
   1173     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
   1174     bool is_secure = ptw->in_secure;
   1175     int32_t level;
   1176     ARMVAParameters param;
   1177     uint64_t ttbr;
   1178     hwaddr descaddr, indexmask, indexmask_grainsize;
   1179     uint32_t tableattrs;
   1180     target_ulong page_size;
   1181     uint64_t attrs;
   1182     int32_t stride;
   1183     int addrsize, inputsize, outputsize;
   1184     uint64_t tcr = regime_tcr(env, mmu_idx);
   1185     int ap, ns, xn, pxn;
   1186     uint32_t el = regime_el(env, mmu_idx);
   1187     uint64_t descaddrmask;
   1188     bool aarch64 = arm_el_is_aa64(env, el);
   1189     uint64_t descriptor, new_descriptor;
   1190     bool nstable;
   1191 
   1192     /* TODO: This code does not support shareability levels. */
   1193     if (aarch64) {
   1194         int ps;
   1195 
   1196         param = aa64_va_parameters(env, address, mmu_idx,
   1197                                    access_type != MMU_INST_FETCH);
   1198         level = 0;
   1199 
   1200         /*
   1201          * If TxSZ is programmed to a value larger than the maximum,
   1202          * or smaller than the effective minimum, it is IMPLEMENTATION
   1203          * DEFINED whether we behave as if the field were programmed
   1204          * within bounds, or if a level 0 Translation fault is generated.
   1205          *
   1206          * With FEAT_LVA, fault on less than minimum becomes required,
   1207          * so our choice is to always raise the fault.
   1208          */
   1209         if (param.tsz_oob) {
   1210             goto do_translation_fault;
   1211         }
   1212 
   1213         addrsize = 64 - 8 * param.tbi;
   1214         inputsize = 64 - param.tsz;
   1215 
   1216         /*
   1217          * Bound PS by PARANGE to find the effective output address size.
   1218          * ID_AA64MMFR0 is a read-only register so values outside of the
   1219          * supported mappings can be considered an implementation error.
   1220          */
   1221         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
   1222         ps = MIN(ps, param.ps);
   1223         assert(ps < ARRAY_SIZE(pamax_map));
   1224         outputsize = pamax_map[ps];
   1225 
   1226         /*
   1227          * With LPA2, the effective output address (OA) size is at most 48 bits
   1228          * unless TCR.DS == 1
   1229          */
   1230         if (!param.ds && param.gran != Gran64K) {
   1231             outputsize = MIN(outputsize, 48);
   1232         }
   1233     } else {
   1234         param = aa32_va_parameters(env, address, mmu_idx);
   1235         level = 1;
   1236         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
   1237         inputsize = addrsize - param.tsz;
   1238         outputsize = 40;
   1239     }
   1240 
   1241     /*
   1242      * We determined the region when collecting the parameters, but we
   1243      * have not yet validated that the address is valid for the region.
   1244      * Extract the top bits and verify that they all match select.
   1245      *
   1246      * For aa32, if inputsize == addrsize, then we have selected the
   1247      * region by exclusion in aa32_va_parameters and there is no more
   1248      * validation to do here.
   1249      */
   1250     if (inputsize < addrsize) {
   1251         target_ulong top_bits = sextract64(address, inputsize,
   1252                                            addrsize - inputsize);
   1253         if (-top_bits != param.select) {
   1254             /* The gap between the two regions is a Translation fault */
   1255             goto do_translation_fault;
   1256         }
   1257     }
   1258 
   1259     stride = arm_granule_bits(param.gran) - 3;
   1260 
   1261     /*
   1262      * Note that QEMU ignores shareability and cacheability attributes,
   1263      * so we don't need to do anything with the SH, ORGN, IRGN fields
   1264      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
   1265      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
   1266      * implement any ASID-like capability so we can ignore it (instead
   1267      * we will always flush the TLB any time the ASID is changed).
   1268      */
   1269     ttbr = regime_ttbr(env, mmu_idx, param.select);
   1270 
   1271     /*
   1272      * Here we should have set up all the parameters for the translation:
   1273      * inputsize, ttbr, epd, stride, tbi
   1274      */
   1275 
   1276     if (param.epd) {
   1277         /*
   1278          * Translation table walk disabled => Translation fault on TLB miss
   1279          * Note: This is always 0 on 64-bit EL2 and EL3.
   1280          */
   1281         goto do_translation_fault;
   1282     }
   1283 
   1284     if (!regime_is_stage2(mmu_idx)) {
   1285         /*
   1286          * The starting level depends on the virtual address size (which can
   1287          * be up to 48 bits) and the translation granule size. It indicates
   1288          * the number of strides (stride bits at a time) needed to
   1289          * consume the bits of the input address. In the pseudocode this is:
   1290          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
   1291          * where their 'inputsize' is our 'inputsize', 'grainsize' is
   1292          * our 'stride + 3' and 'stride' is our 'stride'.
   1293          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
   1294          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
   1295          * = 4 - (inputsize - 4) / stride;
   1296          */
   1297         level = 4 - (inputsize - 4) / stride;
   1298     } else {
   1299         /*
   1300          * For stage 2 translations the starting level is specified by the
   1301          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
   1302          */
   1303         uint32_t sl0 = extract32(tcr, 6, 2);
   1304         uint32_t sl2 = extract64(tcr, 33, 1);
   1305         int32_t startlevel;
   1306         bool ok;
   1307 
   1308         /* SL2 is RES0 unless DS=1 & 4kb granule. */
   1309         if (param.ds && stride == 9 && sl2) {
   1310             if (sl0 != 0) {
   1311                 level = 0;
   1312                 goto do_translation_fault;
   1313             }
   1314             startlevel = -1;
   1315         } else if (!aarch64 || stride == 9) {
   1316             /* AArch32 or 4KB pages */
   1317             startlevel = 2 - sl0;
   1318 
   1319             if (cpu_isar_feature(aa64_st, cpu)) {
   1320                 startlevel &= 3;
   1321             }
   1322         } else {
   1323             /* 16KB or 64KB pages */
   1324             startlevel = 3 - sl0;
   1325         }
   1326 
   1327         /* Check that the starting level is valid. */
   1328         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
   1329                                 inputsize, stride, outputsize);
   1330         if (!ok) {
   1331             goto do_translation_fault;
   1332         }
   1333         level = startlevel;
   1334     }
   1335 
   1336     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
   1337     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
   1338 
   1339     /* Now we can extract the actual base address from the TTBR */
   1340     descaddr = extract64(ttbr, 0, 48);
   1341 
   1342     /*
   1343      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
   1344      *
   1345      * Otherwise, if the base address is out of range, raise AddressSizeFault.
   1346      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
   1347      * but we've just cleared the bits above 47, so simplify the test.
   1348      */
   1349     if (outputsize > 48) {
   1350         descaddr |= extract64(ttbr, 2, 4) << 48;
   1351     } else if (descaddr >> outputsize) {
   1352         level = 0;
   1353         fi->type = ARMFault_AddressSize;
   1354         goto do_fault;
   1355     }
   1356 
   1357     /*
   1358      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
   1359      * and also to mask out CnP (bit 0) which could validly be non-zero.
   1360      */
   1361     descaddr &= ~indexmask;
   1362 
   1363     /*
   1364      * For AArch32, the address field in the descriptor goes up to bit 39
   1365      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
   1366      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
   1367      * bits as part of the address, which will be checked via outputsize.
   1368      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
   1369      * the highest bits of a 52-bit output are placed elsewhere.
