qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

mve_helper.c (166620B)


      1 /*
      2  * M-profile MVE Operations
      3  *
      4  * Copyright (c) 2021 Linaro, Ltd.
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2.1 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 
     20 #include "qemu/osdep.h"
     21 #include "cpu.h"
     22 #include "internals.h"
     23 #include "vec_internal.h"
     24 #include "exec/helper-proto.h"
     25 #include "exec/cpu_ldst.h"
     26 #include "exec/exec-all.h"
     27 #include "tcg/tcg.h"
     28 #include "fpu/softfloat.h"
     29 
     30 static uint16_t mve_eci_mask(CPUARMState *env)
     31 {
     32     /*
     33      * Return the mask of which elements in the MVE vector correspond
     34      * to beats being executed. The mask has 1 bits for executed lanes
     35      * and 0 bits where ECI says this beat was already executed.
     36      */
     37     int eci;
     38 
     39     if ((env->condexec_bits & 0xf) != 0) {
     40         return 0xffff;
     41     }
     42 
     43     eci = env->condexec_bits >> 4;
     44     switch (eci) {
     45     case ECI_NONE:
     46         return 0xffff;
     47     case ECI_A0:
     48         return 0xfff0;
     49     case ECI_A0A1:
     50         return 0xff00;
     51     case ECI_A0A1A2:
     52     case ECI_A0A1A2B0:
     53         return 0xf000;
     54     default:
     55         g_assert_not_reached();
     56     }
     57 }
     58 
     59 static uint16_t mve_element_mask(CPUARMState *env)
     60 {
     61     /*
     62      * Return the mask of which elements in the MVE vector should be
     63      * updated. This is a combination of multiple things:
     64      *  (1) by default, we update every lane in the vector
     65      *  (2) VPT predication stores its state in the VPR register;
     66      *  (3) low-overhead-branch tail predication will mask out part
     67      *      the vector on the final iteration of the loop
     68      *  (4) if EPSR.ECI is set then we must execute only some beats
     69      *      of the insn
     70      * We combine all these into a 16-bit result with the same semantics
     71      * as VPR.P0: 0 to mask the lane, 1 if it is active.
     72      * 8-bit vector ops will look at all bits of the result;
     73      * 16-bit ops will look at bits 0, 2, 4, ...;
     74      * 32-bit ops will look at bits 0, 4, 8 and 12.
     75      * Compare pseudocode GetCurInstrBeat(), though that only returns
     76      * the 4-bit slice of the mask corresponding to a single beat.
     77      */
     78     uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
     79 
     80     if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
     81         mask |= 0xff;
     82     }
     83     if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
     84         mask |= 0xff00;
     85     }
     86 
     87     if (env->v7m.ltpsize < 4 &&
     88         env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
     89         /*
     90          * Tail predication active, and this is the last loop iteration.
     91          * The element size is (1 << ltpsize), and we only want to process
     92          * loopcount elements, so we want to retain the least significant
     93          * (loopcount * esize) predicate bits and zero out bits above that.
     94          */
     95         int masklen = env->regs[14] << env->v7m.ltpsize;
     96         assert(masklen <= 16);
     97         uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
     98         mask &= ltpmask;
     99     }
    100 
    101     /*
    102      * ECI bits indicate which beats are already executed;
    103      * we handle this by effectively predicating them out.
    104      */
    105     mask &= mve_eci_mask(env);
    106     return mask;
    107 }
    108 
    109 static void mve_advance_vpt(CPUARMState *env)
    110 {
    111     /* Advance the VPT and ECI state if necessary */
    112     uint32_t vpr = env->v7m.vpr;
    113     unsigned mask01, mask23;
    114     uint16_t inv_mask;
    115     uint16_t eci_mask = mve_eci_mask(env);
    116 
    117     if ((env->condexec_bits & 0xf) == 0) {
    118         env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
    119             (ECI_A0 << 4) : (ECI_NONE << 4);
    120     }
    121 
    122     if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
    123         /* VPT not enabled, nothing to do */
    124         return;
    125     }
    126 
    127     /* Invert P0 bits if needed, but only for beats we actually executed */
    128     mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
    129     mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
    130     /* Start by assuming we invert all bits corresponding to executed beats */
    131     inv_mask = eci_mask;
    132     if (mask01 <= 8) {
    133         /* MASK01 says don't invert low half of P0 */
    134         inv_mask &= ~0xff;
    135     }
    136     if (mask23 <= 8) {
    137         /* MASK23 says don't invert high half of P0 */
    138         inv_mask &= ~0xff00;
    139     }
    140     vpr ^= inv_mask;
    141     /* Only update MASK01 if beat 1 executed */
    142     if (eci_mask & 0xf0) {
    143         vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
    144     }
    145     /* Beat 3 always executes, so update MASK23 */
    146     vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
    147     env->v7m.vpr = vpr;
    148 }
    149 
    150 /* For loads, predicated lanes are zeroed instead of keeping their old values */
    151 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE)                         \
    152     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
    153     {                                                                   \
    154         TYPE *d = vd;                                                   \
    155         uint16_t mask = mve_element_mask(env);                          \
    156         uint16_t eci_mask = mve_eci_mask(env);                          \
    157         unsigned b, e;                                                  \
    158         /*                                                              \
    159          * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
    160          * beats so we don't care if we update part of the dest and     \
    161          * then take an exception.                                      \
    162          */                                                             \
    163         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
    164             if (eci_mask & (1 << b)) {                                  \
    165                 d[H##ESIZE(e)] = (mask & (1 << b)) ?                    \
    166                     cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;     \
    167             }                                                           \
    168             addr += MSIZE;                                              \
    169         }                                                               \
    170         mve_advance_vpt(env);                                           \
    171     }
    172 
    173 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE)                         \
    174     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
    175     {                                                                   \
    176         TYPE *d = vd;                                                   \
    177         uint16_t mask = mve_element_mask(env);                          \
    178         unsigned b, e;                                                  \
    179         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
    180             if (mask & (1 << b)) {                                      \
    181                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
    182             }                                                           \
    183             addr += MSIZE;                                              \
    184         }                                                               \
    185         mve_advance_vpt(env);                                           \
    186     }
    187 
    188 DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
    189 DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
    190 DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
    191 
    192 DO_VSTR(vstrb, 1, stb, 1, uint8_t)
    193 DO_VSTR(vstrh, 2, stw, 2, uint16_t)
    194 DO_VSTR(vstrw, 4, stl, 4, uint32_t)
    195 
    196 DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
    197 DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
    198 DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
    199 DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
    200 DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
    201 DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
    202 
    203 DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
    204 DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
    205 DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
    206 
    207 #undef DO_VLDR
    208 #undef DO_VSTR
    209 
    210 /*
    211  * Gather loads/scatter stores. Here each element of Qm specifies
    212  * an offset to use from the base register Rm. In the _os_ versions
    213  * that offset is scaled by the element size.
    214  * For loads, predicated lanes are zeroed instead of retaining
    215  * their previous values.
    216  */
    217 #define DO_VLDR_SG(OP, LDTYPE, ESIZE, TYPE, OFFTYPE, ADDRFN, WB)        \
    218     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
    219                           uint32_t base)                                \
    220     {                                                                   \
    221         TYPE *d = vd;                                                   \
    222         OFFTYPE *m = vm;                                                \
    223         uint16_t mask = mve_element_mask(env);                          \
    224         uint16_t eci_mask = mve_eci_mask(env);                          \
    225         unsigned e;                                                     \
    226         uint32_t addr;                                                  \
    227         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
    228             if (!(eci_mask & 1)) {                                      \
    229                 continue;                                               \
    230             }                                                           \
    231             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
    232             d[H##ESIZE(e)] = (mask & 1) ?                               \
    233                 cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;         \
    234             if (WB) {                                                   \
    235                 m[H##ESIZE(e)] = addr;                                  \
    236             }                                                           \
    237         }                                                               \
    238         mve_advance_vpt(env);                                           \
    239     }
    240 
    241 /* We know here TYPE is unsigned so always the same as the offset type */
    242 #define DO_VSTR_SG(OP, STTYPE, ESIZE, TYPE, ADDRFN, WB)                 \
    243     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
    244                           uint32_t base)                                \
    245     {                                                                   \
    246         TYPE *d = vd;                                                   \
    247         TYPE *m = vm;                                                   \
    248         uint16_t mask = mve_element_mask(env);                          \
    249         uint16_t eci_mask = mve_eci_mask(env);                          \
    250         unsigned e;                                                     \
    251         uint32_t addr;                                                  \
    252         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
    253             if (!(eci_mask & 1)) {                                      \
    254                 continue;                                               \
    255             }                                                           \
    256             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
    257             if (mask & 1) {                                             \
    258                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
    259             }                                                           \
    260             if (WB) {                                                   \
    261                 m[H##ESIZE(e)] = addr;                                  \
    262             }                                                           \
    263         }                                                               \
    264         mve_advance_vpt(env);                                           \
    265     }
    266 
    267 /*
    268  * 64-bit accesses are slightly different: they are done as two 32-bit
    269  * accesses, controlled by the predicate mask for the relevant beat,
    270  * and with a single 32-bit offset in the first of the two Qm elements.
    271  * Note that for QEMU our IMPDEF AIRCR.ENDIANNESS is always 0 (little).
    272  * Address writeback happens on the odd beats and updates the address
    273  * stored in the even-beat element.
    274  */
    275 #define DO_VLDR64_SG(OP, ADDRFN, WB)                                    \
    276     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
    277                           uint32_t base)                                \
    278     {                                                                   \
    279         uint32_t *d = vd;                                               \
    280         uint32_t *m = vm;                                               \
    281         uint16_t mask = mve_element_mask(env);                          \
    282         uint16_t eci_mask = mve_eci_mask(env);                          \
    283         unsigned e;                                                     \
    284         uint32_t addr;                                                  \
    285         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
    286             if (!(eci_mask & 1)) {                                      \
    287                 continue;                                               \
    288             }                                                           \
    289             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
    290             addr += 4 * (e & 1);                                        \
    291             d[H4(e)] = (mask & 1) ? cpu_ldl_data_ra(env, addr, GETPC()) : 0; \
    292             if (WB && (e & 1)) {                                        \
    293                 m[H4(e & ~1)] = addr - 4;                               \
    294             }                                                           \
    295         }                                                               \
    296         mve_advance_vpt(env);                                           \
    297     }
    298 
    299 #define DO_VSTR64_SG(OP, ADDRFN, WB)                                    \
    300     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
    301                           uint32_t base)                                \
    302     {                                                                   \
    303         uint32_t *d = vd;                                               \
    304         uint32_t *m = vm;                                               \
    305         uint16_t mask = mve_element_mask(env);                          \
    306         uint16_t eci_mask = mve_eci_mask(env);                          \
    307         unsigned e;                                                     \
    308         uint32_t addr;                                                  \
    309         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
    310             if (!(eci_mask & 1)) {                                      \
    311                 continue;                                               \
    312             }                                                           \
    313             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
    314             addr += 4 * (e & 1);                                        \
    315             if (mask & 1) {                                             \
    316                 cpu_stl_data_ra(env, addr, d[H4(e)], GETPC());          \
    317             }                                                           \
    318             if (WB && (e & 1)) {                                        \
    319                 m[H4(e & ~1)] = addr - 4;                               \
    320             }                                                           \
    321         }                                                               \
    322         mve_advance_vpt(env);                                           \
    323     }
    324 
    325 #define ADDR_ADD(BASE, OFFSET) ((BASE) + (OFFSET))
    326 #define ADDR_ADD_OSH(BASE, OFFSET) ((BASE) + ((OFFSET) << 1))
    327 #define ADDR_ADD_OSW(BASE, OFFSET) ((BASE) + ((OFFSET) << 2))
    328 #define ADDR_ADD_OSD(BASE, OFFSET) ((BASE) + ((OFFSET) << 3))
    329 
    330 DO_VLDR_SG(vldrb_sg_sh, ldsb, 2, int16_t, uint16_t, ADDR_ADD, false)
    331 DO_VLDR_SG(vldrb_sg_sw, ldsb, 4, int32_t, uint32_t, ADDR_ADD, false)
    332 DO_VLDR_SG(vldrh_sg_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD, false)
    333 
    334 DO_VLDR_SG(vldrb_sg_ub, ldub, 1, uint8_t, uint8_t, ADDR_ADD, false)
    335 DO_VLDR_SG(vldrb_sg_uh, ldub, 2, uint16_t, uint16_t, ADDR_ADD, false)
    336 DO_VLDR_SG(vldrb_sg_uw, ldub, 4, uint32_t, uint32_t, ADDR_ADD, false)
    337 DO_VLDR_SG(vldrh_sg_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD, false)
    338 DO_VLDR_SG(vldrh_sg_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD, false)
    339 DO_VLDR_SG(vldrw_sg_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, false)
    340 DO_VLDR64_SG(vldrd_sg_ud, ADDR_ADD, false)
    341 
    342 DO_VLDR_SG(vldrh_sg_os_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD_OSH, false)
    343 DO_VLDR_SG(vldrh_sg_os_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD_OSH, false)
    344 DO_VLDR_SG(vldrh_sg_os_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD_OSH, false)
    345 DO_VLDR_SG(vldrw_sg_os_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD_OSW, false)
    346 DO_VLDR64_SG(vldrd_sg_os_ud, ADDR_ADD_OSD, false)
    347 
    348 DO_VSTR_SG(vstrb_sg_ub, stb, 1, uint8_t, ADDR_ADD, false)
    349 DO_VSTR_SG(vstrb_sg_uh, stb, 2, uint16_t, ADDR_ADD, false)
    350 DO_VSTR_SG(vstrb_sg_uw, stb, 4, uint32_t, ADDR_ADD, false)
    351 DO_VSTR_SG(vstrh_sg_uh, stw, 2, uint16_t, ADDR_ADD, false)
    352 DO_VSTR_SG(vstrh_sg_uw, stw, 4, uint32_t, ADDR_ADD, false)
    353 DO_VSTR_SG(vstrw_sg_uw, stl, 4, uint32_t, ADDR_ADD, false)
    354 DO_VSTR64_SG(vstrd_sg_ud, ADDR_ADD, false)
    355 
    356 DO_VSTR_SG(vstrh_sg_os_uh, stw, 2, uint16_t, ADDR_ADD_OSH, false)
    357 DO_VSTR_SG(vstrh_sg_os_uw, stw, 4, uint32_t, ADDR_ADD_OSH, false)
    358 DO_VSTR_SG(vstrw_sg_os_uw, stl, 4, uint32_t, ADDR_ADD_OSW, false)
    359 DO_VSTR64_SG(vstrd_sg_os_ud, ADDR_ADD_OSD, false)
    360 
    361 DO_VLDR_SG(vldrw_sg_wb_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, true)
    362 DO_VLDR64_SG(vldrd_sg_wb_ud, ADDR_ADD, true)
    363 DO_VSTR_SG(vstrw_sg_wb_uw, stl, 4, uint32_t, ADDR_ADD, true)
    364 DO_VSTR64_SG(vstrd_sg_wb_ud, ADDR_ADD, true)
    365 
    366 /*
    367  * Deinterleaving loads/interleaving stores.
    368  *
    369  * For these helpers we are passed the index of the first Qreg
    370  * (VLD2/VST2 will also access Qn+1, VLD4/VST4 access Qn .. Qn+3)
    371  * and the value of the base address register Rn.
    372  * The helpers are specialized for pattern and element size, so
    373  * for instance vld42h is VLD4 with pattern 2, element size MO_16.
    374  *
    375  * These insns are beatwise but not predicated, so we must honour ECI,
    376  * but need not look at mve_element_mask().
    377  *
    378  * The pseudocode implements these insns with multiple memory accesses
    379  * of the element size, but rules R_VVVG and R_FXDM permit us to make
    380  * one 32-bit memory access per beat.