   1370      */
   1371     if (param.ds) {
   1372         descaddrmask = MAKE_64BIT_MASK(0, 50);
   1373     } else if (arm_feature(env, ARM_FEATURE_V8)) {
   1374         descaddrmask = MAKE_64BIT_MASK(0, 48);
   1375     } else {
   1376         descaddrmask = MAKE_64BIT_MASK(0, 40);
   1377     }
   1378     descaddrmask &= ~indexmask_grainsize;
   1379 
   1380     /*
   1381      * Secure accesses start with the page table in secure memory and
   1382      * can be downgraded to non-secure at any step. Non-secure accesses
   1383      * remain non-secure. We implement this by just ORing in the NSTable/NS
   1384      * bits at each step.
   1385      */
   1386     tableattrs = is_secure ? 0 : (1 << 4);
   1387 
   1388  next_level:
   1389     descaddr |= (address >> (stride * (4 - level))) & indexmask;
   1390     descaddr &= ~7ULL;
   1391     nstable = extract32(tableattrs, 4, 1);
   1392     if (nstable) {
   1393         /*
   1394          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
   1395          * Assert that the non-secure idx are even, and relative order.
   1396          */
   1397         QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0);
   1398         QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0);
   1399         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S);
   1400         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S);
   1401         ptw->in_ptw_idx &= ~1;
   1402         ptw->in_secure = false;
   1403     }
   1404     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
   1405         goto do_fault;
   1406     }
   1407     descriptor = arm_ldq_ptw(env, ptw, fi);
   1408     if (fi->type != ARMFault_None) {
   1409         goto do_fault;
   1410     }
   1411     new_descriptor = descriptor;
   1412 
   1413  restart_atomic_update:
   1414     if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
   1415         /* Invalid, or the Reserved level 3 encoding */
   1416         goto do_translation_fault;
   1417     }
   1418 
   1419     descaddr = descriptor & descaddrmask;
   1420 
   1421     /*
   1422      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
   1423      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
   1424      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
   1425      * raise AddressSizeFault.
   1426      */
   1427     if (outputsize > 48) {
   1428         if (param.ds) {
   1429             descaddr |= extract64(descriptor, 8, 2) << 50;
   1430         } else {
   1431             descaddr |= extract64(descriptor, 12, 4) << 48;
   1432         }
   1433     } else if (descaddr >> outputsize) {
   1434         fi->type = ARMFault_AddressSize;
   1435         goto do_fault;
   1436     }
   1437 
   1438     if ((descriptor & 2) && (level < 3)) {
   1439         /*
   1440          * Table entry. The top five bits are attributes which may
   1441          * propagate down through lower levels of the table (and
   1442          * which are all arranged so that 0 means "no effect", so
   1443          * we can gather them up by ORing in the bits at each level).
   1444          */
   1445         tableattrs |= extract64(descriptor, 59, 5);
   1446         level++;
   1447         indexmask = indexmask_grainsize;
   1448         goto next_level;
   1449     }
   1450 
   1451     /*
   1452      * Block entry at level 1 or 2, or page entry at level 3.
   1453      * These are basically the same thing, although the number
   1454      * of bits we pull in from the vaddr varies. Note that although
   1455      * descaddrmask masks enough of the low bits of the descriptor
   1456      * to give a correct page or table address, the address field
   1457      * in a block descriptor is smaller; so we need to explicitly
   1458      * clear the lower bits here before ORing in the low vaddr bits.
   1459      *
   1460      * Afterward, descaddr is the final physical address.
   1461      */
   1462     page_size = (1ULL << ((stride * (4 - level)) + 3));
   1463     descaddr &= ~(hwaddr)(page_size - 1);
   1464     descaddr |= (address & (page_size - 1));
   1465 
   1466     if (likely(!ptw->in_debug)) {
   1467         /*
   1468          * Access flag.
   1469          * If HA is enabled, prepare to update the descriptor below.
   1470          * Otherwise, pass the access fault on to software.
   1471          */
   1472         if (!(descriptor & (1 << 10))) {
   1473             if (param.ha) {
   1474                 new_descriptor |= 1 << 10; /* AF */
   1475             } else {
   1476                 fi->type = ARMFault_AccessFlag;
   1477                 goto do_fault;
   1478             }
   1479         }
   1480 
   1481         /*
   1482          * Dirty Bit.
   1483          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
   1484          * bit for writeback. The actual write protection test may still be
   1485          * overridden by tableattrs, to be merged below.
   1486          */
   1487         if (param.hd
   1488             && extract64(descriptor, 51, 1)  /* DBM */
   1489             && access_type == MMU_DATA_STORE) {
   1490             if (regime_is_stage2(mmu_idx)) {
   1491                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
   1492             } else {
   1493                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
   1494             }
   1495         }
   1496     }
   1497 
   1498     /*
   1499      * Extract attributes from the (modified) descriptor, and apply
   1500      * table descriptors. Stage 2 table descriptors do not include
   1501      * any attribute fields. HPD disables all the table attributes
   1502      * except NSTable.
   1503      */
   1504     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
   1505     if (!regime_is_stage2(mmu_idx)) {
   1506         attrs |= nstable << 5; /* NS */
   1507         if (!param.hpd) {
   1508             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
   1509             /*
   1510              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
   1511              * means "force PL1 access only", which means forcing AP[1] to 0.
   1512              */
   1513             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
   1514             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
   1515         }
   1516     }
   1517 
   1518     ap = extract32(attrs, 6, 2);
   1519     if (regime_is_stage2(mmu_idx)) {
   1520         ns = mmu_idx == ARMMMUIdx_Stage2;
   1521         xn = extract64(attrs, 53, 2);
   1522         result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
   1523     } else {
   1524         ns = extract32(attrs, 5, 1);
   1525         xn = extract64(attrs, 54, 1);
   1526         pxn = extract64(attrs, 53, 1);
   1527         result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
   1528     }
   1529 
   1530     if (!(result->f.prot & (1 << access_type))) {
   1531         fi->type = ARMFault_Permission;
   1532         goto do_fault;
   1533     }
   1534 
   1535     /* If FEAT_HAFDBS has made changes, update the PTE. */
   1536     if (new_descriptor != descriptor) {
   1537         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
   1538         if (fi->type != ARMFault_None) {
   1539             goto do_fault;
   1540         }
   1541         /*
   1542          * I_YZSVV says that if the in-memory descriptor has changed,
   1543          * then we must use the information in that new value
   1544          * (which might include a different output address, different
   1545          * attributes, or generate a fault).
   1546          * Restart the handling of the descriptor value from scratch.
   1547          */
   1548         if (new_descriptor != descriptor) {
   1549             descriptor = new_descriptor;
   1550             goto restart_atomic_update;
   1551         }
   1552     }
   1553 
   1554     if (ns) {
   1555         /*
   1556          * The NS bit will (as required by the architecture) have no effect if
   1557          * the CPU doesn't support TZ or this is a non-secure translation
   1558          * regime, because the attribute will already be non-secure.
   1559          */
   1560         result->f.attrs.secure = false;
   1561     }
   1562 
   1563     /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB.  */
   1564     if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
   1565         result->f.guarded = extract64(attrs, 50, 1); /* GP */
   1566     }
   1567 
   1568     if (regime_is_stage2(mmu_idx)) {
   1569         result->cacheattrs.is_s2_format = true;
   1570         result->cacheattrs.attrs = extract32(attrs, 2, 4);
   1571     } else {
   1572         /* Index into MAIR registers for cache attributes */
   1573         uint8_t attrindx = extract32(attrs, 2, 3);
   1574         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
   1575         assert(attrindx <= 7);
   1576         result->cacheattrs.is_s2_format = false;
   1577         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
   1578     }
   1579 
   1580     /*
   1581      * For FEAT_LPA2 and effective DS, the SH field in the attributes
   1582      * was re-purposed for output address bits.  The SH attribute in
   1583      * that case comes from TCR_ELx, which we extracted earlier.