    381  */
    382 #define DO_VLD4B(OP, O1, O2, O3, O4)                                    \
    383     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
    384                           uint32_t base)                                \
    385     {                                                                   \
    386         int beat, e;                                                    \
    387         uint16_t mask = mve_eci_mask(env);                              \
    388         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
    389         uint32_t addr, data;                                            \
    390         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
    391             if ((mask & 1) == 0) {                                      \
    392                 /* ECI says skip this beat */                           \
    393                 continue;                                               \
    394             }                                                           \
    395             addr = base + off[beat] * 4;                                \
    396             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
    397             for (e = 0; e < 4; e++, data >>= 8) {                       \
    398                 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
    399                 qd[H1(off[beat])] = data;                               \
    400             }                                                           \
    401         }                                                               \
    402     }
    403 
    404 #define DO_VLD4H(OP, O1, O2)                                            \
    405     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
    406                           uint32_t base)                                \
    407     {                                                                   \
    408         int beat;                                                       \
    409         uint16_t mask = mve_eci_mask(env);                              \
    410         static const uint8_t off[4] = { O1, O1, O2, O2 };               \
    411         uint32_t addr, data;                                            \
    412         int y; /* y counts 0 2 0 2 */                                   \
    413         uint16_t *qd;                                                   \
    414         for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
    415             if ((mask & 1) == 0) {                                      \
    416                 /* ECI says skip this beat */                           \
    417                 continue;                                               \
    418             }                                                           \
    419             addr = base + off[beat] * 8 + (beat & 1) * 4;               \
    420             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
    421             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
    422             qd[H2(off[beat])] = data;                                   \
    423             data >>= 16;                                                \
    424             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
    425             qd[H2(off[beat])] = data;                                   \
    426         }                                                               \
    427     }
    428 
    429 #define DO_VLD4W(OP, O1, O2, O3, O4)                                    \
    430     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
    431                           uint32_t base)                                \
    432     {                                                                   \
    433         int beat;                                                       \
    434         uint16_t mask = mve_eci_mask(env);                              \
    435         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
    436         uint32_t addr, data;                                            \
    437         uint32_t *qd;                                                   \
    438         int y;                                                          \
    439         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
    440             if ((mask & 1) == 0) {                                      \
    441                 /* ECI says skip this beat */                           \
    442                 continue;                                               \
    443             }                                                           \
    444             addr = base + off[beat] * 4;                                \
    445             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
    446             y = (beat + (O1 & 2)) & 3;                                  \
    447             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
    448             qd[H4(off[beat] >> 2)] = data;                              \
    449         }                                                               \
    450     }
    451 
    452 DO_VLD4B(vld40b, 0, 1, 10, 11)
    453 DO_VLD4B(vld41b, 2, 3, 12, 13)
    454 DO_VLD4B(vld42b, 4, 5, 14, 15)
    455 DO_VLD4B(vld43b, 6, 7, 8, 9)
    456 
    457 DO_VLD4H(vld40h, 0, 5)
    458 DO_VLD4H(vld41h, 1, 6)
    459 DO_VLD4H(vld42h, 2, 7)
    460 DO_VLD4H(vld43h, 3, 4)
    461 
    462 DO_VLD4W(vld40w, 0, 1, 10, 11)
    463 DO_VLD4W(vld41w, 2, 3, 12, 13)
    464 DO_VLD4W(vld42w, 4, 5, 14, 15)
    465 DO_VLD4W(vld43w, 6, 7, 8, 9)
    466 
    467 #define DO_VLD2B(OP, O1, O2, O3, O4)                                    \
    468     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
    469                           uint32_t base)                                \
    470     {                                                                   \
    471         int beat, e;                                                    \
    472         uint16_t mask = mve_eci_mask(env);                              \
    473         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
    474         uint32_t addr, data;                                            \
    475         uint8_t *qd;                                                    \
    476         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
    477             if ((mask & 1) == 0) {                                      \
    478                 /* ECI says skip this beat */                           \
    479                 continue;                                               \
    480             }                                                           \
    481             addr = base + off[beat] * 2;                                \
    482             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
    483             for (e = 0; e < 4; e++, data >>= 8) {                       \
    484                 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
    485                 qd[H1(off[beat] + (e >> 1))] = data;                    \
    486             }                                                           \
    487         }                                                               \
    488     }
    489 
    490 #define DO_VLD2H(OP, O1, O2, O3, O4)                                    \
    491     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
    492                           uint32_t base)                                \
    493     {                                                                   \
    494         int beat;                                                       \
    495         uint16_t mask = mve_eci_mask(env);                              \
    496         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
    497         uint32_t addr, data;                                            \
    498         int e;                                                          \
    499         uint16_t *qd;                                                   \
    500         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
    501             if ((mask & 1) == 0) {                                      \
    502                 /* ECI says skip this beat */                           \
    503                 continue;                                               \
    504             }                                                           \
    505             addr = base + off[beat] * 4;                                \
    506             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
    507             for (e = 0; e < 2; e++, data >>= 16) {                      \
    508                 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
    509                 qd[H2(off[beat])] = data;                               \
    510             }                                                           \
    511         }                                                               \
    512     }
    513 
    514 #define DO_VLD2W(OP, O1, O2, O3, O4)                                    \
    515     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
    516                           uint32_t base)                                \
    517     {                                                                   \
    518         int beat;                                                       \
    519         uint16_t mask = mve_eci_mask(env);                              \
    520         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
    521         uint32_t addr, data;                                            \
    522         uint32_t *qd;                                                   \
    523         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
    524             if ((mask & 1) == 0) {                                      \
    525                 /* ECI says skip this beat */                           \
    526                 continue;                                               \
    527             }                                                           \
    528             addr = base + off[beat];                                    \
    529             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
    530             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
    531             qd[H4(off[beat] >> 3)] = data;                              \
    532         }                                                               \
    533     }
    534 
    535 DO_VLD2B(vld20b, 0, 2, 12, 14)
    536 DO_VLD2B(vld21b, 4, 6, 8, 10)
    537 
    538 DO_VLD2H(vld20h, 0, 1, 6, 7)
    539 DO_VLD2H(vld21h, 2, 3, 4, 5)
    540 
    541 DO_VLD2W(vld20w, 0, 4, 24, 28)
    542 DO_VLD2W(vld21w, 8, 12, 16, 20)
    543 
    544 #define DO_VST4B(OP, O1, O2, O3, O4)                                    \
    545     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
    546                           uint32_t base)                                \
    547     {                                                                   \
    548         int beat, e;                                                    \
    549         uint16_t mask = mve_eci_mask(env);                              \
    550         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
    551         uint32_t addr, data;                                            \
    552         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
    553             if ((mask & 1) == 0) {                                      \
    554                 /* ECI says skip this beat */                           \
    555                 continue;                                               \
    556             }                                                           \
    557             addr = base + off[beat] * 4;                                \
    558             data = 0;                                                   \
    559             for (e = 3; e >= 0; e--) {                                  \
    560                 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
    561                 data = (data << 8) | qd[H1(off[beat])];                 \
    562             }                                                           \
    563             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
    564         }                                                               \
    565     }
    566 
    567 #define DO_VST4H(OP, O1, O2)                                            \
    568     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
    569                           uint32_t base)                                \
    570     {                                                                   \
    571         int beat;                                                       \
    572         uint16_t mask = mve_eci_mask(env);                              \
    573         static const uint8_t off[4] = { O1, O1, O2, O2 };               \
    574         uint32_t addr, data;                                            \
    575         int y; /* y counts 0 2 0 2 */                                   \
    576         uint16_t *qd;                                                   \
    577         for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
    578             if ((mask & 1) == 0) {                                      \
    579                 /* ECI says skip this beat */                           \
    580                 continue;                                               \
    581             }                                                           \
    582             addr = base + off[beat] * 8 + (beat & 1) * 4;               \
    583             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
    584             data = qd[H2(off[beat])];                                   \
    585             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
    586             data |= qd[H2(off[beat])] << 16;                            \
    587             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
    588         }                                                               \
    589     }
    590 
    591 #define DO_VST4W(OP, O1, O2, O3, O4)                                    \
    592     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
    593                           uint32_t base)                                \
    594     {                                                                   \
    595         int beat;                                                       \
    596         uint16_t mask = mve_eci_mask(env);                              \
    597         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
    598         uint32_t addr, data;                                            \
    599         uint32_t *qd;                                                   \
    600         int y;                                                          \
    601         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
    602             if ((mask & 1) == 0) {                                      \
    603                 /* ECI says skip this beat */                           \
    604                 continue;                                               \
    605             }                                                           \
    606             addr = base + off[beat] * 4;                                \
    607             y = (beat + (O1 & 2)) & 3;                                  \
    608             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
    609             data = qd[H4(off[beat] >> 2)];                              \
    610             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
    611         }                                                               \
    612     }
    613 
    614 DO_VST4B(vst40b, 0, 1, 10, 11)
    615 DO_VST4B(vst41b, 2, 3, 12, 13)
    616 DO_VST4B(vst42b, 4, 5, 14, 15)
    617 DO_VST4B(vst43b, 6, 7, 8, 9)
    618 
    619 DO_VST4H(vst40h, 0, 5)
    620 DO_VST4H(vst41h, 1, 6)
    621 DO_VST4H(vst42h, 2, 7)
    622 DO_VST4H(vst43h, 3, 4)
    623 
    624 DO_VST4W(vst40w, 0, 1, 10, 11)
    625 DO_VST4W(vst41w, 2, 3, 12, 13)
    626 DO_VST4W(vst42w, 4, 5, 14, 15)
    627 DO_VST4W(vst43w, 6, 7, 8, 9)
    628 
    629 #define DO_VST2B(OP, O1, O2, O3, O4)                                    \
    630     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
    631                           uint32_t base)                                \
    632     {                                                                   \
    633         int beat, e;                                                    \
    634         uint16_t mask = mve_eci_mask(env);                              \
    635         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
    636         uint32_t addr, data;                                            \
    637         uint8_t *qd;                                                    \
    638         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
    639             if ((mask & 1) == 0) {                                      \
    640                 /* ECI says skip this beat */                           \
    641                 continue;                                               \
    642             }                                                           \
    643             addr = base + off[beat] * 2;                                \
    644             data = 0;                                                   \
    645             for (e = 3; e >= 0; e--) {                                  \
    646                 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
    647                 data = (data << 8) | qd[H1(off[beat] + (e >> 1))];      \
    648             }                                                           \
    649             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
    650         }                                                               \
    651     }
    652 
    653 #define DO_VST2H(OP, O1, O2, O3, O4)                                    \
    654     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
    655                           uint32_t base)                                \
    656     {                                                                   \
    657         int beat;                                                       \
    658         uint16_t mask = mve_eci_mask(env);                              \
    659         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
    660         uint32_t addr, data;                                            \
    661         int e;                                                          \
    662         uint16_t *qd;                                                   \
    663         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
    664             if ((mask & 1) == 0) {                                      \
    665                 /* ECI says skip this beat */                           \
    666                 continue;                                               \
    667             }                                                           \
    668             addr = base + off[beat] * 4;                                \
    669             data = 0;                                                   \
    670             for (e = 1; e >= 0; e--) {                                  \
    671                 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
    672                 data = (data << 16) | qd[H2(off[beat])];                \
    673             }                                                           \
    674             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
    675         }                                                               \
    676     }
    677 
    678 #define DO_VST2W(OP, O1, O2, O3, O4)                                    \
    679     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
    680                           uint32_t base)                                \
    681     {                                                                   \
    682         int beat;                                                       \
    683         uint16_t mask = mve_eci_mask(env);                              \
    684         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
    685         uint32_t addr, data;                                            \
    686         uint32_t *qd;                                                   \
    687         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
    688             if ((mask & 1) == 0) {                                      \
    689                 /* ECI says skip this beat */                           \
    690                 continue;                                               \
    691             }                                                           \
    692             addr = base + off[beat];                                    \
    693             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
    694             data = qd[H4(off[beat] >> 3)];                              \
    695             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
    696         }                                                               \
    697     }
    698 
    699 DO_VST2B(vst20b, 0, 2, 12, 14)
    700 DO_VST2B(vst21b, 4, 6, 8, 10)
    701 
    702 DO_VST2H(vst20h, 0, 1, 6, 7)
    703 DO_VST2H(vst21h, 2, 3, 4, 5)
    704 
    705 DO_VST2W(vst20w, 0, 4, 24, 28)
    706 DO_VST2W(vst21w, 8, 12, 16, 20)
    707 
    708 /*
    709  * The mergemask(D, R, M) macro performs the operation "*D = R" but
    710  * storing only the bytes which correspond to 1 bits in M,
    711  * leaving other bytes in *D unchanged. We use _Generic
    712  * to select the correct implementation based on the type of D.
    713  */
    714 
    715 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
    716 {
    717     if (mask & 1) {
    718         *d = r;
    719     }
    720 }
    721 
    722 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
    723 {
    724     mergemask_ub((uint8_t *)d, r, mask);
    725 }
    726 
    727 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
    728 {
    729     uint16_t bmask = expand_pred_b(mask);
    730     *d = (*d & ~bmask) | (r & bmask);
    731 }
    732 
    733 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
    734 {
    735     mergemask_uh((uint16_t *)d, r, mask);
    736 }
    737 
    738 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
    739 {
    740     uint32_t bmask = expand_pred_b(mask);
    741     *d = (*d & ~bmask) | (r & bmask);
    742 }
    743 
    744 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
    745 {
    746     mergemask_uw((uint32_t *)d, r, mask);
    747 }
    748 
    749 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
    750 {
    751     uint64_t bmask = expand_pred_b(mask);
    752     *d = (*d & ~bmask) | (r & bmask);
    753 }
    754 
    755 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
    756 {
    757     mergemask_uq((uint64_t *)d, r, mask);
    758 }
    759 
    760 #define mergemask(D, R, M)                      \
    761     _Generic(D,                                 \
    762              uint8_t *: mergemask_ub,           \
    763              int8_t *:  mergemask_sb,           \
    764              uint16_t *: mergemask_uh,          \
    765              int16_t *:  mergemask_sh,          \
    766              uint32_t *: mergemask_uw,          \
    767              int32_t *:  mergemask_sw,          \
    768              uint64_t *: mergemask_uq,          \
    769              int64_t *:  mergemask_sq)(D, R, M)
    770 
    771 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
    772 {
    773     /*
    774      * The generated code already replicated an 8 or 16 bit constant
    775      * into the 32-bit value, so we only need to write the 32-bit
    776      * value to all elements of the Qreg, allowing for predication.
    777      */
    778     uint32_t *d = vd;
    779     uint16_t mask = mve_element_mask(env);
    780     unsigned e;
    781     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
    782         mergemask(&d[H4(e)], val, mask);
    783     }
    784     mve_advance_vpt(env);
    785 }
    786 
    787 #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
    788     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
    789     {                                                                   \
    790         TYPE *d = vd, *m = vm;                                          \
    791         uint16_t mask = mve_element_mask(env);                          \
    792         unsigned e;                                                     \
    793         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
    794             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
    795         }                                                               \
    796         mve_advance_vpt(env);                                           \
    797     }
    798 
    799 #define DO_CLS_B(N)   (clrsb32(N) - 24)
    800 #define DO_CLS_H(N)   (clrsb32(N) - 16)
    801 
    802 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
    803 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
    804 DO_1OP(vclsw, 4, int32_t, clrsb32)
    805 
    806 #define DO_CLZ_B(N)   (clz32(N) - 24)
    807 #define DO_CLZ_H(N)   (clz32(N) - 16)
    808 
    809 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
    810 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
    811 DO_1OP(vclzw, 4, uint32_t, clz32)
    812 
    813 DO_1OP(vrev16b, 2, uint16_t, bswap16)
    814 DO_1OP(vrev32b, 4, uint32_t, bswap32)
    815 DO_1OP(vrev32h, 4, uint32_t, hswap32)
    816 DO_1OP(vrev64b, 8, uint64_t, bswap64)
    817 DO_1OP(vrev64h, 8, uint64_t, hswap64)
    818 DO_1OP(vrev64w, 8, uint64_t, wswap64)
    819 
    820 #define DO_NOT(N) (~(N))
    821 
    822 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
    823 
    824 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
    825 #define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
    826 #define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))
    827 
    828 DO_1OP(vabsb, 1, int8_t, DO_ABS)
    829 DO_1OP(vabsh, 2, int16_t, DO_ABS)
    830 DO_1OP(vabsw, 4, int32_t, DO_ABS)
    831 
    832 /* We can do these 64 bits at a time */
    833 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
    834 DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
    835 
    836 #define DO_NEG(N)    (-(N))
    837 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
    838 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
    839 
    840 DO_1OP(vnegb, 1, int8_t, DO_NEG)
    841 DO_1OP(vnegh, 2, int16_t, DO_NEG)
    842 DO_1OP(vnegw, 4, int32_t, DO_NEG)
    843 
    844 /* We can do these 64 bits at a time */
    845 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
    846 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
    847 
    848 /*
    849  * 1 operand immediates: Vda is destination and possibly also one source.
    850  * All these insns work at 64-bit widths.
    851  */
    852 #define DO_1OP_IMM(OP, FN)                                              \
    853     void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm)    \
    854     {                                                                   \
    855         uint64_t *da = vda;                                             \
    856         uint16_t mask = mve_element_mask(env);                          \
    857         unsigned e;                                                     \
    858         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
    859             mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask);            \
    860         }                                                               \
    861         mve_advance_vpt(env);                                           \
    862     }
    863 
    864 #define DO_MOVI(N, I) (I)
    865 #define DO_ANDI(N, I) ((N) & (I))
    866 #define DO_ORRI(N, I) ((N) | (I))
    867 
    868 DO_1OP_IMM(vmovi, DO_MOVI)
    869 DO_1OP_IMM(vandi, DO_ANDI)
    870 DO_1OP_IMM(vorri, DO_ORRI)
    871 
    872 #define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
    873     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
    874                                 void *vd, void *vn, void *vm)           \
    875     {                                                                   \
    876         TYPE *d = vd, *n = vn, *m = vm;                                 \
    877         uint16_t mask = mve_element_mask(env);                          \
    878         unsigned e;                                                     \
    879         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
    880             mergemask(&d[H##ESIZE(e)],                                  \
    881                       FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
    882         }                                                               \
    883         mve_advance_vpt(env);                                           \
    884     }
    885 
    886 /* provide unsigned 2-op helpers for all sizes */
    887 #define DO_2OP_U(OP, FN)                        \
    888     DO_2OP(OP##b, 1, uint8_t, FN)               \
    889     DO_2OP(OP##h, 2, uint16_t, FN)              \
    890     DO_2OP(OP##w, 4, uint32_t, FN)
    891 
    892 /* provide signed 2-op helpers for all sizes */
    893 #define DO_2OP_S(OP, FN)                        \
    894     DO_2OP(OP##b, 1, int8_t, FN)                \
    895     DO_2OP(OP##h, 2, int16_t, FN)               \
    896     DO_2OP(OP##w, 4, int32_t, FN)
    897 
    898 /*
    899  * "Long" operations where two half-sized inputs (taken from either the
    900  * top or the bottom of the input vector) produce a double-width result.
    901  * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
    902  */
    903 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
    904     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
    905     {                                                                   \
    906         LTYPE *d = vd;                                                  \
    907         TYPE *n = vn, *m = vm;                                          \
    908         uint16_t mask = mve_element_mask(env);                          \
    909         unsigned le;                                                    \
    910         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
    911             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
    912                          m[H##ESIZE(le * 2 + TOP)]);                    \
    913             mergemask(&d[H##LESIZE(le)], r, mask);                      \
    914         }                                                               \
    915         mve_advance_vpt(env);                                           \
    916     }
    917 
    918 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN)                                 \
    919     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
    920     {                                                                   \
    921         TYPE *d = vd, *n = vn, *m = vm;                                 \
    922         uint16_t mask = mve_element_mask(env);                          \
    923         unsigned e;                                                     \
    924         bool qc = false;                                                \
    925         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
    926             bool sat = false;                                           \
    927             TYPE r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat);          \
    928             mergemask(&d[H##ESIZE(e)], r, mask);                        \
    929             qc |= sat & mask & 1;                                       \
    930         }                                                               \
    931         if (qc) {                                                       \
    932             env->vfp.qc[0] = qc;                                        \
    933         }                                                               \
    934         mve_advance_vpt(env);                                           \
    935     }
    936 
    937 /* provide unsigned 2-op helpers for all sizes */
    938 #define DO_2OP_SAT_U(OP, FN)                    \
    939     DO_2OP_SAT(OP##b, 1, uint8_t, FN)           \
    940     DO_2OP_SAT(OP##h, 2, uint16_t, FN)          \
    941     DO_2OP_SAT(OP##w, 4, uint32_t, FN)
    942 
    943 /* provide signed 2-op helpers for all sizes */
    944 #define DO_2OP_SAT_S(OP, FN)                    \
    945     DO_2OP_SAT(OP##b, 1, int8_t, FN)            \
    946     DO_2OP_SAT(OP##h, 2, int16_t, FN)           \
    947     DO_2OP_SAT(OP##w, 4, int32_t, FN)
    948 
    949 #define DO_AND(N, M)  ((N) & (M))
    950 #define DO_BIC(N, M)  ((N) & ~(M))
    951 #define DO_ORR(N, M)  ((N) | (M))
    952 #define DO_ORN(N, M)  ((N) | ~(M))
    953 #define DO_EOR(N, M)  ((N) ^ (M))
    954 
    955 DO_2OP(vand, 8, uint64_t, DO_AND)
    956 DO_2OP(vbic, 8, uint64_t, DO_BIC)
    957 DO_2OP(vorr, 8, uint64_t, DO_ORR)
    958 DO_2OP(vorn, 8, uint64_t, DO_ORN)
    959 DO_2OP(veor, 8, uint64_t, DO_EOR)
    960 
    961 #define DO_ADD(N, M) ((N) + (M))
    962 #define DO_SUB(N, M) ((N) - (M))
    963 #define DO_MUL(N, M) ((N) * (M))
    964 
    965 DO_2OP_U(vadd, DO_ADD)
    966 DO_2OP_U(vsub, DO_SUB)
    967 DO_2OP_U(vmul, DO_MUL)
    968 
    969 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
    970 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
    971 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
    972 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
    973 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
    974 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
    975 
    976 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
    977 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
    978 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
    979 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
    980 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
    981 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
    982 
    983 /*
    984  * Polynomial multiply. We can always do this generating 64 bits
    985  * of the result at a time, so we don't need to use DO_2OP_L.
    986  */
    987 #define VMULLPH_MASK 0x00ff00ff00ff00ffULL
    988 #define VMULLPW_MASK 0x0000ffff0000ffffULL
    989 #define DO_VMULLPBH(N, M) pmull_h((N) & VMULLPH_MASK, (M) & VMULLPH_MASK)
    990 #define DO_VMULLPTH(N, M) DO_VMULLPBH((N) >> 8, (M) >> 8)
    991 #define DO_VMULLPBW(N, M) pmull_w((N) & VMULLPW_MASK, (M) & VMULLPW_MASK)
    992 #define DO_VMULLPTW(N, M) DO_VMULLPBW((N) >> 16, (M) >> 16)
    993 
    994 DO_2OP(vmullpbh, 8, uint64_t, DO_VMULLPBH)
    995 DO_2OP(vmullpth, 8, uint64_t, DO_VMULLPTH)
    996 DO_2OP(vmullpbw, 8, uint64_t, DO_VMULLPBW)
    997 DO_2OP(vmullptw, 8, uint64_t, DO_VMULLPTW)
    998 
    999 /*
   1000  * Because the computation type is at least twice as large as required,
   1001  * these work for both signed and unsigned source types.
   1002  */
   1003 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
   1004 {
   1005     return (n * m) >> 8;
   1006 }
   1007 
   1008 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
   1009 {
   1010     return (n * m) >> 16;
   1011 }
   1012 
   1013 static inline uint32_t do_mulh_w(int64_t n, int64_t m)
   1014 {
   1015     return (n * m) >> 32;
   1016 }
   1017 
   1018 static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
   1019 {
   1020     return (n * m + (1U << 7)) >> 8;
   1021 }
   1022 
   1023 static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
   1024 {
   1025     return (n * m + (1U << 15)) >> 16;
   1026 }
   1027 
   1028 static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
   1029 {
   1030     return (n * m + (1U << 31)) >> 32;
   1031 }
   1032 
   1033 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
   1034 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
   1035 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
   1036 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
   1037 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
   1038 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
   1039 
   1040 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
   1041 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
   1042 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
   1043 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
   1044 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
   1045 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
   1046 
   1047 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
   1048 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
   1049 
   1050 DO_2OP_S(vmaxs, DO_MAX)
   1051 DO_2OP_U(vmaxu, DO_MAX)
   1052 DO_2OP_S(vmins, DO_MIN)
   1053 DO_2OP_U(vminu, DO_MIN)
   1054 
   1055 #define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
   1056 
   1057 DO_2OP_S(vabds, DO_ABD)
   1058 DO_2OP_U(vabdu, DO_ABD)
   1059 
   1060 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
   1061 {
   1062     return ((uint64_t)n + m) >> 1;
   1063 }
   1064 
   1065 static inline int32_t do_vhadd_s(int32_t n, int32_t m)
   1066 {
   1067     return ((int64_t)n + m) >> 1;
   1068 }
   1069 
   1070 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
   1071 {
   1072     return ((uint64_t)n - m) >> 1;
   1073 }
   1074 
   1075 static inline int32_t do_vhsub_s(int32_t n, int32_t m)
   1076 {
   1077     return ((int64_t)n - m) >> 1;
   1078 }
   1079 
   1080 DO_2OP_S(vhadds, do_vhadd_s)
   1081 DO_2OP_U(vhaddu, do_vhadd_u)
   1082 DO_2OP_S(vhsubs, do_vhsub_s)
   1083 DO_2OP_U(vhsubu, do_vhsub_u)
   1084 
   1085 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
   1086 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
   1087 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
   1088 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
   1089 
   1090 DO_2OP_S(vshls, DO_VSHLS)
   1091 DO_2OP_U(vshlu, DO_VSHLU)
   1092 DO_2OP_S(vrshls, DO_VRSHLS)
   1093 DO_2OP_U(vrshlu, DO_VRSHLU)
   1094 
   1095 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
   1096 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
   1097 
   1098 DO_2OP_S(vrhadds, DO_RHADD_S)
   1099 DO_2OP_U(vrhaddu, DO_RHADD_U)
   1100 
   1101 static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
   1102                     uint32_t inv, uint32_t carry_in, bool update_flags)
   1103 {
   1104     uint16_t mask = mve_element_mask(env);
   1105     unsigned e;
   1106 
   1107     /* If any additions trigger, we will update flags. */
   1108     if (mask & 0x1111) {
   1109         update_flags = true;
   1110     }
   1111 
   1112     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
   1113         uint64_t r = carry_in;
   1114         r += n[H4(e)];
   1115         r += m[H4(e)] ^ inv;
   1116         if (mask & 1) {
   1117             carry_in = r >> 32;
   1118         }
   1119         mergemask(&d[H4(e)], r, mask);
   1120     }
   1121 
   1122     if (update_flags) {
   1123         /* Store C, clear NZV. */
   1124         env->vfp.xregs[ARM_VFP_FPSCR] &= ~FPCR_NZCV_MASK;
   1125         env->vfp.xregs[ARM_VFP_FPSCR] |= carry_in * FPCR_C;
   1126     }
   1127     mve_advance_vpt(env);
   1128 }
   1129 
   1130 void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
   1131 {
   1132     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
   1133     do_vadc(env, vd, vn, vm, 0, carry_in, false);
   1134 }
   1135 
   1136 void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
   1137 {
   1138     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
   1139     do_vadc(env, vd, vn, vm, -1, carry_in, false);
   1140 }
   1141 
   1142 
   1143 void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
   1144 {
   1145     do_vadc(env, vd, vn, vm, 0, 0, true);
   1146 }
   1147 
   1148 void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
   1149 {
   1150     do_vadc(env, vd, vn, vm, -1, 1, true);
   1151 }
   1152 
   1153 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1)                             \
   1154     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
   1155     {                                                                   \
   1156         TYPE *d = vd, *n = vn, *m = vm;                                 \
   1157         uint16_t mask = mve_element_mask(env);                          \
   1158         unsigned e;                                                     \
   1159         TYPE r[16 / ESIZE];                                             \
   1160         /* Calculate all results first to avoid overwriting inputs */   \
   1161         for (e = 0; e < 16 / ESIZE; e++) {                              \
   1162             if (!(e & 1)) {                                             \
   1163                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]);         \
   1164             } else {                                                    \
   1165                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]);         \
   1166             }                                                           \
   1167         }                                                               \
   1168         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   1169             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
   1170         }                                                               \
   1171         mve_advance_vpt(env);                                           \
   1172     }
   1173 
   1174 #define DO_VCADD_ALL(OP, FN0, FN1)              \
   1175     DO_VCADD(OP##b, 1, int8_t, FN0, FN1)        \
   1176     DO_VCADD(OP##h, 2, int16_t, FN0, FN1)       \
   1177     DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
   1178 
   1179 DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
   1180 DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
   1181 DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
   1182 DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
   1183 
   1184 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
   1185 {
   1186     if (val > max) {
   1187         *s = true;
   1188         return max;
   1189     } else if (val < min) {
   1190         *s = true;
   1191         return min;
   1192     }
   1193     return val;
   1194 }
   1195 
   1196 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
   1197 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
   1198 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
   1199 
   1200 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
   1201 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
   1202 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
   1203 
   1204 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
   1205 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
   1206 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
   1207 
   1208 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
   1209 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
   1210 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
   1211 
   1212 /*
   1213  * For QDMULH and QRDMULH we simplify "double and shift by esize" into
   1214  * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
   1215  */
   1216 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
   1217                                         INT8_MIN, INT8_MAX, s)
   1218 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
   1219                                         INT16_MIN, INT16_MAX, s)
   1220 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
   1221                                         INT32_MIN, INT32_MAX, s)
   1222 
   1223 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
   1224                                          INT8_MIN, INT8_MAX, s)
   1225 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
   1226                                          INT16_MIN, INT16_MAX, s)
   1227 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
   1228                                          INT32_MIN, INT32_MAX, s)
   1229 
   1230 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
   1231 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
   1232 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
   1233 
   1234 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
   1235 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
   1236 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
   1237 
   1238 DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
   1239 DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
   1240 DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
   1241 DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
   1242 DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
   1243 DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
   1244 
   1245 DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
   1246 DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
   1247 DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
   1248 DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
   1249 DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
   1250 DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
   1251 
   1252 /*
   1253  * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
   1254  * and friends wanting a uint32_t* sat and our needing a bool*.
   1255  */
   1256 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp)                        \
   1257     ({                                                                  \
   1258         uint32_t su32 = 0;                                              \
   1259         typeof(N) r = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32);  \
   1260         if (su32) {                                                     \
   1261             *satp = true;                                               \
   1262         }                                                               \
   1263         r;                                                              \
   1264     })
   1265 
   1266 #define DO_SQSHL_OP(N, M, satp) \
   1267     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
   1268 #define DO_UQSHL_OP(N, M, satp) \
   1269     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
   1270 #define DO_SQRSHL_OP(N, M, satp) \
   1271     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
   1272 #define DO_UQRSHL_OP(N, M, satp) \
   1273     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
   1274 #define DO_SUQSHL_OP(N, M, satp) \
   1275     WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
   1276 
   1277 DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
   1278 DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
   1279 DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
   1280 DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
   1281 
   1282 /*
   1283  * Multiply add dual returning high half
   1284  * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
   1285  * whether to add the rounding constant, and the pointer to the
   1286  * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
   1287  * saturate to twice the input size and return the high half; or
   1288  * (A * B - C * D) etc for VQDMLSDH.
   1289  */
   1290 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN)                \
   1291     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
   1292                                 void *vm)                               \
   1293     {                                                                   \
   1294         TYPE *d = vd, *n = vn, *m = vm;                                 \
   1295         uint16_t mask = mve_element_mask(env);                          \
   1296         unsigned e;                                                     \
   1297         bool qc = false;                                                \
   1298         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   1299             bool sat = false;                                           \
   1300             if ((e & 1) == XCHG) {                                      \
   1301                 TYPE r = FN(n[H##ESIZE(e)],                             \
   1302                             m[H##ESIZE(e - XCHG)],                      \
   1303                             n[H##ESIZE(e + (1 - 2 * XCHG))],            \
   1304                             m[H##ESIZE(e + (1 - XCHG))],                \
   1305                             ROUND, &sat);                               \
   1306                 mergemask(&d[H##ESIZE(e)], r, mask);                    \
   1307                 qc |= sat & mask & 1;                                   \
   1308             }                                                           \
   1309         }                                                               \
   1310         if (qc) {                                                       \
   1311             env->vfp.qc[0] = qc;                                        \
   1312         }                                                               \
   1313         mve_advance_vpt(env);                                           \
   1314     }
   1315 
   1316 static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
   1317                             int round, bool *sat)
   1318 {
   1319     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
   1320     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
   1321 }
   1322 
   1323 static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
   1324                              int round, bool *sat)
   1325 {
   1326     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
   1327     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
   1328 }
   1329 
   1330 static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
   1331                              int round, bool *sat)
   1332 {
   1333     int64_t m1 = (int64_t)a * b;
   1334     int64_t m2 = (int64_t)c * d;
   1335     int64_t r;
   1336     /*
   1337      * Architecturally we should do the entire add, double, round
   1338      * and then check for saturation. We do three saturating adds,
   1339      * but we need to be careful about the order. If the first
   1340      * m1 + m2 saturates then it's impossible for the *2+rc to
   1341      * bring it back into the non-saturated range. However, if
   1342      * m1 + m2 is negative then it's possible that doing the doubling
   1343      * would take the intermediate result below INT64_MAX and the
   1344      * addition of the rounding constant then brings it back in range.