   1584      */
   1585     if (param.ds) {
   1586         result->cacheattrs.shareability = param.sh;
   1587     } else {
   1588         result->cacheattrs.shareability = extract32(attrs, 8, 2);
   1589     }
   1590 
   1591     result->f.phys_addr = descaddr;
   1592     result->f.lg_page_size = ctz64(page_size);
   1593     return false;
   1594 
   1595  do_translation_fault:
   1596     fi->type = ARMFault_Translation;
   1597  do_fault:
   1598     fi->level = level;
   1599     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
   1600     fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
   1601     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
   1602     return true;
   1603 }
   1604 
   1605 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
   1606                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
   1607                                  bool is_secure, GetPhysAddrResult *result,
   1608                                  ARMMMUFaultInfo *fi)
   1609 {
   1610     int n;
   1611     uint32_t mask;
   1612     uint32_t base;
   1613     bool is_user = regime_is_user(env, mmu_idx);
   1614 
   1615     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
   1616         /* MPU disabled.  */
   1617         result->f.phys_addr = address;
   1618         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
   1619         return false;
   1620     }
   1621 
   1622     result->f.phys_addr = address;
   1623     for (n = 7; n >= 0; n--) {
   1624         base = env->cp15.c6_region[n];
   1625         if ((base & 1) == 0) {
   1626             continue;
   1627         }
   1628         mask = 1 << ((base >> 1) & 0x1f);
   1629         /* Keep this shift separate from the above to avoid an
   1630            (undefined) << 32.  */
   1631         mask = (mask << 1) - 1;
   1632         if (((base ^ address) & ~mask) == 0) {
   1633             break;
   1634         }
   1635     }
   1636     if (n < 0) {
   1637         fi->type = ARMFault_Background;
   1638         return true;
   1639     }
   1640 
   1641     if (access_type == MMU_INST_FETCH) {
   1642         mask = env->cp15.pmsav5_insn_ap;
   1643     } else {
   1644         mask = env->cp15.pmsav5_data_ap;
   1645     }
   1646     mask = (mask >> (n * 4)) & 0xf;
   1647     switch (mask) {
   1648     case 0:
   1649         fi->type = ARMFault_Permission;
   1650         fi->level = 1;
   1651         return true;
   1652     case 1:
   1653         if (is_user) {
   1654             fi->type = ARMFault_Permission;
   1655             fi->level = 1;
   1656             return true;
   1657         }
   1658         result->f.prot = PAGE_READ | PAGE_WRITE;
   1659         break;
   1660     case 2:
   1661         result->f.prot = PAGE_READ;
   1662         if (!is_user) {
   1663             result->f.prot |= PAGE_WRITE;
   1664         }
   1665         break;
   1666     case 3:
   1667         result->f.prot = PAGE_READ | PAGE_WRITE;
   1668         break;
   1669     case 5:
   1670         if (is_user) {
   1671             fi->type = ARMFault_Permission;
   1672             fi->level = 1;
   1673             return true;
   1674         }
   1675         result->f.prot = PAGE_READ;
   1676         break;
   1677     case 6:
   1678         result->f.prot = PAGE_READ;
   1679         break;
   1680     default:
   1681         /* Bad permission.  */
   1682         fi->type = ARMFault_Permission;
   1683         fi->level = 1;
   1684         return true;
   1685     }
   1686     result->f.prot |= PAGE_EXEC;
   1687     return false;
   1688 }
   1689 
   1690 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
   1691                                          int32_t address, uint8_t *prot)
   1692 {
   1693     if (!arm_feature(env, ARM_FEATURE_M)) {
   1694         *prot = PAGE_READ | PAGE_WRITE;
   1695         switch (address) {
   1696         case 0xF0000000 ... 0xFFFFFFFF:
   1697             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
   1698                 /* hivecs execing is ok */
   1699                 *prot |= PAGE_EXEC;
   1700             }
   1701             break;
   1702         case 0x00000000 ... 0x7FFFFFFF:
   1703             *prot |= PAGE_EXEC;
   1704             break;
   1705         }
   1706     } else {
   1707         /* Default system address map for M profile cores.
   1708          * The architecture specifies which regions are execute-never;
   1709          * at the MPU level no other checks are defined.
   1710          */
   1711         switch (address) {
   1712         case 0x00000000 ... 0x1fffffff: /* ROM */
   1713         case 0x20000000 ... 0x3fffffff: /* SRAM */
   1714         case 0x60000000 ... 0x7fffffff: /* RAM */
   1715         case 0x80000000 ... 0x9fffffff: /* RAM */
   1716             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
   1717             break;
   1718         case 0x40000000 ... 0x5fffffff: /* Peripheral */
   1719         case 0xa0000000 ... 0xbfffffff: /* Device */
   1720         case 0xc0000000 ... 0xdfffffff: /* Device */
   1721         case 0xe0000000 ... 0xffffffff: /* System */
   1722             *prot = PAGE_READ | PAGE_WRITE;
   1723             break;
   1724         default:
   1725             g_assert_not_reached();
   1726         }
   1727     }
   1728 }
   1729 
   1730 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
   1731 {
   1732     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
   1733     return arm_feature(env, ARM_FEATURE_M) &&
   1734         extract32(address, 20, 12) == 0xe00;
   1735 }
   1736 
   1737 static bool m_is_system_region(CPUARMState *env, uint32_t address)
   1738 {
   1739     /*
   1740      * True if address is in the M profile system region
   1741      * 0xe0000000 - 0xffffffff
   1742      */
   1743     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
   1744 }
   1745 
   1746 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
   1747                                          bool is_secure, bool is_user)
   1748 {
   1749     /*
   1750      * Return true if we should use the default memory map as a
   1751      * "background" region if there are no hits against any MPU regions.
   1752      */
   1753     CPUARMState *env = &cpu->env;
   1754 
   1755     if (is_user) {
   1756         return false;
   1757     }
   1758 
   1759     if (arm_feature(env, ARM_FEATURE_M)) {
   1760         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
   1761     } else {
   1762         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
   1763     }
   1764 }
   1765 
   1766 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
   1767                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
   1768                                  bool secure, GetPhysAddrResult *result,
   1769                                  ARMMMUFaultInfo *fi)
   1770 {
   1771     ARMCPU *cpu = env_archcpu(env);
   1772     int n;
   1773     bool is_user = regime_is_user(env, mmu_idx);
   1774 
   1775     result->f.phys_addr = address;
   1776     result->f.lg_page_size = TARGET_PAGE_BITS;
   1777     result->f.prot = 0;
   1778 
   1779     if (regime_translation_disabled(env, mmu_idx, secure) ||
   1780         m_is_ppb_region(env, address)) {
   1781         /*
   1782          * MPU disabled or M profile PPB access: use default memory map.
   1783          * The other case which uses the default memory map in the
   1784          * v7M ARM ARM pseudocode is exception vector reads from the vector
   1785          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
   1786          * which always does a direct read using address_space_ldl(), rather
   1787          * than going via this function, so we don't need to check that here.
   1788          */
   1789         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
   1790     } else { /* MPU enabled */
   1791         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
   1792             /* region search */
   1793             uint32_t base = env->pmsav7.drbar[n];
   1794             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
   1795             uint32_t rmask;
   1796             bool srdis = false;
   1797 
   1798             if (!(env->pmsav7.drsr[n] & 0x1)) {
   1799                 continue;
   1800             }
   1801 
   1802             if (!rsize) {
   1803                 qemu_log_mask(LOG_GUEST_ERROR,
   1804                               "DRSR[%d]: Rsize field cannot be 0\n", n);
   1805                 continue;
   1806             }
   1807             rsize++;
   1808             rmask = (1ull << rsize) - 1;
   1809 
   1810             if (base & rmask) {
   1811                 qemu_log_mask(LOG_GUEST_ERROR,
   1812                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
   1813                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
   1814                               n, base, rmask);
   1815                 continue;
   1816             }
   1817 
   1818             if (address < base || address > base + rmask) {
   1819                 /*
   1820                  * Address not in this region. We must check whether the
   1821                  * region covers addresses in the same page as our address.