   1345      * So we add half the rounding constant before doubling rather
   1346      * than adding the rounding constant after the doubling.
   1347      */
   1348     if (sadd64_overflow(m1, m2, &r) ||
   1349         sadd64_overflow(r, (round << 30), &r) ||
   1350         sadd64_overflow(r, r, &r)) {
   1351         *sat = true;
   1352         return r < 0 ? INT32_MAX : INT32_MIN;
   1353     }
   1354     return r >> 32;
   1355 }
   1356 
   1357 static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
   1358                             int round, bool *sat)
   1359 {
   1360     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
   1361     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
   1362 }
   1363 
   1364 static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
   1365                              int round, bool *sat)
   1366 {
   1367     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
   1368     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
   1369 }
   1370 
   1371 static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
   1372                              int round, bool *sat)
   1373 {
   1374     int64_t m1 = (int64_t)a * b;
   1375     int64_t m2 = (int64_t)c * d;
   1376     int64_t r;
   1377     /* The same ordering issue as in do_vqdmladh_w applies here too */
   1378     if (ssub64_overflow(m1, m2, &r) ||
   1379         sadd64_overflow(r, (round << 30), &r) ||
   1380         sadd64_overflow(r, r, &r)) {
   1381         *sat = true;
   1382         return r < 0 ? INT32_MAX : INT32_MIN;
   1383     }
   1384     return r >> 32;
   1385 }
   1386 
   1387 DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
   1388 DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
   1389 DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
   1390 DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
   1391 DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
   1392 DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
   1393 
   1394 DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
   1395 DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
   1396 DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
   1397 DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
   1398 DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
   1399 DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
   1400 
   1401 DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
   1402 DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
   1403 DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
   1404 DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
   1405 DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
   1406 DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
   1407 
   1408 DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
   1409 DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
   1410 DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
   1411 DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
   1412 DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
   1413 DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
   1414 
   1415 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
   1416     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
   1417                                 uint32_t rm)                            \
   1418     {                                                                   \
   1419         TYPE *d = vd, *n = vn;                                          \
   1420         TYPE m = rm;                                                    \
   1421         uint16_t mask = mve_element_mask(env);                          \
   1422         unsigned e;                                                     \
   1423         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   1424             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
   1425         }                                                               \
   1426         mve_advance_vpt(env);                                           \
   1427     }
   1428 
   1429 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
   1430     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
   1431                                 uint32_t rm)                            \
   1432     {                                                                   \
   1433         TYPE *d = vd, *n = vn;                                          \
   1434         TYPE m = rm;                                                    \
   1435         uint16_t mask = mve_element_mask(env);                          \
   1436         unsigned e;                                                     \
   1437         bool qc = false;                                                \
   1438         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   1439             bool sat = false;                                           \
   1440             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
   1441                       mask);                                            \
   1442             qc |= sat & mask & 1;                                       \
   1443         }                                                               \
   1444         if (qc) {                                                       \
   1445             env->vfp.qc[0] = qc;                                        \
   1446         }                                                               \
   1447         mve_advance_vpt(env);                                           \
   1448     }
   1449 
   1450 /* "accumulating" version where FN takes d as well as n and m */
   1451 #define DO_2OP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                          \
   1452     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
   1453                                 uint32_t rm)                            \
   1454     {                                                                   \
   1455         TYPE *d = vd, *n = vn;                                          \
   1456         TYPE m = rm;                                                    \
   1457         uint16_t mask = mve_element_mask(env);                          \
   1458         unsigned e;                                                     \
   1459         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   1460             mergemask(&d[H##ESIZE(e)],                                  \
   1461                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m), mask);     \
   1462         }                                                               \
   1463         mve_advance_vpt(env);                                           \
   1464     }
   1465 
   1466 #define DO_2OP_SAT_ACC_SCALAR(OP, ESIZE, TYPE, FN)                      \
   1467     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
   1468                                 uint32_t rm)                            \
   1469     {                                                                   \
   1470         TYPE *d = vd, *n = vn;                                          \
   1471         TYPE m = rm;                                                    \
   1472         uint16_t mask = mve_element_mask(env);                          \
   1473         unsigned e;                                                     \
   1474         bool qc = false;                                                \
   1475         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   1476             bool sat = false;                                           \
   1477             mergemask(&d[H##ESIZE(e)],                                  \
   1478                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m, &sat),      \
   1479                       mask);                                            \
   1480             qc |= sat & mask & 1;                                       \
   1481         }                                                               \
   1482         if (qc) {                                                       \
   1483             env->vfp.qc[0] = qc;                                        \
   1484         }                                                               \
   1485         mve_advance_vpt(env);                                           \
   1486     }
   1487 
   1488 /* provide unsigned 2-op scalar helpers for all sizes */
   1489 #define DO_2OP_SCALAR_U(OP, FN)                 \
   1490     DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
   1491     DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
   1492     DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
   1493 #define DO_2OP_SCALAR_S(OP, FN)                 \
   1494     DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
   1495     DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
   1496     DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
   1497 
   1498 #define DO_2OP_ACC_SCALAR_U(OP, FN)             \
   1499     DO_2OP_ACC_SCALAR(OP##b, 1, uint8_t, FN)    \
   1500     DO_2OP_ACC_SCALAR(OP##h, 2, uint16_t, FN)   \
   1501     DO_2OP_ACC_SCALAR(OP##w, 4, uint32_t, FN)
   1502 
   1503 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
   1504 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
   1505 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
   1506 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
   1507 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
   1508 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
   1509 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
   1510 
   1511 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
   1512 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
   1513 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
   1514 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
   1515 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
   1516 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
   1517 
   1518 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
   1519 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
   1520 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
   1521 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
   1522 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
   1523 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
   1524 
   1525 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
   1526 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
   1527 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
   1528 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
   1529 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
   1530 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
   1531 
   1532 static int8_t do_vqdmlah_b(int8_t a, int8_t b, int8_t c, int round, bool *sat)
   1533 {
   1534     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 8) + (round << 7);
   1535     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
   1536 }
   1537 
   1538 static int16_t do_vqdmlah_h(int16_t a, int16_t b, int16_t c,
   1539                            int round, bool *sat)
   1540 {
   1541     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 16) + (round << 15);
   1542     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
   1543 }
   1544 
   1545 static int32_t do_vqdmlah_w(int32_t a, int32_t b, int32_t c,
   1546                             int round, bool *sat)
   1547 {
   1548     /*
   1549      * Architecturally we should do the entire add, double, round
   1550      * and then check for saturation. We do three saturating adds,
   1551      * but we need to be careful about the order. If the first
   1552      * m1 + m2 saturates then it's impossible for the *2+rc to
   1553      * bring it back into the non-saturated range. However, if
   1554      * m1 + m2 is negative then it's possible that doing the doubling
   1555      * would take the intermediate result below INT64_MAX and the
   1556      * addition of the rounding constant then brings it back in range.
   1557      * So we add half the rounding constant and half the "c << esize"
   1558      * before doubling rather than adding the rounding constant after
   1559      * the doubling.
   1560      */
   1561     int64_t m1 = (int64_t)a * b;
   1562     int64_t m2 = (int64_t)c << 31;
   1563     int64_t r;
   1564     if (sadd64_overflow(m1, m2, &r) ||
   1565         sadd64_overflow(r, (round << 30), &r) ||
   1566         sadd64_overflow(r, r, &r)) {
   1567         *sat = true;
   1568         return r < 0 ? INT32_MAX : INT32_MIN;
   1569     }
   1570     return r >> 32;
   1571 }
   1572 
   1573 /*
   1574  * The *MLAH insns are vector * scalar + vector;
   1575  * the *MLASH insns are vector * vector + scalar
   1576  */
   1577 #define DO_VQDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 0, S)
   1578 #define DO_VQDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 0, S)
   1579 #define DO_VQDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 0, S)
   1580 #define DO_VQRDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 1, S)
   1581 #define DO_VQRDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 1, S)
   1582 #define DO_VQRDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 1, S)
   1583 
   1584 #define DO_VQDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 0, S)
   1585 #define DO_VQDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 0, S)
   1586 #define DO_VQDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 0, S)
   1587 #define DO_VQRDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 1, S)
   1588 #define DO_VQRDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 1, S)
   1589 #define DO_VQRDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 1, S)
   1590 
   1591 DO_2OP_SAT_ACC_SCALAR(vqdmlahb, 1, int8_t, DO_VQDMLAH_B)
   1592 DO_2OP_SAT_ACC_SCALAR(vqdmlahh, 2, int16_t, DO_VQDMLAH_H)
   1593 DO_2OP_SAT_ACC_SCALAR(vqdmlahw, 4, int32_t, DO_VQDMLAH_W)
   1594 DO_2OP_SAT_ACC_SCALAR(vqrdmlahb, 1, int8_t, DO_VQRDMLAH_B)
   1595 DO_2OP_SAT_ACC_SCALAR(vqrdmlahh, 2, int16_t, DO_VQRDMLAH_H)
   1596 DO_2OP_SAT_ACC_SCALAR(vqrdmlahw, 4, int32_t, DO_VQRDMLAH_W)
   1597 
   1598 DO_2OP_SAT_ACC_SCALAR(vqdmlashb, 1, int8_t, DO_VQDMLASH_B)
   1599 DO_2OP_SAT_ACC_SCALAR(vqdmlashh, 2, int16_t, DO_VQDMLASH_H)
   1600 DO_2OP_SAT_ACC_SCALAR(vqdmlashw, 4, int32_t, DO_VQDMLASH_W)
   1601 DO_2OP_SAT_ACC_SCALAR(vqrdmlashb, 1, int8_t, DO_VQRDMLASH_B)
   1602 DO_2OP_SAT_ACC_SCALAR(vqrdmlashh, 2, int16_t, DO_VQRDMLASH_H)
   1603 DO_2OP_SAT_ACC_SCALAR(vqrdmlashw, 4, int32_t, DO_VQRDMLASH_W)
   1604 
   1605 /* Vector by scalar plus vector */
   1606 #define DO_VMLA(D, N, M) ((N) * (M) + (D))
   1607 
   1608 DO_2OP_ACC_SCALAR_U(vmla, DO_VMLA)
   1609 
   1610 /* Vector by vector plus scalar */
   1611 #define DO_VMLAS(D, N, M) ((N) * (D) + (M))
   1612 
   1613 DO_2OP_ACC_SCALAR_U(vmlas, DO_VMLAS)
   1614 
   1615 /*
   1616  * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
   1617  * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
   1618  * SATMASK specifies which bits of the predicate mask matter for determining
   1619  * whether to propagate a saturation indication into FPSCR.QC -- for
   1620  * the 16x16->32 case we must check only the bit corresponding to the T or B
   1621  * half that we used, but for the 32x32->64 case we propagate if the mask
   1622  * bit is set for either half.
   1623  */
   1624 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
   1625     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
   1626                                 uint32_t rm)                            \
   1627     {                                                                   \
   1628         LTYPE *d = vd;                                                  \
   1629         TYPE *n = vn;                                                   \
   1630         TYPE m = rm;                                                    \
   1631         uint16_t mask = mve_element_mask(env);                          \
   1632         unsigned le;                                                    \
   1633         bool qc = false;                                                \
   1634         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
   1635             bool sat = false;                                           \
   1636             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat);    \
   1637             mergemask(&d[H##LESIZE(le)], r, mask);                      \
   1638             qc |= sat && (mask & SATMASK);                              \
   1639         }                                                               \
   1640         if (qc) {                                                       \
   1641             env->vfp.qc[0] = qc;                                        \
   1642         }                                                               \
   1643         mve_advance_vpt(env);                                           \
   1644     }
   1645 
   1646 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
   1647 {
   1648     int64_t r = ((int64_t)n * m) * 2;
   1649     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
   1650 }
   1651 
   1652 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
   1653 {
   1654     /* The multiply can't overflow, but the doubling might */
   1655     int64_t r = (int64_t)n * m;
   1656     if (r > INT64_MAX / 2) {
   1657         *sat = true;
   1658         return INT64_MAX;
   1659     } else if (r < INT64_MIN / 2) {
   1660         *sat = true;
   1661         return INT64_MIN;
   1662     } else {
   1663         return r * 2;
   1664     }
   1665 }
   1666 
   1667 #define SATMASK16B 1
   1668 #define SATMASK16T (1 << 2)
   1669 #define SATMASK32 ((1 << 4) | 1)
   1670 
   1671 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
   1672                     do_qdmullh, SATMASK16B)
   1673 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
   1674                     do_qdmullw, SATMASK32)
   1675 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
   1676                     do_qdmullh, SATMASK16T)
   1677 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
   1678                     do_qdmullw, SATMASK32)
   1679 
   1680 /*
   1681  * Long saturating ops
   1682  */
   1683 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK)  \
   1684     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
   1685                                 void *vm)                               \
   1686     {                                                                   \
   1687         LTYPE *d = vd;                                                  \
   1688         TYPE *n = vn, *m = vm;                                          \
   1689         uint16_t mask = mve_element_mask(env);                          \
   1690         unsigned le;                                                    \
   1691         bool qc = false;                                                \
   1692         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
   1693             bool sat = false;                                           \
   1694             LTYPE op1 = n[H##ESIZE(le * 2 + TOP)];                      \
   1695             LTYPE op2 = m[H##ESIZE(le * 2 + TOP)];                      \
   1696             mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask);     \
   1697             qc |= sat && (mask & SATMASK);                              \
   1698         }                                                               \
   1699         if (qc) {                                                       \
   1700             env->vfp.qc[0] = qc;                                        \
   1701         }                                                               \
   1702         mve_advance_vpt(env);                                           \
   1703     }
   1704 
   1705 DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
   1706 DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
   1707 DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
   1708 DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
   1709 
   1710 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
   1711 {
   1712     m &= 0xff;
   1713     if (m == 0) {
   1714         return 0;
   1715     }
   1716     n = revbit8(n);
   1717     if (m < 8) {
   1718         n >>= 8 - m;
   1719     }
   1720     return n;
   1721 }
   1722 
   1723 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
   1724 {
   1725     m &= 0xff;
   1726     if (m == 0) {
   1727         return 0;
   1728     }
   1729     n = revbit16(n);
   1730     if (m < 16) {
   1731         n >>= 16 - m;
   1732     }
   1733     return n;
   1734 }
   1735 
   1736 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
   1737 {
   1738     m &= 0xff;
   1739     if (m == 0) {
   1740         return 0;
   1741     }
   1742     n = revbit32(n);
   1743     if (m < 32) {
   1744         n >>= 32 - m;
   1745     }
   1746     return n;
   1747 }
   1748 
   1749 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
   1750 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
   1751 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
   1752 
   1753 /*
   1754  * Multiply add long dual accumulate ops.
   1755  */
   1756 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
   1757     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
   1758                                     void *vm, uint64_t a)               \
   1759     {                                                                   \
   1760         uint16_t mask = mve_element_mask(env);                          \
   1761         unsigned e;                                                     \
   1762         TYPE *n = vn, *m = vm;                                          \
   1763         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   1764             if (mask & 1) {                                             \
   1765                 if (e & 1) {                                            \
   1766                     a ODDACC                                            \
   1767                         (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
   1768                 } else {                                                \
   1769                     a EVENACC                                           \
   1770                         (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
   1771                 }                                                       \
   1772             }                                                           \
   1773         }                                                               \
   1774         mve_advance_vpt(env);                                           \
   1775         return a;                                                       \
   1776     }
   1777 
   1778 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
   1779 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
   1780 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
   1781 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
   1782 
   1783 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
   1784 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
   1785 
   1786 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
   1787 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
   1788 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
   1789 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
   1790 
   1791 /*
   1792  * Multiply add dual accumulate ops
   1793  */
   1794 #define DO_DAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
   1795     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
   1796                                     void *vm, uint32_t a)               \
   1797     {                                                                   \
   1798         uint16_t mask = mve_element_mask(env);                          \
   1799         unsigned e;                                                     \
   1800         TYPE *n = vn, *m = vm;                                          \
   1801         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   1802             if (mask & 1) {                                             \
   1803                 if (e & 1) {                                            \
   1804                     a ODDACC                                            \
   1805                         n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)];     \
   1806                 } else {                                                \
   1807                     a EVENACC                                           \
   1808                         n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)];     \
   1809                 }                                                       \
   1810             }                                                           \
   1811         }                                                               \
   1812         mve_advance_vpt(env);                                           \
   1813         return a;                                                       \
   1814     }
   1815 
   1816 #define DO_DAV_S(INSN, XCHG, EVENACC, ODDACC)           \
   1817     DO_DAV(INSN##b, 1, int8_t, XCHG, EVENACC, ODDACC)   \
   1818     DO_DAV(INSN##h, 2, int16_t, XCHG, EVENACC, ODDACC)  \
   1819     DO_DAV(INSN##w, 4, int32_t, XCHG, EVENACC, ODDACC)
   1820 
   1821 #define DO_DAV_U(INSN, XCHG, EVENACC, ODDACC)           \
   1822     DO_DAV(INSN##b, 1, uint8_t, XCHG, EVENACC, ODDACC)  \
   1823     DO_DAV(INSN##h, 2, uint16_t, XCHG, EVENACC, ODDACC) \
   1824     DO_DAV(INSN##w, 4, uint32_t, XCHG, EVENACC, ODDACC)
   1825 
   1826 DO_DAV_S(vmladavs, false, +=, +=)
   1827 DO_DAV_U(vmladavu, false, +=, +=)
   1828 DO_DAV_S(vmlsdav, false, +=, -=)
   1829 DO_DAV_S(vmladavsx, true, +=, +=)
   1830 DO_DAV_S(vmlsdavx, true, +=, -=)
   1831 
   1832 /*
   1833  * Rounding multiply add long dual accumulate high. In the pseudocode
   1834  * this is implemented with a 72-bit internal accumulator value of which
   1835  * the top 64 bits are returned. We optimize this to avoid having to
   1836  * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
   1837  * is squashed back into 64-bits after each beat.
   1838  */
   1839 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB)                            \
   1840     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
   1841                                     void *vm, uint64_t a)               \
   1842     {                                                                   \
   1843         uint16_t mask = mve_element_mask(env);                          \
   1844         unsigned e;                                                     \
   1845         TYPE *n = vn, *m = vm;                                          \
   1846         for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
   1847             if (mask & 1) {                                             \
   1848                 LTYPE mul;                                              \
   1849                 if (e & 1) {                                            \
   1850                     mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)];        \
   1851                     if (SUB) {                                          \
   1852                         mul = -mul;                                     \
   1853                     }                                                   \
   1854                 } else {                                                \
   1855                     mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)];        \
   1856                 }                                                       \
   1857                 mul = (mul >> 8) + ((mul >> 7) & 1);                    \
   1858                 a += mul;                                               \
   1859             }                                                           \
   1860         }                                                               \
   1861         mve_advance_vpt(env);                                           \
   1862         return a;                                                       \
   1863     }
   1864 
   1865 DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
   1866 DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
   1867 
   1868 DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
   1869 
   1870 DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
   1871 DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
   1872 
   1873 /* Vector add across vector */
   1874 #define DO_VADDV(OP, ESIZE, TYPE)                               \
   1875     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
   1876                                     uint32_t ra)                \
   1877     {                                                           \
   1878         uint16_t mask = mve_element_mask(env);                  \
   1879         unsigned e;                                             \
   1880         TYPE *m = vm;                                           \
   1881         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
   1882             if (mask & 1) {                                     \
   1883                 ra += m[H##ESIZE(e)];                           \
   1884             }                                                   \
   1885         }                                                       \
   1886         mve_advance_vpt(env);                                   \
   1887         return ra;                                              \
   1888     }                                                           \
   1889 
   1890 DO_VADDV(vaddvsb, 1, int8_t)
   1891 DO_VADDV(vaddvsh, 2, int16_t)
   1892 DO_VADDV(vaddvsw, 4, int32_t)
   1893 DO_VADDV(vaddvub, 1, uint8_t)
   1894 DO_VADDV(vaddvuh, 2, uint16_t)
   1895 DO_VADDV(vaddvuw, 4, uint32_t)
   1896 
   1897 /*
   1898  * Vector max/min across vector. Unlike VADDV, we must
   1899  * read ra as the element size, not its full width.
   1900  * We work with int64_t internally for simplicity.
   1901  */
   1902 #define DO_VMAXMINV(OP, ESIZE, TYPE, RATYPE, FN)                \
   1903     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
   1904                                     uint32_t ra_in)             \
   1905     {                                                           \
   1906         uint16_t mask = mve_element_mask(env);                  \
   1907         unsigned e;                                             \
   1908         TYPE *m = vm;                                           \
   1909         int64_t ra = (RATYPE)ra_in;                             \
   1910         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
   1911             if (mask & 1) {                                     \
   1912                 ra = FN(ra, m[H##ESIZE(e)]);                    \
   1913             }                                                   \
   1914         }                                                       \
   1915         mve_advance_vpt(env);                                   \
   1916         return ra;                                              \
   1917     }                                                           \
   1918 
   1919 #define DO_VMAXMINV_U(INSN, FN)                         \
   1920     DO_VMAXMINV(INSN##b, 1, uint8_t, uint8_t, FN)       \
   1921     DO_VMAXMINV(INSN##h, 2, uint16_t, uint16_t, FN)     \
   1922     DO_VMAXMINV(INSN##w, 4, uint32_t, uint32_t, FN)
   1923 #define DO_VMAXMINV_S(INSN, FN)                         \
   1924     DO_VMAXMINV(INSN##b, 1, int8_t, int8_t, FN)         \
   1925     DO_VMAXMINV(INSN##h, 2, int16_t, int16_t, FN)       \
   1926     DO_VMAXMINV(INSN##w, 4, int32_t, int32_t, FN)
   1927 
   1928 /*
   1929  * Helpers for max and min of absolute values across vector:
   1930  * note that we only take the absolute value of 'm', not 'n'
   1931  */
   1932 static int64_t do_maxa(int64_t n, int64_t m)
   1933 {
   1934     if (m < 0) {
   1935         m = -m;
   1936     }
   1937     return MAX(n, m);
   1938 }
   1939 
   1940 static int64_t do_mina(int64_t n, int64_t m)
   1941 {
   1942     if (m < 0) {
   1943         m = -m;
   1944     }
   1945     return MIN(n, m);
   1946 }
   1947 
   1948 DO_VMAXMINV_S(vmaxvs, DO_MAX)
   1949 DO_VMAXMINV_U(vmaxvu, DO_MAX)
   1950 DO_VMAXMINV_S(vminvs, DO_MIN)
   1951 DO_VMAXMINV_U(vminvu, DO_MIN)
   1952 /*
   1953  * VMAXAV, VMINAV treat the general purpose input as unsigned
   1954  * and the vector elements as signed.
   1955  */
   1956 DO_VMAXMINV(vmaxavb, 1, int8_t, uint8_t, do_maxa)
   1957 DO_VMAXMINV(vmaxavh, 2, int16_t, uint16_t, do_maxa)
   1958 DO_VMAXMINV(vmaxavw, 4, int32_t, uint32_t, do_maxa)
   1959 DO_VMAXMINV(vminavb, 1, int8_t, uint8_t, do_mina)
   1960 DO_VMAXMINV(vminavh, 2, int16_t, uint16_t, do_mina)
   1961 DO_VMAXMINV(vminavw, 4, int32_t, uint32_t, do_mina)
   1962 
   1963 #define DO_VABAV(OP, ESIZE, TYPE)                               \
   1964     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
   1965                                     void *vm, uint32_t ra)      \
   1966     {                                                           \
   1967         uint16_t mask = mve_element_mask(env);                  \
   1968         unsigned e;                                             \
   1969         TYPE *m = vm, *n = vn;                                  \
   1970         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
   1971             if (mask & 1) {                                     \
   1972                 int64_t n0 = n[H##ESIZE(e)];                    \
   1973                 int64_t m0 = m[H##ESIZE(e)];                    \
   1974                 uint32_t r = n0 >= m0 ? (n0 - m0) : (m0 - n0);  \
   1975                 ra += r;                                        \
   1976             }                                                   \
   1977         }                                                       \
   1978         mve_advance_vpt(env);                                   \
   1979         return ra;                                              \
   1980     }
   1981 
   1982 DO_VABAV(vabavsb, 1, int8_t)
   1983 DO_VABAV(vabavsh, 2, int16_t)
   1984 DO_VABAV(vabavsw, 4, int32_t)
   1985 DO_VABAV(vabavub, 1, uint8_t)
   1986 DO_VABAV(vabavuh, 2, uint16_t)
   1987 DO_VABAV(vabavuw, 4, uint32_t)
   1988 
   1989 #define DO_VADDLV(OP, TYPE, LTYPE)                              \
   1990     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
   1991                                     uint64_t ra)                \
   1992     {                                                           \
   1993         uint16_t mask = mve_element_mask(env);                  \
   1994         unsigned e;                                             \
   1995         TYPE *m = vm;                                           \
   1996         for (e = 0; e < 16 / 4; e++, mask >>= 4) {              \
   1997             if (mask & 1) {                                     \
   1998                 ra += (LTYPE)m[H4(e)];                          \
   1999             }                                                   \
   2000         }                                                       \
   2001         mve_advance_vpt(env);                                   \
   2002         return ra;                                              \
   2003     }                                                           \
   2004 
   2005 DO_VADDLV(vaddlv_s, int32_t, int64_t)
   2006 DO_VADDLV(vaddlv_u, uint32_t, uint64_t)
   2007 
   2008 /* Shifts by immediate */
   2009 #define DO_2SHIFT(OP, ESIZE, TYPE, FN)                          \
   2010     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
   2011                                 void *vm, uint32_t shift)       \
   2012     {                                                           \
   2013         TYPE *d = vd, *m = vm;                                  \
   2014         uint16_t mask = mve_element_mask(env);                  \
   2015         unsigned e;                                             \
   2016         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
   2017             mergemask(&d[H##ESIZE(e)],                          \
   2018                       FN(m[H##ESIZE(e)], shift), mask);         \
   2019         }                                                       \
   2020         mve_advance_vpt(env);                                   \
   2021     }
   2022 
   2023 #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN)                      \
   2024     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
   2025                                 void *vm, uint32_t shift)       \
   2026     {                                                           \
   2027         TYPE *d = vd, *m = vm;                                  \
   2028         uint16_t mask = mve_element_mask(env);                  \
   2029         unsigned e;                                             \
   2030         bool qc = false;                                        \
   2031         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
   2032             bool sat = false;                                   \
   2033             mergemask(&d[H##ESIZE(e)],                          \
   2034                       FN(m[H##ESIZE(e)], shift, &sat), mask);   \
   2035             qc |= sat & mask & 1;                               \
   2036         }                                                       \
   2037         if (qc) {                                               \
   2038             env->vfp.qc[0] = qc;                                \
   2039         }                                                       \
   2040         mve_advance_vpt(env);                                   \
   2041     }
   2042 
   2043 /* provide unsigned 2-op shift helpers for all sizes */
   2044 #define DO_2SHIFT_U(OP, FN)                     \
   2045     DO_2SHIFT(OP##b, 1, uint8_t, FN)            \
   2046     DO_2SHIFT(OP##h, 2, uint16_t, FN)           \
   2047     DO_2SHIFT(OP##w, 4, uint32_t, FN)
   2048 #define DO_2SHIFT_S(OP, FN)                     \
   2049     DO_2SHIFT(OP##b, 1, int8_t, FN)             \
   2050     DO_2SHIFT(OP##h, 2, int16_t, FN)            \
   2051     DO_2SHIFT(OP##w, 4, int32_t, FN)
   2052 
   2053 #define DO_2SHIFT_SAT_U(OP, FN)                 \
   2054     DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN)        \
   2055     DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN)       \
   2056     DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
   2057 #define DO_2SHIFT_SAT_S(OP, FN)                 \
   2058     DO_2SHIFT_SAT(OP##b, 1, int8_t, FN)         \
   2059     DO_2SHIFT_SAT(OP##h, 2, int16_t, FN)        \
   2060     DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
   2061 
   2062 DO_2SHIFT_U(vshli_u, DO_VSHLU)
   2063 DO_2SHIFT_S(vshli_s, DO_VSHLS)
   2064 DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
   2065 DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
   2066 DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
   2067 DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
   2068 DO_2SHIFT_S(vrshli_s, DO_VRSHLS)
   2069 DO_2SHIFT_SAT_U(vqrshli_u, DO_UQRSHL_OP)
   2070 DO_2SHIFT_SAT_S(vqrshli_s, DO_SQRSHL_OP)
   2071 
   2072 /* Shift-and-insert; we always work with 64 bits at a time */
   2073 #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN)                    \
   2074     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
   2075                                 void *vm, uint32_t shift)               \
   2076     {                                                                   \
   2077         uint64_t *d = vd, *m = vm;                                      \
   2078         uint16_t mask;                                                  \
   2079         uint64_t shiftmask;                                             \
   2080         unsigned e;                                                     \
   2081         if (shift == ESIZE * 8) {                                       \
   2082             /*                                                          \
   2083              * Only VSRI can shift by <dt>; it should mean "don't       \
   2084              * update the destination". The generic logic can't handle  \
   2085              * this because it would try to shift by an out-of-range    \
   2086              * amount, so special case it here.                         \
   2087              */                                                         \
   2088             goto done;                                                  \
   2089         }                                                               \
   2090         assert(shift < ESIZE * 8);                                      \
   2091         mask = mve_element_mask(env);                                   \
   2092         /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */     \
   2093         shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift));     \
   2094         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
   2095             uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) |       \
   2096                 (d[H8(e)] & ~shiftmask);                                \
   2097             mergemask(&d[H8(e)], r, mask);                              \
   2098         }                                                               \
   2099 done:                                                                   \
   2100         mve_advance_vpt(env);                                           \
   2101     }
   2102 
   2103 #define DO_SHL(N, SHIFT) ((N) << (SHIFT))
   2104 #define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
   2105 #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
   2106 #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
   2107 
   2108 DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
   2109 DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
   2110 DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
   2111 DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
   2112 DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
   2113 DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)
   2114 
   2115 /*
   2116  * Long shifts taking half-sized inputs from top or bottom of the input
   2117  * vector and producing a double-width result. ESIZE, TYPE are for
   2118  * the input, and LESIZE, LTYPE for the output.
   2119  * Unlike the normal shift helpers, we do not handle negative shift counts,
   2120  * because the long shift is strictly left-only.
   2121  */
   2122 #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
   2123     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
   2124                                 void *vm, uint32_t shift)               \
   2125     {                                                                   \
   2126         LTYPE *d = vd;                                                  \
   2127         TYPE *m = vm;                                                   \
   2128         uint16_t mask = mve_element_mask(env);                          \
   2129         unsigned le;                                                    \
   2130         assert(shift <= 16);                                            \
   2131         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
   2132             LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift;        \
   2133             mergemask(&d[H##LESIZE(le)], r, mask);                      \
   2134         }                                                               \
   2135         mve_advance_vpt(env);                                           \
   2136     }
   2137 
   2138 #define DO_VSHLL_ALL(OP, TOP)                                \
   2139     DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t)             \
   2140     DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t)           \
   2141     DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t)            \
   2142     DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t)          \
   2143 
   2144 DO_VSHLL_ALL(vshllb, false)
   2145 DO_VSHLL_ALL(vshllt, true)
   2146 
   2147 /*
   2148  * Narrowing right shifts, taking a double sized input, shifting it
   2149  * and putting the result in either the top or bottom half of the output.
   2150  * ESIZE, TYPE are the output, and LESIZE, LTYPE the input.