   1822                  * In that case we must not report a size that covers the
   1823                  * whole page for a subsequent hit against a different MPU
   1824                  * region or the background region, because it would result in
   1825                  * incorrect TLB hits for subsequent accesses to addresses that
   1826                  * are in this MPU region.
   1827                  */
   1828                 if (ranges_overlap(base, rmask,
   1829                                    address & TARGET_PAGE_MASK,
   1830                                    TARGET_PAGE_SIZE)) {
   1831                     result->f.lg_page_size = 0;
   1832                 }
   1833                 continue;
   1834             }
   1835 
   1836             /* Region matched */
   1837 
   1838             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
   1839                 int i, snd;
   1840                 uint32_t srdis_mask;
   1841 
   1842                 rsize -= 3; /* sub region size (power of 2) */
   1843                 snd = ((address - base) >> rsize) & 0x7;
   1844                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
   1845 
   1846                 srdis_mask = srdis ? 0x3 : 0x0;
   1847                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
   1848                     /*
   1849                      * This will check in groups of 2, 4 and then 8, whether
   1850                      * the subregion bits are consistent. rsize is incremented
   1851                      * back up to give the region size, considering consistent
   1852                      * adjacent subregions as one region. Stop testing if rsize
   1853                      * is already big enough for an entire QEMU page.
   1854                      */
   1855                     int snd_rounded = snd & ~(i - 1);
   1856                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
   1857                                                      snd_rounded + 8, i);
   1858                     if (srdis_mask ^ srdis_multi) {
   1859                         break;
   1860                     }
   1861                     srdis_mask = (srdis_mask << i) | srdis_mask;
   1862                     rsize++;
   1863                 }
   1864             }
   1865             if (srdis) {
   1866                 continue;
   1867             }
   1868             if (rsize < TARGET_PAGE_BITS) {
   1869                 result->f.lg_page_size = rsize;
   1870             }
   1871             break;
   1872         }
   1873 
   1874         if (n == -1) { /* no hits */
   1875             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
   1876                 /* background fault */
   1877                 fi->type = ARMFault_Background;
   1878                 return true;
   1879             }
   1880             get_phys_addr_pmsav7_default(env, mmu_idx, address,
   1881                                          &result->f.prot);
   1882         } else { /* a MPU hit! */
   1883             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
   1884             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
   1885 
   1886             if (m_is_system_region(env, address)) {
   1887                 /* System space is always execute never */
   1888                 xn = 1;
   1889             }
   1890 
   1891             if (is_user) { /* User mode AP bit decoding */
   1892                 switch (ap) {
   1893                 case 0:
   1894                 case 1:
   1895                 case 5:
   1896                     break; /* no access */
   1897                 case 3:
   1898                     result->f.prot |= PAGE_WRITE;
   1899                     /* fall through */
   1900                 case 2:
   1901                 case 6:
   1902                     result->f.prot |= PAGE_READ | PAGE_EXEC;
   1903                     break;
   1904                 case 7:
   1905                     /* for v7M, same as 6; for R profile a reserved value */
   1906                     if (arm_feature(env, ARM_FEATURE_M)) {
   1907                         result->f.prot |= PAGE_READ | PAGE_EXEC;
   1908                         break;
   1909                     }
   1910                     /* fall through */
   1911                 default:
   1912                     qemu_log_mask(LOG_GUEST_ERROR,
   1913                                   "DRACR[%d]: Bad value for AP bits: 0x%"
   1914                                   PRIx32 "\n", n, ap);
   1915                 }
   1916             } else { /* Priv. mode AP bits decoding */
   1917                 switch (ap) {
   1918                 case 0:
   1919                     break; /* no access */
   1920                 case 1:
   1921                 case 2:
   1922                 case 3:
   1923                     result->f.prot |= PAGE_WRITE;
   1924                     /* fall through */
   1925                 case 5:
   1926                 case 6:
   1927                     result->f.prot |= PAGE_READ | PAGE_EXEC;
   1928                     break;
   1929                 case 7:
   1930                     /* for v7M, same as 6; for R profile a reserved value */
   1931                     if (arm_feature(env, ARM_FEATURE_M)) {
   1932                         result->f.prot |= PAGE_READ | PAGE_EXEC;
   1933                         break;
   1934                     }
   1935                     /* fall through */
   1936                 default:
   1937                     qemu_log_mask(LOG_GUEST_ERROR,
   1938                                   "DRACR[%d]: Bad value for AP bits: 0x%"
   1939                                   PRIx32 "\n", n, ap);
   1940                 }
   1941             }
   1942 
   1943             /* execute never */
   1944             if (xn) {
   1945                 result->f.prot &= ~PAGE_EXEC;
   1946             }
   1947         }
   1948     }
   1949 
   1950     fi->type = ARMFault_Permission;
   1951     fi->level = 1;
   1952     return !(result->f.prot & (1 << access_type));
   1953 }
   1954 
   1955 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
   1956                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
   1957                        bool secure, GetPhysAddrResult *result,
   1958                        ARMMMUFaultInfo *fi, uint32_t *mregion)
   1959 {
   1960     /*
   1961      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
   1962      * that a full phys-to-virt translation does).
   1963      * mregion is (if not NULL) set to the region number which matched,
   1964      * or -1 if no region number is returned (MPU off, address did not
   1965      * hit a region, address hit in multiple regions).
   1966      * If the region hit doesn't cover the entire TARGET_PAGE the address
   1967      * is within, then we set the result page_size to 1 to force the
   1968      * memory system to use a subpage.
   1969      */
   1970     ARMCPU *cpu = env_archcpu(env);
   1971     bool is_user = regime_is_user(env, mmu_idx);
   1972     int n;
   1973     int matchregion = -1;
   1974     bool hit = false;
   1975     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
   1976     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
   1977 
   1978     result->f.lg_page_size = TARGET_PAGE_BITS;
   1979     result->f.phys_addr = address;
   1980     result->f.prot = 0;
   1981     if (mregion) {
   1982         *mregion = -1;
   1983     }
   1984 
   1985     /*
   1986      * Unlike the ARM ARM pseudocode, we don't need to check whether this
   1987      * was an exception vector read from the vector table (which is always
   1988      * done using the default system address map), because those accesses
   1989      * are done in arm_v7m_load_vector(), which always does a direct
   1990      * read using address_space_ldl(), rather than going via this function.
   1991      */
   1992     if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
   1993         hit = true;
   1994     } else if (m_is_ppb_region(env, address)) {
   1995         hit = true;
   1996     } else {
   1997         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
   1998             hit = true;
   1999         }
   2000 
   2001         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
   2002             /* region search */
   2003             /*
   2004              * Note that the base address is bits [31:5] from the register
   2005              * with bits [4:0] all zeroes, but the limit address is bits
   2006              * [31:5] from the register with bits [4:0] all ones.
   2007              */
   2008             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
   2009             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
   2010 
   2011             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
   2012                 /* Region disabled */
   2013                 continue;
   2014             }
   2015 
   2016             if (address < base || address > limit) {
   2017                 /*
   2018                  * Address not in this region. We must check whether the
   2019                  * region covers addresses in the same page as our address.
   2020                  * In that case we must not report a size that covers the
   2021                  * whole page for a subsequent hit against a different MPU
   2022                  * region or the background region, because it would result in
   2023                  * incorrect TLB hits for subsequent accesses to addresses that
   2024                  * are in this MPU region.