   2151  */
   2152 #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)       \
   2153     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
   2154                                 void *vm, uint32_t shift)       \
   2155     {                                                           \
   2156         LTYPE *m = vm;                                          \
   2157         TYPE *d = vd;                                           \
   2158         uint16_t mask = mve_element_mask(env);                  \
   2159         unsigned le;                                            \
   2160         mask >>= ESIZE * TOP;                                   \
   2161         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
   2162             TYPE r = FN(m[H##LESIZE(le)], shift);               \
   2163             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
   2164         }                                                       \
   2165         mve_advance_vpt(env);                                   \
   2166     }
   2167 
   2168 #define DO_VSHRN_ALL(OP, FN)                                    \
   2169     DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN)        \
   2170     DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN)       \
   2171     DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN)         \
   2172     DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN)
   2173 
   2174 static inline uint64_t do_urshr(uint64_t x, unsigned sh)
   2175 {
   2176     if (likely(sh < 64)) {
   2177         return (x >> sh) + ((x >> (sh - 1)) & 1);
   2178     } else if (sh == 64) {
   2179         return x >> 63;
   2180     } else {
   2181         return 0;
   2182     }
   2183 }
   2184 
   2185 static inline int64_t do_srshr(int64_t x, unsigned sh)
   2186 {
   2187     if (likely(sh < 64)) {
   2188         return (x >> sh) + ((x >> (sh - 1)) & 1);
   2189     } else {
   2190         /* Rounding the sign bit always produces 0. */
   2191         return 0;
   2192     }
   2193 }
   2194 
   2195 DO_VSHRN_ALL(vshrn, DO_SHR)
   2196 DO_VSHRN_ALL(vrshrn, do_urshr)
   2197 
   2198 static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max,
   2199                                  bool *satp)
   2200 {
   2201     if (val > max) {
   2202         *satp = true;
   2203         return max;
   2204     } else if (val < min) {
   2205         *satp = true;
   2206         return min;
   2207     } else {
   2208         return val;
   2209     }
   2210 }
   2211 
   2212 /* Saturating narrowing right shifts */
   2213 #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)   \
   2214     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
   2215                                 void *vm, uint32_t shift)       \
   2216     {                                                           \
   2217         LTYPE *m = vm;                                          \
   2218         TYPE *d = vd;                                           \
   2219         uint16_t mask = mve_element_mask(env);                  \
   2220         bool qc = false;                                        \
   2221         unsigned le;                                            \
   2222         mask >>= ESIZE * TOP;                                   \
   2223         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
   2224             bool sat = false;                                   \
   2225             TYPE r = FN(m[H##LESIZE(le)], shift, &sat);         \
   2226             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
   2227             qc |= sat & mask & 1;                               \
   2228         }                                                       \
   2229         if (qc) {                                               \
   2230             env->vfp.qc[0] = qc;                                \
   2231         }                                                       \
   2232         mve_advance_vpt(env);                                   \
   2233     }
   2234 
   2235 #define DO_VSHRN_SAT_UB(BOP, TOP, FN)                           \
   2236     DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
   2237     DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
   2238 
   2239 #define DO_VSHRN_SAT_UH(BOP, TOP, FN)                           \
   2240     DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
   2241     DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
   2242 
   2243 #define DO_VSHRN_SAT_SB(BOP, TOP, FN)                           \
   2244     DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
   2245     DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
   2246 
   2247 #define DO_VSHRN_SAT_SH(BOP, TOP, FN)                           \
   2248     DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
   2249     DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
   2250 
   2251 #define DO_SHRN_SB(N, M, SATP)                                  \
   2252     do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP)
   2253 #define DO_SHRN_UB(N, M, SATP)                                  \
   2254     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP)
   2255 #define DO_SHRUN_B(N, M, SATP)                                  \
   2256     do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP)
   2257 
   2258 #define DO_SHRN_SH(N, M, SATP)                                  \
   2259     do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP)
   2260 #define DO_SHRN_UH(N, M, SATP)                                  \
   2261     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP)
   2262 #define DO_SHRUN_H(N, M, SATP)                                  \
   2263     do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP)
   2264 
   2265 #define DO_RSHRN_SB(N, M, SATP)                                 \
   2266     do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP)
   2267 #define DO_RSHRN_UB(N, M, SATP)                                 \
   2268     do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP)
   2269 #define DO_RSHRUN_B(N, M, SATP)                                 \
   2270     do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP)
   2271 
   2272 #define DO_RSHRN_SH(N, M, SATP)                                 \
   2273     do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP)
   2274 #define DO_RSHRN_UH(N, M, SATP)                                 \
   2275     do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP)
   2276 #define DO_RSHRUN_H(N, M, SATP)                                 \
   2277     do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP)
   2278 
   2279 DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB)
   2280 DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH)
   2281 DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB)
   2282 DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH)
   2283 DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B)
   2284 DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H)
   2285 
   2286 DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB)
   2287 DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH)
   2288 DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB)
   2289 DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH)
   2290 DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B)
   2291 DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H)
   2292 
   2293 #define DO_VMOVN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
   2294     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
   2295     {                                                                   \
   2296         LTYPE *m = vm;                                                  \
   2297         TYPE *d = vd;                                                   \
   2298         uint16_t mask = mve_element_mask(env);                          \
   2299         unsigned le;                                                    \
   2300         mask >>= ESIZE * TOP;                                           \
   2301         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
   2302             mergemask(&d[H##ESIZE(le * 2 + TOP)],                       \
   2303                       m[H##LESIZE(le)], mask);                          \
   2304         }                                                               \
   2305         mve_advance_vpt(env);                                           \
   2306     }
   2307 
   2308 DO_VMOVN(vmovnbb, false, 1, uint8_t, 2, uint16_t)
   2309 DO_VMOVN(vmovnbh, false, 2, uint16_t, 4, uint32_t)
   2310 DO_VMOVN(vmovntb, true, 1, uint8_t, 2, uint16_t)
   2311 DO_VMOVN(vmovnth, true, 2, uint16_t, 4, uint32_t)
   2312 
   2313 #define DO_VMOVN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)           \
   2314     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
   2315     {                                                                   \
   2316         LTYPE *m = vm;                                                  \
   2317         TYPE *d = vd;                                                   \
   2318         uint16_t mask = mve_element_mask(env);                          \
   2319         bool qc = false;                                                \
   2320         unsigned le;                                                    \
   2321         mask >>= ESIZE * TOP;                                           \
   2322         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
   2323             bool sat = false;                                           \
   2324             TYPE r = FN(m[H##LESIZE(le)], &sat);                        \
   2325             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);             \
   2326             qc |= sat & mask & 1;                                       \
   2327         }                                                               \
   2328         if (qc) {                                                       \
   2329             env->vfp.qc[0] = qc;                                        \
   2330         }                                                               \
   2331         mve_advance_vpt(env);                                           \
   2332     }
   2333 
   2334 #define DO_VMOVN_SAT_UB(BOP, TOP, FN)                           \
   2335     DO_VMOVN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
   2336     DO_VMOVN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
   2337 
   2338 #define DO_VMOVN_SAT_UH(BOP, TOP, FN)                           \
   2339     DO_VMOVN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
   2340     DO_VMOVN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
   2341 
   2342 #define DO_VMOVN_SAT_SB(BOP, TOP, FN)                           \
   2343     DO_VMOVN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
   2344     DO_VMOVN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
   2345 
   2346 #define DO_VMOVN_SAT_SH(BOP, TOP, FN)                           \
   2347     DO_VMOVN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
   2348     DO_VMOVN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
   2349 
   2350 #define DO_VQMOVN_SB(N, SATP)                           \
   2351     do_sat_bhs((int64_t)(N), INT8_MIN, INT8_MAX, SATP)
   2352 #define DO_VQMOVN_UB(N, SATP)                           \
   2353     do_sat_bhs((uint64_t)(N), 0, UINT8_MAX, SATP)
   2354 #define DO_VQMOVUN_B(N, SATP)                           \
   2355     do_sat_bhs((int64_t)(N), 0, UINT8_MAX, SATP)
   2356 
   2357 #define DO_VQMOVN_SH(N, SATP)                           \
   2358     do_sat_bhs((int64_t)(N), INT16_MIN, INT16_MAX, SATP)
   2359 #define DO_VQMOVN_UH(N, SATP)                           \
   2360     do_sat_bhs((uint64_t)(N), 0, UINT16_MAX, SATP)
   2361 #define DO_VQMOVUN_H(N, SATP)                           \
   2362     do_sat_bhs((int64_t)(N), 0, UINT16_MAX, SATP)
   2363 
   2364 DO_VMOVN_SAT_SB(vqmovnbsb, vqmovntsb, DO_VQMOVN_SB)
   2365 DO_VMOVN_SAT_SH(vqmovnbsh, vqmovntsh, DO_VQMOVN_SH)
   2366 DO_VMOVN_SAT_UB(vqmovnbub, vqmovntub, DO_VQMOVN_UB)
   2367 DO_VMOVN_SAT_UH(vqmovnbuh, vqmovntuh, DO_VQMOVN_UH)
   2368 DO_VMOVN_SAT_SB(vqmovunbb, vqmovuntb, DO_VQMOVUN_B)
   2369 DO_VMOVN_SAT_SH(vqmovunbh, vqmovunth, DO_VQMOVUN_H)
   2370 
   2371 uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm,
   2372                            uint32_t shift)
   2373 {
   2374     uint32_t *d = vd;
   2375     uint16_t mask = mve_element_mask(env);
   2376     unsigned e;
   2377     uint32_t r;
   2378 
   2379     /*
   2380      * For each 32-bit element, we shift it left, bringing in the
   2381      * low 'shift' bits of rdm at the bottom. Bits shifted out at
   2382      * the top become the new rdm, if the predicate mask permits.
   2383      * The final rdm value is returned to update the register.
   2384      * shift == 0 here means "shift by 32 bits".
   2385      */
   2386     if (shift == 0) {
   2387         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
   2388             r = rdm;
   2389             if (mask & 1) {
   2390                 rdm = d[H4(e)];
   2391             }
   2392             mergemask(&d[H4(e)], r, mask);
   2393         }
   2394     } else {
   2395         uint32_t shiftmask = MAKE_64BIT_MASK(0, shift);
   2396 
   2397         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
   2398             r = (d[H4(e)] << shift) | (rdm & shiftmask);
   2399             if (mask & 1) {
   2400                 rdm = d[H4(e)] >> (32 - shift);
   2401             }
   2402             mergemask(&d[H4(e)], r, mask);
   2403         }
   2404     }
   2405     mve_advance_vpt(env);
   2406     return rdm;
   2407 }
   2408 
   2409 uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
   2410 {
   2411     return do_sqrshl_d(n, -(int8_t)shift, false, NULL);
   2412 }
   2413 
   2414 uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift)
   2415 {
   2416     return do_uqrshl_d(n, (int8_t)shift, false, NULL);
   2417 }
   2418 
   2419 uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
   2420 {
   2421     return do_sqrshl_d(n, (int8_t)shift, false, &env->QF);
   2422 }
   2423 
   2424 uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
   2425 {
   2426     return do_uqrshl_d(n, (int8_t)shift, false, &env->QF);
   2427 }
   2428 
   2429 uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
   2430 {
   2431     return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF);
   2432 }
   2433 
   2434 uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift)
   2435 {
   2436     return do_uqrshl_d(n, (int8_t)shift, true, &env->QF);
   2437 }
   2438 
   2439 /* Operate on 64-bit values, but saturate at 48 bits */
   2440 static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift,
   2441                                     bool round, uint32_t *sat)
   2442 {
   2443     int64_t val, extval;
   2444 
   2445     if (shift <= -48) {
   2446         /* Rounding the sign bit always produces 0. */
   2447         if (round) {
   2448             return 0;
   2449         }
   2450         return src >> 63;
   2451     } else if (shift < 0) {
   2452         if (round) {
   2453             src >>= -shift - 1;
   2454             val = (src >> 1) + (src & 1);
   2455         } else {
   2456             val = src >> -shift;
   2457         }
   2458         extval = sextract64(val, 0, 48);
   2459         if (!sat || val == extval) {
   2460             return extval;
   2461         }
   2462     } else if (shift < 48) {
   2463         int64_t extval = sextract64(src << shift, 0, 48);
   2464         if (!sat || src == (extval >> shift)) {
   2465             return extval;
   2466         }
   2467     } else if (!sat || src == 0) {
   2468         return 0;
   2469     }
   2470 
   2471     *sat = 1;
   2472     return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17);
   2473 }
   2474 
   2475 /* Operate on 64-bit values, but saturate at 48 bits */
   2476 static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift,
   2477                                      bool round, uint32_t *sat)
   2478 {
   2479     uint64_t val, extval;
   2480 
   2481     if (shift <= -(48 + round)) {
   2482         return 0;
   2483     } else if (shift < 0) {
   2484         if (round) {
   2485             val = src >> (-shift - 1);
   2486             val = (val >> 1) + (val & 1);
   2487         } else {
   2488             val = src >> -shift;
   2489         }
   2490         extval = extract64(val, 0, 48);
   2491         if (!sat || val == extval) {
   2492             return extval;
   2493         }
   2494     } else if (shift < 48) {
   2495         uint64_t extval = extract64(src << shift, 0, 48);
   2496         if (!sat || src == (extval >> shift)) {
   2497             return extval;
   2498         }
   2499     } else if (!sat || src == 0) {
   2500         return 0;
   2501     }
   2502 
   2503     *sat = 1;
   2504     return MAKE_64BIT_MASK(0, 48);
   2505 }
   2506 
   2507 uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift)
   2508 {
   2509     return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF);
   2510 }
   2511 
   2512 uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift)
   2513 {
   2514     return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF);
   2515 }
   2516 
   2517 uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
   2518 {
   2519     return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
   2520 }
   2521 
   2522 uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
   2523 {
   2524     return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
   2525 }
   2526 
   2527 uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift)
   2528 {
   2529     return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF);
   2530 }
   2531 
   2532 uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift)
   2533 {
   2534     return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF);
   2535 }
   2536 
   2537 #define DO_VIDUP(OP, ESIZE, TYPE, FN)                           \
   2538     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
   2539                            uint32_t offset, uint32_t imm)       \
   2540     {                                                           \
   2541         TYPE *d = vd;                                           \
   2542         uint16_t mask = mve_element_mask(env);                  \
   2543         unsigned e;                                             \
   2544         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
   2545             mergemask(&d[H##ESIZE(e)], offset, mask);           \
   2546             offset = FN(offset, imm);                           \
   2547         }                                                       \
   2548         mve_advance_vpt(env);                                   \
   2549         return offset;                                          \
   2550     }
   2551 
   2552 #define DO_VIWDUP(OP, ESIZE, TYPE, FN)                          \
   2553     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
   2554                               uint32_t offset, uint32_t wrap,   \
   2555                               uint32_t imm)                     \
   2556     {                                                           \
   2557         TYPE *d = vd;                                           \
   2558         uint16_t mask = mve_element_mask(env);                  \
   2559         unsigned e;                                             \
   2560         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
   2561             mergemask(&d[H##ESIZE(e)], offset, mask);           \
   2562             offset = FN(offset, wrap, imm);                     \
   2563         }                                                       \
   2564         mve_advance_vpt(env);                                   \
   2565         return offset;                                          \
   2566     }
   2567 
   2568 #define DO_VIDUP_ALL(OP, FN)                    \
   2569     DO_VIDUP(OP##b, 1, int8_t, FN)              \
   2570     DO_VIDUP(OP##h, 2, int16_t, FN)             \
   2571     DO_VIDUP(OP##w, 4, int32_t, FN)
   2572 
   2573 #define DO_VIWDUP_ALL(OP, FN)                   \
   2574     DO_VIWDUP(OP##b, 1, int8_t, FN)             \
   2575     DO_VIWDUP(OP##h, 2, int16_t, FN)            \
   2576     DO_VIWDUP(OP##w, 4, int32_t, FN)
   2577 
   2578 static uint32_t do_add_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
   2579 {
   2580     offset += imm;
   2581     if (offset == wrap) {
   2582         offset = 0;
   2583     }
   2584     return offset;
   2585 }
   2586 
   2587 static uint32_t do_sub_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
   2588 {
   2589     if (offset == 0) {
   2590         offset = wrap;
   2591     }
   2592     offset -= imm;
   2593     return offset;
   2594 }
   2595 
   2596 DO_VIDUP_ALL(vidup, DO_ADD)
   2597 DO_VIWDUP_ALL(viwdup, do_add_wrap)
   2598 DO_VIWDUP_ALL(vdwdup, do_sub_wrap)
   2599 
   2600 /*
   2601  * Vector comparison.
   2602  * P0 bits for non-executed beats (where eci_mask is 0) are unchanged.
   2603  * P0 bits for predicated lanes in executed beats (where mask is 0) are 0.
   2604  * P0 bits otherwise are updated with the results of the comparisons.
   2605  * We must also keep unchanged the MASK fields at the top of v7m.vpr.
   2606  */
   2607 #define DO_VCMP(OP, ESIZE, TYPE, FN)                                    \
   2608     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
   2609     {                                                                   \
   2610         TYPE *n = vn, *m = vm;                                          \
   2611         uint16_t mask = mve_element_mask(env);                          \
   2612         uint16_t eci_mask = mve_eci_mask(env);                          \
   2613         uint16_t beatpred = 0;                                          \
   2614         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
   2615         unsigned e;                                                     \
   2616         for (e = 0; e < 16 / ESIZE; e++) {                              \
   2617             bool r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)]);                \
   2618             /* Comparison sets 0/1 bits for each byte in the element */ \
   2619             beatpred |= r * emask;                                      \
   2620             emask <<= ESIZE;                                            \
   2621         }                                                               \
   2622         beatpred &= mask;                                               \
   2623         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
   2624             (beatpred & eci_mask);                                      \
   2625         mve_advance_vpt(env);                                           \
   2626     }
   2627 
   2628 #define DO_VCMP_SCALAR(OP, ESIZE, TYPE, FN)                             \
   2629     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
   2630                                 uint32_t rm)                            \
   2631     {                                                                   \
   2632         TYPE *n = vn;                                                   \
   2633         uint16_t mask = mve_element_mask(env);                          \
   2634         uint16_t eci_mask = mve_eci_mask(env);                          \
   2635         uint16_t beatpred = 0;                                          \
   2636         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
   2637         unsigned e;                                                     \
   2638         for (e = 0; e < 16 / ESIZE; e++) {                              \
   2639             bool r = FN(n[H##ESIZE(e)], (TYPE)rm);                      \
   2640             /* Comparison sets 0/1 bits for each byte in the element */ \
   2641             beatpred |= r * emask;                                      \
   2642             emask <<= ESIZE;                                            \
   2643         }                                                               \
   2644         beatpred &= mask;                                               \
   2645         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
   2646             (beatpred & eci_mask);                                      \
   2647         mve_advance_vpt(env);                                           \
   2648     }
   2649 
   2650 #define DO_VCMP_S(OP, FN)                               \
   2651     DO_VCMP(OP##b, 1, int8_t, FN)                       \
   2652     DO_VCMP(OP##h, 2, int16_t, FN)                      \
   2653     DO_VCMP(OP##w, 4, int32_t, FN)                      \
   2654     DO_VCMP_SCALAR(OP##_scalarb, 1, int8_t, FN)         \
   2655     DO_VCMP_SCALAR(OP##_scalarh, 2, int16_t, FN)        \
   2656     DO_VCMP_SCALAR(OP##_scalarw, 4, int32_t, FN)
   2657 
   2658 #define DO_VCMP_U(OP, FN)                               \
   2659     DO_VCMP(OP##b, 1, uint8_t, FN)                      \
   2660     DO_VCMP(OP##h, 2, uint16_t, FN)                     \
   2661     DO_VCMP(OP##w, 4, uint32_t, FN)                     \
   2662     DO_VCMP_SCALAR(OP##_scalarb, 1, uint8_t, FN)        \
   2663     DO_VCMP_SCALAR(OP##_scalarh, 2, uint16_t, FN)       \
   2664     DO_VCMP_SCALAR(OP##_scalarw, 4, uint32_t, FN)
   2665 
   2666 #define DO_EQ(N, M) ((N) == (M))
   2667 #define DO_NE(N, M) ((N) != (M))
   2668 #define DO_EQ(N, M) ((N) == (M))
   2669 #define DO_EQ(N, M) ((N) == (M))
   2670 #define DO_GE(N, M) ((N) >= (M))
   2671 #define DO_LT(N, M) ((N) < (M))
   2672 #define DO_GT(N, M) ((N) > (M))
   2673 #define DO_LE(N, M) ((N) <= (M))
   2674 
   2675 DO_VCMP_U(vcmpeq, DO_EQ)
   2676 DO_VCMP_U(vcmpne, DO_NE)
   2677 DO_VCMP_U(vcmpcs, DO_GE)
   2678 DO_VCMP_U(vcmphi, DO_GT)
   2679 DO_VCMP_S(vcmpge, DO_GE)
   2680 DO_VCMP_S(vcmplt, DO_LT)
   2681 DO_VCMP_S(vcmpgt, DO_GT)
   2682 DO_VCMP_S(vcmple, DO_LE)
   2683 
   2684 void HELPER(mve_vpsel)(CPUARMState *env, void *vd, void *vn, void *vm)
   2685 {
   2686     /*
   2687      * Qd[n] = VPR.P0[n] ? Qn[n] : Qm[n]
   2688      * but note that whether bytes are written to Qd is still subject
   2689      * to (all forms of) predication in the usual way.
   2690      */
   2691     uint64_t *d = vd, *n = vn, *m = vm;
   2692     uint16_t mask = mve_element_mask(env);
   2693     uint16_t p0 = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
   2694     unsigned e;
   2695     for (e = 0; e < 16 / 8; e++, mask >>= 8, p0 >>= 8) {
   2696         uint64_t r = m[H8(e)];
   2697         mergemask(&r, n[H8(e)], p0);
   2698         mergemask(&d[H8(e)], r, mask);
   2699     }
   2700     mve_advance_vpt(env);
   2701 }
   2702 
   2703 void HELPER(mve_vpnot)(CPUARMState *env)
   2704 {
   2705     /*
   2706      * P0 bits for unexecuted beats (where eci_mask is 0) are unchanged.
   2707      * P0 bits for predicated lanes in executed bits (where mask is 0) are 0.
   2708      * P0 bits otherwise are inverted.
   2709      * (This is the same logic as VCMP.)
   2710      * This insn is itself subject to predication and to beat-wise execution,
   2711      * and after it executes VPT state advances in the usual way.
   2712      */
   2713     uint16_t mask = mve_element_mask(env);
   2714     uint16_t eci_mask = mve_eci_mask(env);
   2715     uint16_t beatpred = ~env->v7m.vpr & mask;
   2716     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (beatpred & eci_mask);
   2717     mve_advance_vpt(env);
   2718 }
   2719 
   2720 /*
   2721  * VCTP: P0 unexecuted bits unchanged, predicated bits zeroed,
   2722  * otherwise set according to value of Rn. The calculation of
   2723  * newmask here works in the same way as the calculation of the
   2724  * ltpmask in mve_element_mask(), but we have pre-calculated
   2725  * the masklen in the generated code.
   2726  */
   2727 void HELPER(mve_vctp)(CPUARMState *env, uint32_t masklen)
   2728 {
   2729     uint16_t mask = mve_element_mask(env);
   2730     uint16_t eci_mask = mve_eci_mask(env);
   2731     uint16_t newmask;
   2732 
   2733     assert(masklen <= 16);
   2734     newmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
   2735     newmask &= mask;
   2736     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (newmask & eci_mask);
   2737     mve_advance_vpt(env);
   2738 }
   2739 
   2740 #define DO_1OP_SAT(OP, ESIZE, TYPE, FN)                                 \
   2741     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
   2742     {                                                                   \
   2743         TYPE *d = vd, *m = vm;                                          \
   2744         uint16_t mask = mve_element_mask(env);                          \
   2745         unsigned e;                                                     \
   2746         bool qc = false;                                                \
   2747         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   2748             bool sat = false;                                           \
   2749             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)], &sat), mask); \
   2750             qc |= sat & mask & 1;                                       \
   2751         }                                                               \
   2752         if (qc) {                                                       \
   2753             env->vfp.qc[0] = qc;                                        \
   2754         }                                                               \
   2755         mve_advance_vpt(env);                                           \
   2756     }
   2757 
   2758 #define DO_VQABS_B(N, SATP) \
   2759     do_sat_bhs(DO_ABS((int64_t)N), INT8_MIN, INT8_MAX, SATP)
   2760 #define DO_VQABS_H(N, SATP) \
   2761     do_sat_bhs(DO_ABS((int64_t)N), INT16_MIN, INT16_MAX, SATP)
   2762 #define DO_VQABS_W(N, SATP) \
   2763     do_sat_bhs(DO_ABS((int64_t)N), INT32_MIN, INT32_MAX, SATP)
   2764 
   2765 #define DO_VQNEG_B(N, SATP) do_sat_bhs(-(int64_t)N, INT8_MIN, INT8_MAX, SATP)
   2766 #define DO_VQNEG_H(N, SATP) do_sat_bhs(-(int64_t)N, INT16_MIN, INT16_MAX, SATP)
   2767 #define DO_VQNEG_W(N, SATP) do_sat_bhs(-(int64_t)N, INT32_MIN, INT32_MAX, SATP)
   2768 
   2769 DO_1OP_SAT(vqabsb, 1, int8_t, DO_VQABS_B)
   2770 DO_1OP_SAT(vqabsh, 2, int16_t, DO_VQABS_H)
   2771 DO_1OP_SAT(vqabsw, 4, int32_t, DO_VQABS_W)
   2772 
   2773 DO_1OP_SAT(vqnegb, 1, int8_t, DO_VQNEG_B)
   2774 DO_1OP_SAT(vqnegh, 2, int16_t, DO_VQNEG_H)
   2775 DO_1OP_SAT(vqnegw, 4, int32_t, DO_VQNEG_W)
   2776 
   2777 /*
   2778  * VMAXA, VMINA: vd is unsigned; vm is signed, and we take its
   2779  * absolute value; we then do an unsigned comparison.
   2780  */
   2781 #define DO_VMAXMINA(OP, ESIZE, STYPE, UTYPE, FN)                        \
   2782     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
   2783     {                                                                   \
   2784         UTYPE *d = vd;                                                  \
   2785         STYPE *m = vm;                                                  \
   2786         uint16_t mask = mve_element_mask(env);                          \
   2787         unsigned e;                                                     \
   2788         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   2789             UTYPE r = DO_ABS(m[H##ESIZE(e)]);                           \
   2790             r = FN(d[H##ESIZE(e)], r);                                  \
   2791             mergemask(&d[H##ESIZE(e)], r, mask);                        \
   2792         }                                                               \
   2793         mve_advance_vpt(env);                                           \
   2794     }
   2795 
   2796 DO_VMAXMINA(vmaxab, 1, int8_t, uint8_t, DO_MAX)
   2797 DO_VMAXMINA(vmaxah, 2, int16_t, uint16_t, DO_MAX)
   2798 DO_VMAXMINA(vmaxaw, 4, int32_t, uint32_t, DO_MAX)
   2799 DO_VMAXMINA(vminab, 1, int8_t, uint8_t, DO_MIN)
   2800 DO_VMAXMINA(vminah, 2, int16_t, uint16_t, DO_MIN)
   2801 DO_VMAXMINA(vminaw, 4, int32_t, uint32_t, DO_MIN)
   2802 
   2803 /*
   2804  * 2-operand floating point. Note that if an element is partially
   2805  * predicated we must do the FP operation to update the non-predicated
   2806  * bytes, but we must be careful to avoid updating the FP exception
   2807  * state unless byte 0 of the element was unpredicated.
   2808  */
   2809 #define DO_2OP_FP(OP, ESIZE, TYPE, FN)                                  \
   2810     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
   2811                                 void *vd, void *vn, void *vm)           \
   2812     {                                                                   \
   2813         TYPE *d = vd, *n = vn, *m = vm;                                 \
   2814         TYPE r;                                                         \
   2815         uint16_t mask = mve_element_mask(env);                          \
   2816         unsigned e;                                                     \
   2817         float_status *fpst;                                             \
   2818         float_status scratch_fpst;                                      \
   2819         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   2820             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
   2821                 continue;                                               \
   2822             }                                                           \
   2823             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
   2824                 &env->vfp.standard_fp_status;                           \
   2825             if (!(mask & 1)) {                                          \
   2826                 /* We need the result but without updating flags */     \
   2827                 scratch_fpst = *fpst;                                   \
   2828                 fpst = &scratch_fpst;                                   \
   2829             }                                                           \
   2830             r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
   2831             mergemask(&d[H##ESIZE(e)], r, mask);                        \
   2832         }                                                               \
   2833         mve_advance_vpt(env);                                           \
   2834     }
   2835 
   2836 #define DO_2OP_FP_ALL(OP, FN)                  \
   2837     DO_2OP_FP(OP##h, 2, float16, float16_##FN) \
   2838     DO_2OP_FP(OP##s, 4, float32, float32_##FN)
   2839 
   2840 DO_2OP_FP_ALL(vfadd, add)
   2841 DO_2OP_FP_ALL(vfsub, sub)
   2842 DO_2OP_FP_ALL(vfmul, mul)
   2843 
   2844 static inline float16 float16_abd(float16 a, float16 b, float_status *s)
   2845 {
   2846     return float16_abs(float16_sub(a, b, s));
   2847 }
   2848 
   2849 static inline float32 float32_abd(float32 a, float32 b, float_status *s)
   2850 {
   2851     return float32_abs(float32_sub(a, b, s));
   2852 }
   2853 
   2854 DO_2OP_FP_ALL(vfabd, abd)
   2855 DO_2OP_FP_ALL(vmaxnm, maxnum)
   2856 DO_2OP_FP_ALL(vminnm, minnum)
   2857 
   2858 static inline float16 float16_maxnuma(float16 a, float16 b, float_status *s)
   2859 {
   2860     return float16_maxnum(float16_abs(a), float16_abs(b), s);
   2861 }
   2862 
   2863 static inline float32 float32_maxnuma(float32 a, float32 b, float_status *s)
   2864 {
   2865     return float32_maxnum(float32_abs(a), float32_abs(b), s);
   2866 }
   2867 
   2868 static inline float16 float16_minnuma(float16 a, float16 b, float_status *s)
   2869 {
   2870     return float16_minnum(float16_abs(a), float16_abs(b), s);
   2871 }
   2872 
   2873 static inline float32 float32_minnuma(float32 a, float32 b, float_status *s)
   2874 {
   2875     return float32_minnum(float32_abs(a), float32_abs(b), s);
   2876 }
   2877 
   2878 DO_2OP_FP_ALL(vmaxnma, maxnuma)
   2879 DO_2OP_FP_ALL(vminnma, minnuma)
   2880 
   2881 #define DO_VCADD_FP(OP, ESIZE, TYPE, FN0, FN1)                          \
   2882     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
   2883                                 void *vd, void *vn, void *vm)           \
   2884     {                                                                   \
   2885         TYPE *d = vd, *n = vn, *m = vm;                                 \
   2886         TYPE r[16 / ESIZE];                                             \
   2887         uint16_t tm, mask = mve_element_mask(env);                      \
   2888         unsigned e;                                                     \
   2889         float_status *fpst;                                             \
   2890         float_status scratch_fpst;                                      \
   2891         /* Calculate all results first to avoid overwriting inputs */   \
   2892         for (e = 0, tm = mask; e < 16 / ESIZE; e++, tm >>= ESIZE) {     \
   2893             if ((tm & MAKE_64BIT_MASK(0, ESIZE)) == 0) {                \
   2894                 r[e] = 0;                                               \
   2895                 continue;                                               \
   2896             }                                                           \
   2897             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
   2898                 &env->vfp.standard_fp_status;                           \
   2899             if (!(tm & 1)) {                                            \
   2900                 /* We need the result but without updating flags */     \
   2901                 scratch_fpst = *fpst;                                   \
   2902                 fpst = &scratch_fpst;                                   \
   2903             }                                                           \
   2904             if (!(e & 1)) {                                             \
   2905                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)], fpst);   \
   2906             } else {                                                    \
   2907                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)], fpst);   \
   2908             }                                                           \
   2909         }                                                               \
   2910         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   2911             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
   2912         }                                                               \
   2913         mve_advance_vpt(env);                                           \
   2914     }
   2915 
   2916 DO_VCADD_FP(vfcadd90h, 2, float16, float16_sub, float16_add)
   2917 DO_VCADD_FP(vfcadd90s, 4, float32, float32_sub, float32_add)
   2918 DO_VCADD_FP(vfcadd270h, 2, float16, float16_add, float16_sub)
   2919 DO_VCADD_FP(vfcadd270s, 4, float32, float32_add, float32_sub)
   2920 
   2921 #define DO_VFMA(OP, ESIZE, TYPE, CHS)                                   \
   2922     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
   2923                                 void *vd, void *vn, void *vm)           \
   2924     {                                                                   \
   2925         TYPE *d = vd, *n = vn, *m = vm;                                 \
   2926         TYPE r;                                                         \
   2927         uint16_t mask = mve_element_mask(env);                          \
   2928         unsigned e;                                                     \
   2929         float_status *fpst;                                             \
   2930         float_status scratch_fpst;                                      \
   2931         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   2932             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
   2933                 continue;                                               \
   2934             }                                                           \
   2935             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
   2936                 &env->vfp.standard_fp_status;                           \
   2937             if (!(mask & 1)) {                                          \
   2938                 /* We need the result but without updating flags */     \
   2939                 scratch_fpst = *fpst;                                   \
   2940                 fpst = &scratch_fpst;                                   \
   2941             }                                                           \
   2942             r = n[H##ESIZE(e)];                                         \
   2943             if (CHS) {                                                  \
   2944                 r = TYPE##_chs(r);                                      \
   2945             }                                                           \
   2946             r = TYPE##_muladd(r, m[H##ESIZE(e)], d[H##ESIZE(e)],        \
   2947                               0, fpst);                                 \
   2948             mergemask(&d[H##ESIZE(e)], r, mask);                        \
   2949         }                                                               \
   2950         mve_advance_vpt(env);                                           \
   2951     }
   2952 
   2953 DO_VFMA(vfmah, 2, float16, false)