   2025                  */
   2026                 if (limit >= base &&
   2027                     ranges_overlap(base, limit - base + 1,
   2028                                    addr_page_base,
   2029                                    TARGET_PAGE_SIZE)) {
   2030                     result->f.lg_page_size = 0;
   2031                 }
   2032                 continue;
   2033             }
   2034 
   2035             if (base > addr_page_base || limit < addr_page_limit) {
   2036                 result->f.lg_page_size = 0;
   2037             }
   2038 
   2039             if (matchregion != -1) {
   2040                 /*
   2041                  * Multiple regions match -- always a failure (unlike
   2042                  * PMSAv7 where highest-numbered-region wins)
   2043                  */
   2044                 fi->type = ARMFault_Permission;
   2045                 fi->level = 1;
   2046                 return true;
   2047             }
   2048 
   2049             matchregion = n;
   2050             hit = true;
   2051         }
   2052     }
   2053 
   2054     if (!hit) {
   2055         /* background fault */
   2056         fi->type = ARMFault_Background;
   2057         return true;
   2058     }
   2059 
   2060     if (matchregion == -1) {
   2061         /* hit using the background region */
   2062         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
   2063     } else {
   2064         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
   2065         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
   2066         bool pxn = false;
   2067 
   2068         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
   2069             pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
   2070         }
   2071 
   2072         if (m_is_system_region(env, address)) {
   2073             /* System space is always execute never */
   2074             xn = 1;
   2075         }
   2076 
   2077         result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
   2078         if (result->f.prot && !xn && !(pxn && !is_user)) {
   2079             result->f.prot |= PAGE_EXEC;
   2080         }
   2081         /*
   2082          * We don't need to look the attribute up in the MAIR0/MAIR1
   2083          * registers because that only tells us about cacheability.
   2084          */
   2085         if (mregion) {
   2086             *mregion = matchregion;
   2087         }
   2088     }
   2089 
   2090     fi->type = ARMFault_Permission;
   2091     fi->level = 1;
   2092     return !(result->f.prot & (1 << access_type));
   2093 }
   2094 
   2095 static bool v8m_is_sau_exempt(CPUARMState *env,
   2096                               uint32_t address, MMUAccessType access_type)
   2097 {
   2098     /*
   2099      * The architecture specifies that certain address ranges are
   2100      * exempt from v8M SAU/IDAU checks.
   2101      */
   2102     return
   2103         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
   2104         (address >= 0xe0000000 && address <= 0xe0002fff) ||
   2105         (address >= 0xe000e000 && address <= 0xe000efff) ||
   2106         (address >= 0xe002e000 && address <= 0xe002efff) ||
   2107         (address >= 0xe0040000 && address <= 0xe0041fff) ||
   2108         (address >= 0xe00ff000 && address <= 0xe00fffff);
   2109 }
   2110 
   2111 void v8m_security_lookup(CPUARMState *env, uint32_t address,
   2112                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
   2113                          bool is_secure, V8M_SAttributes *sattrs)
   2114 {
   2115     /*
   2116      * Look up the security attributes for this address. Compare the
   2117      * pseudocode SecurityCheck() function.
   2118      * We assume the caller has zero-initialized *sattrs.
   2119      */
   2120     ARMCPU *cpu = env_archcpu(env);
   2121     int r;
   2122     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
   2123     int idau_region = IREGION_NOTVALID;
   2124     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
   2125     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
   2126 
   2127     if (cpu->idau) {
   2128         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
   2129         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
   2130 
   2131         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
   2132                    &idau_nsc);
   2133     }
   2134 
   2135     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
   2136         /* 0xf0000000..0xffffffff is always S for insn fetches */
   2137         return;
   2138     }
   2139 
   2140     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
   2141         sattrs->ns = !is_secure;
   2142         return;
   2143     }
   2144 
   2145     if (idau_region != IREGION_NOTVALID) {
   2146         sattrs->irvalid = true;
   2147         sattrs->iregion = idau_region;
   2148     }
   2149 
   2150     switch (env->sau.ctrl & 3) {
   2151     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
   2152         break;
   2153     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
   2154         sattrs->ns = true;
   2155         break;
   2156     default: /* SAU.ENABLE == 1 */
   2157         for (r = 0; r < cpu->sau_sregion; r++) {
   2158             if (env->sau.rlar[r] & 1) {
   2159                 uint32_t base = env->sau.rbar[r] & ~0x1f;
   2160                 uint32_t limit = env->sau.rlar[r] | 0x1f;
   2161 
   2162                 if (base <= address && limit >= address) {
   2163                     if (base > addr_page_base || limit < addr_page_limit) {
   2164                         sattrs->subpage = true;
   2165                     }
   2166                     if (sattrs->srvalid) {
   2167                         /*
   2168                          * If we hit in more than one region then we must report
   2169                          * as Secure, not NS-Callable, with no valid region
   2170                          * number info.
   2171                          */
   2172                         sattrs->ns = false;
   2173                         sattrs->nsc = false;
   2174                         sattrs->sregion = 0;
   2175                         sattrs->srvalid = false;
   2176                         break;
   2177                     } else {
   2178                         if (env->sau.rlar[r] & 2) {
   2179                             sattrs->nsc = true;
   2180                         } else {
   2181                             sattrs->ns = true;
   2182                         }
   2183                         sattrs->srvalid = true;
   2184                         sattrs->sregion = r;
   2185                     }
   2186                 } else {
   2187                     /*
   2188                      * Address not in this region. We must check whether the
   2189                      * region covers addresses in the same page as our address.
   2190                      * In that case we must not report a size that covers the
   2191                      * whole page for a subsequent hit against a different MPU
   2192                      * region or the background region, because it would result
   2193                      * in incorrect TLB hits for subsequent accesses to
   2194                      * addresses that are in this MPU region.
   2195                      */
   2196                     if (limit >= base &&
   2197                         ranges_overlap(base, limit - base + 1,
   2198                                        addr_page_base,
   2199                                        TARGET_PAGE_SIZE)) {
   2200                         sattrs->subpage = true;
   2201                     }
   2202                 }
   2203             }
   2204         }
   2205         break;
   2206     }
   2207 
   2208     /*
   2209      * The IDAU will override the SAU lookup results if it specifies
   2210      * higher security than the SAU does.
   2211      */
   2212     if (!idau_ns) {
   2213         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
   2214             sattrs->ns = false;
   2215             sattrs->nsc = idau_nsc;
   2216         }
   2217     }
   2218 }
   2219 
   2220 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
   2221                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
   2222                                  bool secure, GetPhysAddrResult *result,
   2223                                  ARMMMUFaultInfo *fi)
   2224 {
   2225     V8M_SAttributes sattrs = {};
   2226     bool ret;
   2227 
   2228     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
   2229         v8m_security_lookup(env, address, access_type, mmu_idx,
   2230                             secure, &sattrs);
   2231         if (access_type == MMU_INST_FETCH) {
   2232             /*
   2233              * Instruction fetches always use the MMU bank and the
   2234              * transaction attribute determined by the fetch address,
   2235              * regardless of CPU state. This is painful for QEMU
   2236              * to handle, because it would mean we need to encode
   2237              * into the mmu_idx not just the (user, negpri) information
   2238              * for the current security state but also that for the
   2239              * other security state, which would balloon the number
   2240              * of mmu_idx values needed alarmingly.
   2241              * Fortunately we can avoid this because it's not actually
   2242              * possible to arbitrarily execute code from memory with
   2243              * the wrong security attribute: it will always generate
   2244              * an exception of some kind or another, apart from the
   2245              * special case of an NS CPU executing an SG instruction
   2246              * in S&NSC memory. So we always just fail the translation
   2247              * here and sort things out in the exception handler
   2248              * (including possibly emulating an SG instruction).
   2249              */
   2250             if (sattrs.ns != !secure) {
   2251                 if (sattrs.nsc) {
   2252                     fi->type = ARMFault_QEMU_NSCExec;
   2253                 } else {
   2254                     fi->type = ARMFault_QEMU_SFault;
   2255                 }
   2256                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
   2257                 result->f.phys_addr = address;
   2258                 result->f.prot = 0;
   2259                 return true;
   2260             }
   2261         } else {
   2262             /*
   2263              * For data accesses we always use the MMU bank indicated
   2264              * by the current CPU state, but the security attributes
   2265              * might downgrade a secure access to nonsecure.
   2266              */
   2267             if (sattrs.ns) {
   2268                 result->f.attrs.secure = false;
   2269             } else if (!secure) {
   2270                 /*
   2271                  * NS access to S memory must fault.
   2272                  * Architecturally we should first check whether the
   2273                  * MPU information for this address indicates that we
   2274                  * are doing an unaligned access to Device memory, which
   2275                  * should generate a UsageFault instead. QEMU does not
   2276                  * currently check for that kind of unaligned access though.
   2277                  * If we added it we would need to do so as a special case
   2278                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
   2279                  */
   2280                 fi->type = ARMFault_QEMU_SFault;
   2281                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
   2282                 result->f.phys_addr = address;
   2283                 result->f.prot = 0;
   2284                 return true;
   2285             }
   2286         }
   2287     }
   2288 
   2289     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
   2290                             result, fi, NULL);
   2291     if (sattrs.subpage) {
   2292         result->f.lg_page_size = 0;
   2293     }
   2294     return ret;
   2295 }
   2296 
   2297 /*
   2298  * Translate from the 4-bit stage 2 representation of
   2299  * memory attributes (without cache-allocation hints) to
   2300  * the 8-bit representation of the stage 1 MAIR registers
   2301  * (which includes allocation hints).
   2302  *
   2303  * ref: shared/translation/attrs/S2AttrDecode()
   2304  *      .../S2ConvertAttrsHints()
   2305  */
   2306 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
   2307 {
   2308     uint8_t hiattr = extract32(s2attrs, 2, 2);
   2309     uint8_t loattr = extract32(s2attrs, 0, 2);
   2310     uint8_t hihint = 0, lohint = 0;
   2311 
   2312     if (hiattr != 0) { /* normal memory */
   2313         if (hcr & HCR_CD) { /* cache disabled */
   2314             hiattr = loattr = 1; /* non-cacheable */
   2315         } else {
   2316             if (hiattr != 1) { /* Write-through or write-back */
   2317                 hihint = 3; /* RW allocate */
   2318             }
   2319             if (loattr != 1) { /* Write-through or write-back */
   2320                 lohint = 3; /* RW allocate */
   2321             }
   2322         }
   2323     }
   2324 
   2325     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
   2326 }
   2327 
   2328 /*
   2329  * Combine either inner or outer cacheability attributes for normal
   2330  * memory, according to table D4-42 and pseudocode procedure
   2331  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
   2332  *
   2333  * NB: only stage 1 includes allocation hints (RW bits), leading to
   2334  * some asymmetry.
   2335  */
   2336 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
   2337 {
   2338     if (s1 == 4 || s2 == 4) {
   2339         /* non-cacheable has precedence */
   2340         return 4;
   2341     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
   2342         /* stage 1 write-through takes precedence */
   2343         return s1;
   2344     } else if (extract32(s2, 2, 2) == 2) {
   2345         /* stage 2 write-through takes precedence, but the allocation hint
   2346          * is still taken from stage 1
   2347          */
   2348         return (2 << 2) | extract32(s1, 0, 2);
   2349     } else { /* write-back */
   2350         return s1;
   2351     }
   2352 }
   2353 
   2354 /*
   2355  * Combine the memory type and cacheability attributes of
   2356  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
   2357  * combined attributes in MAIR_EL1 format.
   2358  */
   2359 static uint8_t combined_attrs_nofwb(uint64_t hcr,
   2360                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
   2361 {
   2362     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
   2363 
   2364     s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
   2365 
   2366     s1lo = extract32(s1.attrs, 0, 4);
   2367     s2lo = extract32(s2_mair_attrs, 0, 4);
   2368     s1hi = extract32(s1.attrs, 4, 4);
   2369     s2hi = extract32(s2_mair_attrs, 4, 4);
   2370 
   2371     /* Combine memory type and cacheability attributes */
   2372     if (s1hi == 0 || s2hi == 0) {
   2373         /* Device has precedence over normal */
   2374         if (s1lo == 0 || s2lo == 0) {
   2375             /* nGnRnE has precedence over anything */
   2376             ret_attrs = 0;
   2377         } else if (s1lo == 4 || s2lo == 4) {
   2378             /* non-Reordering has precedence over Reordering */
   2379             ret_attrs = 4;  /* nGnRE */
   2380         } else if (s1lo == 8 || s2lo == 8) {
   2381             /* non-Gathering has precedence over Gathering */
   2382             ret_attrs = 8;  /* nGRE */
   2383         } else {
   2384             ret_attrs = 0xc; /* GRE */
   2385         }
   2386     } else { /* Normal memory */
   2387         /* Outer/inner cacheability combine independently */
   2388         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
   2389                   | combine_cacheattr_nibble(s1lo, s2lo);
   2390     }
   2391     return ret_attrs;
   2392 }
   2393 
   2394 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
   2395 {
   2396     /*
   2397      * Given the 4 bits specifying the outer or inner cacheability
   2398      * in MAIR format, return a value specifying Normal Write-Back,
   2399      * with the allocation and transient hints taken from the input
   2400      * if the input specified some kind of cacheable attribute.
   2401      */
   2402     if (attr == 0 || attr == 4) {
   2403         /*
   2404          * 0 == an UNPREDICTABLE encoding
   2405          * 4 == Non-cacheable
   2406          * Either way, force Write-Back RW allocate non-transient
   2407          */
   2408         return 0xf;
   2409     }
   2410     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
   2411     return attr | 4;
   2412 }
   2413 
   2414 /*
   2415  * Combine the memory type and cacheability attributes of
   2416  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
   2417  * combined attributes in MAIR_EL1 format.
   2418  */
   2419 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
   2420 {
   2421     switch (s2.attrs) {
   2422     case 7:
   2423         /* Use stage 1 attributes */
   2424         return s1.attrs;
   2425     case 6:
   2426         /*
   2427          * Force Normal Write-Back. Note that if S1 is Normal cacheable
   2428          * then we take the allocation hints from it; otherwise it is
   2429          * RW allocate, non-transient.
   2430          */
   2431         if ((s1.attrs & 0xf0) == 0) {
   2432             /* S1 is Device */
   2433             return 0xff;
   2434         }
   2435         /* Need to check the Inner and Outer nibbles separately */
   2436         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
   2437             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
   2438     case 5:
   2439         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
   2440         if ((s1.attrs & 0xf0) == 0) {
   2441             return s1.attrs;
   2442         }
   2443         return 0x44;
   2444     case 0 ... 3:
   2445         /* Force Device, of subtype specified by S2 */
   2446         return s2.attrs << 2;
   2447     default:
   2448         /*
   2449          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
   2450          * arbitrarily force Device.
   2451          */
   2452         return 0;
   2453     }
   2454 }
   2455 
   2456 /*
   2457  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
   2458  * and CombineS1S2Desc()
   2459  *
   2460  * @env:     CPUARMState
   2461  * @s1:      Attributes from stage 1 walk
   2462  * @s2:      Attributes from stage 2 walk
   2463  */
   2464 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
   2465                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
   2466 {
   2467     ARMCacheAttrs ret;
   2468     bool tagged = false;
   2469 
   2470     assert(s2.is_s2_format && !s1.is_s2_format);
   2471     ret.is_s2_format = false;
   2472 
   2473     if (s1.attrs == 0xf0) {
   2474         tagged = true;
   2475         s1.attrs = 0xff;
   2476     }
   2477 
   2478     /* Combine shareability attributes (table D4-43) */
   2479     if (s1.shareability == 2 || s2.shareability == 2) {
   2480         /* if either are outer-shareable, the result is outer-shareable */
   2481         ret.shareability = 2;
   2482     } else if (s1.shareability == 3 || s2.shareability == 3) {
   2483         /* if either are inner-shareable, the result is inner-shareable */
   2484         ret.shareability = 3;
   2485     } else {
   2486         /* both non-shareable */
   2487         ret.shareability = 0;
   2488     }
   2489 
   2490     /* Combine memory type and cacheability attributes */
   2491     if (hcr & HCR_FWB) {
   2492         ret.attrs = combined_attrs_fwb(s1, s2);
   2493     } else {
   2494         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
   2495     }
   2496 
   2497     /*
   2498      * Any location for which the resultant memory type is any
   2499      * type of Device memory is always treated as Outer Shareable.
   2500      * Any location for which the resultant memory type is Normal
   2501      * Inner Non-cacheable, Outer Non-cacheable is always treated
   2502      * as Outer Shareable.
   2503      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
   2504      */
   2505     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
   2506         ret.shareability = 2;
   2507     }
   2508 
   2509     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
   2510     if (tagged && ret.attrs == 0xff) {
   2511         ret.attrs = 0xf0;
   2512     }
   2513 
   2514     return ret;
   2515 }
   2516 
   2517 /*
   2518  * MMU disabled.  S1 addresses within aa64 translation regimes are
   2519  * still checked for bounds -- see AArch64.S1DisabledOutput().
   2520  */
   2521 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
   2522                                    MMUAccessType access_type,
   2523                                    ARMMMUIdx mmu_idx, bool is_secure,
   2524                                    GetPhysAddrResult *result,
   2525                                    ARMMMUFaultInfo *fi)
   2526 {
   2527     uint8_t memattr = 0x00;    /* Device nGnRnE */
   2528     uint8_t shareability = 0;  /* non-sharable */
   2529     int r_el;
   2530 
   2531     switch (mmu_idx) {
   2532     case ARMMMUIdx_Stage2:
   2533     case ARMMMUIdx_Stage2_S:
   2534     case ARMMMUIdx_Phys_NS:
   2535     case ARMMMUIdx_Phys_S:
   2536         break;
   2537 
   2538     default:
   2539         r_el = regime_el(env, mmu_idx);
   2540         if (arm_el_is_aa64(env, r_el)) {
   2541             int pamax = arm_pamax(env_archcpu(env));
   2542             uint64_t tcr = env->cp15.tcr_el[r_el];
   2543             int addrtop, tbi;
   2544 
   2545             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
   2546             if (access_type == MMU_INST_FETCH) {
   2547                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
   2548             }
   2549             tbi = (tbi >> extract64(address, 55, 1)) & 1;
   2550             addrtop = (tbi ? 55 : 63);
   2551 
   2552             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
   2553                 fi->type = ARMFault_AddressSize;
   2554                 fi->level = 0;
   2555                 fi->stage2 = false;
   2556                 return 1;
   2557             }
   2558 
   2559             /*
   2560              * When TBI is disabled, we've just validated that all of the
   2561              * bits above PAMax are zero, so logically we only need to
   2562              * clear the top byte for TBI.  But it's clearer to follow
   2563              * the pseudocode set of addrdesc.paddress.
   2564              */
   2565             address = extract64(address, 0, 52);
   2566         }
   2567 
   2568         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
   2569         if (r_el == 1) {
   2570             uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
   2571             if (hcr & HCR_DC) {
   2572                 if (hcr & HCR_DCT) {
   2573                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
   2574                 } else {
   2575                     memattr = 0xff;  /* Normal, WB, RWA */
   2576                 }
   2577             }
   2578         }
   2579         if (memattr == 0 && access_type == MMU_INST_FETCH) {
   2580             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
   2581                 memattr = 0xee;  /* Normal, WT, RA, NT */
   2582             } else {
   2583                 memattr = 0x44;  /* Normal, NC, No */
   2584             }
   2585             shareability = 2; /* outer sharable */
   2586         }
   2587         result->cacheattrs.is_s2_format = false;
   2588         break;
   2589     }
   2590 
   2591     result->f.phys_addr = address;
   2592     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
   2593     result->f.lg_page_size = TARGET_PAGE_BITS;
   2594     result->cacheattrs.shareability = shareability;
   2595     result->cacheattrs.attrs = memattr;
   2596     return false;
   2597 }
   2598 
   2599 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
   2600                                    target_ulong address,
   2601                                    MMUAccessType access_type,
   2602                                    GetPhysAddrResult *result,
   2603                                    ARMMMUFaultInfo *fi)
   2604 {
   2605     hwaddr ipa;
   2606     int s1_prot, s1_lgpgsz;
   2607     bool is_secure = ptw->in_secure;
   2608     bool ret, ipa_secure, s2walk_secure;
   2609     ARMCacheAttrs cacheattrs1;
   2610     bool is_el0;
   2611     uint64_t hcr;
   2612 
   2613     ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
   2614 
   2615     /* If S1 fails, return early.  */
   2616     if (ret) {
   2617         return ret;
   2618     }
   2619 
   2620     ipa = result->f.phys_addr;
   2621     ipa_secure = result->f.attrs.secure;
   2622     if (is_secure) {
   2623         /* Select TCR based on the NS bit from the S1 walk. */
   2624         s2walk_secure = !(ipa_secure
   2625                           ? env->cp15.vstcr_el2 & VSTCR_SW
   2626                           : env->cp15.vtcr_el2 & VTCR_NSW);
   2627     } else {
   2628         assert(!ipa_secure);
   2629         s2walk_secure = false;
   2630     }
   2631 
   2632     is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
   2633     ptw->in_mmu_idx = s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
   2634     ptw->in_ptw_idx = s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
   2635     ptw->in_secure = s2walk_secure;
   2636 
   2637     /*
   2638      * S1 is done, now do S2 translation.
   2639      * Save the stage1 results so that we may merge prot and cacheattrs later.
   2640      */
   2641     s1_prot = result->f.prot;
   2642     s1_lgpgsz = result->f.lg_page_size;
   2643     cacheattrs1 = result->cacheattrs;
   2644     memset(result, 0, sizeof(*result));
   2645 
   2646     ret = get_phys_addr_lpae(env, ptw, ipa, access_type, is_el0, result, fi);
   2647     fi->s2addr = ipa;
   2648 
   2649     /* Combine the S1 and S2 perms.  */
   2650     result->f.prot &= s1_prot;
   2651 
   2652     /* If S2 fails, return early.  */
   2653     if (ret) {
   2654         return ret;
   2655     }
   2656 
   2657     /*
   2658      * Use the maximum of the S1 & S2 page size, so that invalidation
   2659      * of pages > TARGET_PAGE_SIZE works correctly.
   2660      */
   2661     if (result->f.lg_page_size < s1_lgpgsz) {
   2662         result->f.lg_page_size = s1_lgpgsz;
   2663     }
   2664 
   2665     /* Combine the S1 and S2 cache attributes. */
   2666     hcr = arm_hcr_el2_eff_secstate(env, is_secure);
   2667     if (hcr & HCR_DC) {
   2668         /*
   2669          * HCR.DC forces the first stage attributes to
   2670          *  Normal Non-Shareable,
   2671          *  Inner Write-Back Read-Allocate Write-Allocate,
   2672          *  Outer Write-Back Read-Allocate Write-Allocate.
   2673          * Do not overwrite Tagged within attrs.
   2674          */
   2675         if (cacheattrs1.attrs != 0xf0) {
   2676             cacheattrs1.attrs = 0xff;
   2677         }
   2678         cacheattrs1.shareability = 0;
   2679     }
   2680     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
   2681                                             result->cacheattrs);
   2682 
   2683     /*
   2684      * Check if IPA translates to secure or non-secure PA space.
   2685      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
   2686      */
   2687     result->f.attrs.secure =
   2688         (is_secure
   2689          && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
   2690          && (ipa_secure
   2691              || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
   2692 
   2693     return false;
   2694 }
   2695 
   2696 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
   2697                                       target_ulong address,
   2698                                       MMUAccessType access_type,
   2699                                       GetPhysAddrResult *result,
   2700                                       ARMMMUFaultInfo *fi)
   2701 {
   2702     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
   2703     bool is_secure = ptw->in_secure;
   2704     ARMMMUIdx s1_mmu_idx;
   2705 
   2706     /*
   2707      * The page table entries may downgrade secure to non-secure, but
   2708      * cannot upgrade an non-secure translation regime's attributes
   2709      * to secure.
   2710      */
   2711     result->f.attrs.secure = is_secure;
   2712 
   2713     switch (mmu_idx) {
   2714     case ARMMMUIdx_Phys_S:
   2715     case ARMMMUIdx_Phys_NS:
   2716         /* Checking Phys early avoids special casing later vs regime_el. */
   2717         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
   2718                                       is_secure, result, fi);
   2719 
   2720     case ARMMMUIdx_Stage1_E0:
   2721     case ARMMMUIdx_Stage1_E1:
   2722     case ARMMMUIdx_Stage1_E1_PAN:
   2723         /* First stage lookup uses second stage for ptw. */
   2724         ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
   2725         break;
   2726 
   2727     case ARMMMUIdx_E10_0:
   2728         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
   2729         goto do_twostage;
   2730     case ARMMMUIdx_E10_1:
   2731         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
   2732         goto do_twostage;
   2733     case ARMMMUIdx_E10_1_PAN:
   2734         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
   2735     do_twostage:
   2736         /*
   2737          * Call ourselves recursively to do the stage 1 and then stage 2
   2738          * translations if mmu_idx is a two-stage regime, and EL2 present.
   2739          * Otherwise, a stage1+stage2 translation is just stage 1.
   2740          */
   2741         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
   2742         if (arm_feature(env, ARM_FEATURE_EL2) &&
   2743             !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
   2744             return get_phys_addr_twostage(env, ptw, address, access_type,
   2745                                           result, fi);
   2746         }
   2747         /* fall through */
   2748 
   2749     default:
   2750         /* Single stage and second stage uses physical for ptw. */
   2751         ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
   2752         break;
   2753     }
   2754 
   2755     result->f.attrs.user = regime_is_user(env, mmu_idx);
   2756 
   2757     /*
   2758      * Fast Context Switch Extension. This doesn't exist at all in v8.
   2759      * In v7 and earlier it affects all stage 1 translations.
   2760      */
   2761     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
   2762         && !arm_feature(env, ARM_FEATURE_V8)) {
   2763         if (regime_el(env, mmu_idx) == 3) {
   2764             address += env->cp15.fcseidr_s;
   2765         } else {
   2766             address += env->cp15.fcseidr_ns;
   2767         }
   2768     }
   2769 
   2770     if (arm_feature(env, ARM_FEATURE_PMSA)) {
   2771         bool ret;
   2772         result->f.lg_page_size = TARGET_PAGE_BITS;
   2773 
   2774         if (arm_feature(env, ARM_FEATURE_V8)) {
   2775             /* PMSAv8 */
   2776             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
   2777                                        is_secure, result, fi);
   2778         } else if (arm_feature(env, ARM_FEATURE_V7)) {
   2779             /* PMSAv7 */
   2780             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
   2781                                        is_secure, result, fi);
   2782         } else {
   2783             /* Pre-v7 MPU */
   2784             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
   2785                                        is_secure, result, fi);
   2786         }
   2787         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
   2788                       " mmu_idx %u -> %s (prot %c%c%c)\n",
   2789                       access_type == MMU_DATA_LOAD ? "reading" :
   2790                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
   2791                       (uint32_t)address, mmu_idx,
   2792                       ret ? "Miss" : "Hit",
   2793                       result->f.prot & PAGE_READ ? 'r' : '-',
   2794                       result->f.prot & PAGE_WRITE ? 'w' : '-',
   2795                       result->f.prot & PAGE_EXEC ? 'x' : '-');
   2796 
   2797         return ret;
   2798     }
   2799 
   2800     /* Definitely a real MMU, not an MPU */
   2801 
   2802     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
   2803         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
   2804                                       is_secure, result, fi);
   2805     }
   2806 
   2807     if (regime_using_lpae_format(env, mmu_idx)) {
   2808         return get_phys_addr_lpae(env, ptw, address, access_type, false,
   2809                                   result, fi);
   2810     } else if (arm_feature(env, ARM_FEATURE_V7) ||
   2811                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
   2812         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
   2813     } else {
   2814         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
   2815     }
   2816 }
   2817 
   2818 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
   2819                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
   2820                                bool is_secure, GetPhysAddrResult *result,
   2821                                ARMMMUFaultInfo *fi)
   2822 {
   2823     S1Translate ptw = {
   2824         .in_mmu_idx = mmu_idx,
   2825         .in_secure = is_secure,
   2826     };
   2827     return get_phys_addr_with_struct(env, &ptw, address, access_type,
   2828                                      result, fi);
   2829 }
   2830 
   2831 bool get_phys_addr(CPUARMState *env, target_ulong address,
   2832                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
   2833                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
   2834 {
   2835     bool is_secure;
   2836 
   2837     switch (mmu_idx) {
   2838     case ARMMMUIdx_E10_0:
   2839     case ARMMMUIdx_E10_1:
   2840     case ARMMMUIdx_E10_1_PAN:
   2841     case ARMMMUIdx_E20_0:
   2842     case ARMMMUIdx_E20_2:
   2843     case ARMMMUIdx_E20_2_PAN:
   2844     case ARMMMUIdx_Stage1_E0:
   2845     case ARMMMUIdx_Stage1_E1:
   2846     case ARMMMUIdx_Stage1_E1_PAN:
   2847     case ARMMMUIdx_E2:
   2848         is_secure = arm_is_secure_below_el3(env);
   2849         break;
   2850     case ARMMMUIdx_Stage2:
   2851     case ARMMMUIdx_Phys_NS:
   2852     case ARMMMUIdx_MPrivNegPri:
   2853     case ARMMMUIdx_MUserNegPri:
   2854     case ARMMMUIdx_MPriv:
   2855     case ARMMMUIdx_MUser:
   2856         is_secure = false;
   2857         break;
   2858     case ARMMMUIdx_E3:
   2859     case ARMMMUIdx_Stage2_S:
   2860     case ARMMMUIdx_Phys_S:
   2861     case ARMMMUIdx_MSPrivNegPri:
   2862     case ARMMMUIdx_MSUserNegPri:
   2863     case ARMMMUIdx_MSPriv:
   2864     case ARMMMUIdx_MSUser:
   2865         is_secure = true;
   2866         break;
   2867     default:
   2868         g_assert_not_reached();
   2869     }
   2870     return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
   2871                                      is_secure, result, fi);
   2872 }
   2873 
   2874 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
   2875                                          MemTxAttrs *attrs)
   2876 {
   2877     ARMCPU *cpu = ARM_CPU(cs);
   2878     CPUARMState *env = &cpu->env;
   2879     S1Translate ptw = {
   2880         .in_mmu_idx = arm_mmu_idx(env),
   2881         .in_secure = arm_is_secure(env),
   2882         .in_debug = true,
   2883     };
   2884     GetPhysAddrResult res = {};
   2885     ARMMMUFaultInfo fi = {};
   2886     bool ret;
   2887 
   2888     ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
   2889     *attrs = res.f.attrs;
   2890 
   2891     if (ret) {
   2892         return -1;
   2893     }
   2894     return res.f.phys_addr;
   2895 }