   2954 DO_VFMA(vfmas, 4, float32, false)
   2955 DO_VFMA(vfmsh, 2, float16, true)
   2956 DO_VFMA(vfmss, 4, float32, true)
   2957 
   2958 #define DO_VCMLA(OP, ESIZE, TYPE, ROT, FN)                              \
   2959     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
   2960                                 void *vd, void *vn, void *vm)           \
   2961     {                                                                   \
   2962         TYPE *d = vd, *n = vn, *m = vm;                                 \
   2963         TYPE r0, r1, e1, e2, e3, e4;                                    \
   2964         uint16_t mask = mve_element_mask(env);                          \
   2965         unsigned e;                                                     \
   2966         float_status *fpst0, *fpst1;                                    \
   2967         float_status scratch_fpst;                                      \
   2968         /* We loop through pairs of elements at a time */               \
   2969         for (e = 0; e < 16 / ESIZE; e += 2, mask >>= ESIZE * 2) {       \
   2970             if ((mask & MAKE_64BIT_MASK(0, ESIZE * 2)) == 0) {          \
   2971                 continue;                                               \
   2972             }                                                           \
   2973             fpst0 = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :   \
   2974                 &env->vfp.standard_fp_status;                           \
   2975             fpst1 = fpst0;                                              \
   2976             if (!(mask & 1)) {                                          \
   2977                 scratch_fpst = *fpst0;                                  \
   2978                 fpst0 = &scratch_fpst;                                  \
   2979             }                                                           \
   2980             if (!(mask & (1 << ESIZE))) {                               \
   2981                 scratch_fpst = *fpst1;                                  \
   2982                 fpst1 = &scratch_fpst;                                  \
   2983             }                                                           \
   2984             switch (ROT) {                                              \
   2985             case 0:                                                     \
   2986                 e1 = m[H##ESIZE(e)];                                    \
   2987                 e2 = n[H##ESIZE(e)];                                    \
   2988                 e3 = m[H##ESIZE(e + 1)];                                \
   2989                 e4 = n[H##ESIZE(e)];                                    \
   2990                 break;                                                  \
   2991             case 1:                                                     \
   2992                 e1 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
   2993                 e2 = n[H##ESIZE(e + 1)];                                \
   2994                 e3 = m[H##ESIZE(e)];                                    \
   2995                 e4 = n[H##ESIZE(e + 1)];                                \
   2996                 break;                                                  \
   2997             case 2:                                                     \
   2998                 e1 = TYPE##_chs(m[H##ESIZE(e)]);                        \
   2999                 e2 = n[H##ESIZE(e)];                                    \
   3000                 e3 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
   3001                 e4 = n[H##ESIZE(e)];                                    \
   3002                 break;                                                  \
   3003             case 3:                                                     \
   3004                 e1 = m[H##ESIZE(e + 1)];                                \
   3005                 e2 = n[H##ESIZE(e + 1)];                                \
   3006                 e3 = TYPE##_chs(m[H##ESIZE(e)]);                        \
   3007                 e4 = n[H##ESIZE(e + 1)];                                \
   3008                 break;                                                  \
   3009             default:                                                    \
   3010                 g_assert_not_reached();                                 \
   3011             }                                                           \
   3012             r0 = FN(e2, e1, d[H##ESIZE(e)], fpst0);                     \
   3013             r1 = FN(e4, e3, d[H##ESIZE(e + 1)], fpst1);                 \
   3014             mergemask(&d[H##ESIZE(e)], r0, mask);                       \
   3015             mergemask(&d[H##ESIZE(e + 1)], r1, mask >> ESIZE);          \
   3016         }                                                               \
   3017         mve_advance_vpt(env);                                           \
   3018     }
   3019 
   3020 #define DO_VCMULH(N, M, D, S) float16_mul(N, M, S)
   3021 #define DO_VCMULS(N, M, D, S) float32_mul(N, M, S)
   3022 
   3023 #define DO_VCMLAH(N, M, D, S) float16_muladd(N, M, D, 0, S)
   3024 #define DO_VCMLAS(N, M, D, S) float32_muladd(N, M, D, 0, S)
   3025 
   3026 DO_VCMLA(vcmul0h, 2, float16, 0, DO_VCMULH)
   3027 DO_VCMLA(vcmul0s, 4, float32, 0, DO_VCMULS)
   3028 DO_VCMLA(vcmul90h, 2, float16, 1, DO_VCMULH)
   3029 DO_VCMLA(vcmul90s, 4, float32, 1, DO_VCMULS)
   3030 DO_VCMLA(vcmul180h, 2, float16, 2, DO_VCMULH)
   3031 DO_VCMLA(vcmul180s, 4, float32, 2, DO_VCMULS)
   3032 DO_VCMLA(vcmul270h, 2, float16, 3, DO_VCMULH)
   3033 DO_VCMLA(vcmul270s, 4, float32, 3, DO_VCMULS)
   3034 
   3035 DO_VCMLA(vcmla0h, 2, float16, 0, DO_VCMLAH)
   3036 DO_VCMLA(vcmla0s, 4, float32, 0, DO_VCMLAS)
   3037 DO_VCMLA(vcmla90h, 2, float16, 1, DO_VCMLAH)
   3038 DO_VCMLA(vcmla90s, 4, float32, 1, DO_VCMLAS)
   3039 DO_VCMLA(vcmla180h, 2, float16, 2, DO_VCMLAH)
   3040 DO_VCMLA(vcmla180s, 4, float32, 2, DO_VCMLAS)
   3041 DO_VCMLA(vcmla270h, 2, float16, 3, DO_VCMLAH)
   3042 DO_VCMLA(vcmla270s, 4, float32, 3, DO_VCMLAS)
   3043 
   3044 #define DO_2OP_FP_SCALAR(OP, ESIZE, TYPE, FN)                           \
   3045     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
   3046                                 void *vd, void *vn, uint32_t rm)        \
   3047     {                                                                   \
   3048         TYPE *d = vd, *n = vn;                                          \
   3049         TYPE r, m = rm;                                                 \
   3050         uint16_t mask = mve_element_mask(env);                          \
   3051         unsigned e;                                                     \
   3052         float_status *fpst;                                             \
   3053         float_status scratch_fpst;                                      \
   3054         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   3055             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
   3056                 continue;                                               \
   3057             }                                                           \
   3058             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
   3059                 &env->vfp.standard_fp_status;                           \
   3060             if (!(mask & 1)) {                                          \
   3061                 /* We need the result but without updating flags */     \
   3062                 scratch_fpst = *fpst;                                   \
   3063                 fpst = &scratch_fpst;                                   \
   3064             }                                                           \
   3065             r = FN(n[H##ESIZE(e)], m, fpst);                            \
   3066             mergemask(&d[H##ESIZE(e)], r, mask);                        \
   3067         }                                                               \
   3068         mve_advance_vpt(env);                                           \
   3069     }
   3070 
   3071 #define DO_2OP_FP_SCALAR_ALL(OP, FN)                    \
   3072     DO_2OP_FP_SCALAR(OP##h, 2, float16, float16_##FN)   \
   3073     DO_2OP_FP_SCALAR(OP##s, 4, float32, float32_##FN)
   3074 
   3075 DO_2OP_FP_SCALAR_ALL(vfadd_scalar, add)
   3076 DO_2OP_FP_SCALAR_ALL(vfsub_scalar, sub)
   3077 DO_2OP_FP_SCALAR_ALL(vfmul_scalar, mul)
   3078 
   3079 #define DO_2OP_FP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                       \
   3080     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
   3081                                 void *vd, void *vn, uint32_t rm)        \
   3082     {                                                                   \
   3083         TYPE *d = vd, *n = vn;                                          \
   3084         TYPE r, m = rm;                                                 \
   3085         uint16_t mask = mve_element_mask(env);                          \
   3086         unsigned e;                                                     \
   3087         float_status *fpst;                                             \
   3088         float_status scratch_fpst;                                      \
   3089         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   3090             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
   3091                 continue;                                               \
   3092             }                                                           \
   3093             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
   3094                 &env->vfp.standard_fp_status;                           \
   3095             if (!(mask & 1)) {                                          \
   3096                 /* We need the result but without updating flags */     \
   3097                 scratch_fpst = *fpst;                                   \
   3098                 fpst = &scratch_fpst;                                   \
   3099             }                                                           \
   3100             r = FN(n[H##ESIZE(e)], m, d[H##ESIZE(e)], 0, fpst);         \
   3101             mergemask(&d[H##ESIZE(e)], r, mask);                        \
   3102         }                                                               \
   3103         mve_advance_vpt(env);                                           \
   3104     }
   3105 
   3106 /* VFMAS is vector * vector + scalar, so swap op2 and op3 */
   3107 #define DO_VFMAS_SCALARH(N, M, D, F, S) float16_muladd(N, D, M, F, S)
   3108 #define DO_VFMAS_SCALARS(N, M, D, F, S) float32_muladd(N, D, M, F, S)
   3109 
   3110 /* VFMA is vector * scalar + vector */
   3111 DO_2OP_FP_ACC_SCALAR(vfma_scalarh, 2, float16, float16_muladd)
   3112 DO_2OP_FP_ACC_SCALAR(vfma_scalars, 4, float32, float32_muladd)
   3113 DO_2OP_FP_ACC_SCALAR(vfmas_scalarh, 2, float16, DO_VFMAS_SCALARH)
   3114 DO_2OP_FP_ACC_SCALAR(vfmas_scalars, 4, float32, DO_VFMAS_SCALARS)
   3115 
   3116 /* Floating point max/min across vector. */
   3117 #define DO_FP_VMAXMINV(OP, ESIZE, TYPE, ABS, FN)                \
   3118     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
   3119                                     uint32_t ra_in)             \
   3120     {                                                           \
   3121         uint16_t mask = mve_element_mask(env);                  \
   3122         unsigned e;                                             \
   3123         TYPE *m = vm;                                           \
   3124         TYPE ra = (TYPE)ra_in;                                  \
   3125         float_status *fpst = (ESIZE == 2) ?                     \
   3126             &env->vfp.standard_fp_status_f16 :                  \
   3127             &env->vfp.standard_fp_status;                       \
   3128         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
   3129             if (mask & 1) {                                     \
   3130                 TYPE v = m[H##ESIZE(e)];                        \
   3131                 if (TYPE##_is_signaling_nan(ra, fpst)) {        \
   3132                     ra = TYPE##_silence_nan(ra, fpst);          \
   3133                     float_raise(float_flag_invalid, fpst);      \
   3134                 }                                               \
   3135                 if (TYPE##_is_signaling_nan(v, fpst)) {         \
   3136                     v = TYPE##_silence_nan(v, fpst);            \
   3137                     float_raise(float_flag_invalid, fpst);      \
   3138                 }                                               \
   3139                 if (ABS) {                                      \
   3140                     v = TYPE##_abs(v);                          \
   3141                 }                                               \
   3142                 ra = FN(ra, v, fpst);                           \
   3143             }                                                   \
   3144         }                                                       \
   3145         mve_advance_vpt(env);                                   \
   3146         return ra;                                              \
   3147     }                                                           \
   3148 
   3149 #define NOP(X) (X)
   3150 
   3151 DO_FP_VMAXMINV(vmaxnmvh, 2, float16, false, float16_maxnum)
   3152 DO_FP_VMAXMINV(vmaxnmvs, 4, float32, false, float32_maxnum)
   3153 DO_FP_VMAXMINV(vminnmvh, 2, float16, false, float16_minnum)
   3154 DO_FP_VMAXMINV(vminnmvs, 4, float32, false, float32_minnum)
   3155 DO_FP_VMAXMINV(vmaxnmavh, 2, float16, true, float16_maxnum)
   3156 DO_FP_VMAXMINV(vmaxnmavs, 4, float32, true, float32_maxnum)
   3157 DO_FP_VMAXMINV(vminnmavh, 2, float16, true, float16_minnum)
   3158 DO_FP_VMAXMINV(vminnmavs, 4, float32, true, float32_minnum)
   3159 
   3160 /* FP compares; note that all comparisons signal InvalidOp for QNaNs */
   3161 #define DO_VCMP_FP(OP, ESIZE, TYPE, FN)                                 \
   3162     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
   3163     {                                                                   \
   3164         TYPE *n = vn, *m = vm;                                          \
   3165         uint16_t mask = mve_element_mask(env);                          \
   3166         uint16_t eci_mask = mve_eci_mask(env);                          \
   3167         uint16_t beatpred = 0;                                          \
   3168         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
   3169         unsigned e;                                                     \
   3170         float_status *fpst;                                             \
   3171         float_status scratch_fpst;                                      \
   3172         bool r;                                                         \
   3173         for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
   3174             if ((mask & emask) == 0) {                                  \
   3175                 continue;                                               \
   3176             }                                                           \
   3177             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
   3178                 &env->vfp.standard_fp_status;                           \
   3179             if (!(mask & (1 << (e * ESIZE)))) {                         \
   3180                 /* We need the result but without updating flags */     \
   3181                 scratch_fpst = *fpst;                                   \
   3182                 fpst = &scratch_fpst;                                   \
   3183             }                                                           \
   3184             r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
   3185             /* Comparison sets 0/1 bits for each byte in the element */ \
   3186             beatpred |= r * emask;                                      \
   3187         }                                                               \
   3188         beatpred &= mask;                                               \
   3189         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
   3190             (beatpred & eci_mask);                                      \
   3191         mve_advance_vpt(env);                                           \
   3192     }
   3193 
   3194 #define DO_VCMP_FP_SCALAR(OP, ESIZE, TYPE, FN)                          \
   3195     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
   3196                                 uint32_t rm)                            \
   3197     {                                                                   \
   3198         TYPE *n = vn;                                                   \
   3199         uint16_t mask = mve_element_mask(env);                          \
   3200         uint16_t eci_mask = mve_eci_mask(env);                          \
   3201         uint16_t beatpred = 0;                                          \
   3202         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
   3203         unsigned e;                                                     \
   3204         float_status *fpst;                                             \
   3205         float_status scratch_fpst;                                      \
   3206         bool r;                                                         \
   3207         for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
   3208             if ((mask & emask) == 0) {                                  \
   3209                 continue;                                               \
   3210             }                                                           \
   3211             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
   3212                 &env->vfp.standard_fp_status;                           \
   3213             if (!(mask & (1 << (e * ESIZE)))) {                         \
   3214                 /* We need the result but without updating flags */     \
   3215                 scratch_fpst = *fpst;                                   \
   3216                 fpst = &scratch_fpst;                                   \
   3217             }                                                           \
   3218             r = FN(n[H##ESIZE(e)], (TYPE)rm, fpst);                     \
   3219             /* Comparison sets 0/1 bits for each byte in the element */ \
   3220             beatpred |= r * emask;                                      \
   3221         }                                                               \
   3222         beatpred &= mask;                                               \
   3223         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
   3224             (beatpred & eci_mask);                                      \
   3225         mve_advance_vpt(env);                                           \
   3226     }
   3227 
   3228 #define DO_VCMP_FP_BOTH(VOP, SOP, ESIZE, TYPE, FN)      \
   3229     DO_VCMP_FP(VOP, ESIZE, TYPE, FN)                    \
   3230     DO_VCMP_FP_SCALAR(SOP, ESIZE, TYPE, FN)
   3231 
   3232 /*
   3233  * Some care is needed here to get the correct result for the unordered case.
   3234  * Architecturally EQ, GE and GT are defined to be false for unordered, but
   3235  * the NE, LT and LE comparisons are defined as simple logical inverses of
   3236  * EQ, GE and GT and so they must return true for unordered. The softfloat
   3237  * comparison functions float*_{eq,le,lt} all return false for unordered.
   3238  */
   3239 #define DO_GE16(X, Y, S) float16_le(Y, X, S)
   3240 #define DO_GE32(X, Y, S) float32_le(Y, X, S)
   3241 #define DO_GT16(X, Y, S) float16_lt(Y, X, S)
   3242 #define DO_GT32(X, Y, S) float32_lt(Y, X, S)
   3243 
   3244 DO_VCMP_FP_BOTH(vfcmpeqh, vfcmpeq_scalarh, 2, float16, float16_eq)
   3245 DO_VCMP_FP_BOTH(vfcmpeqs, vfcmpeq_scalars, 4, float32, float32_eq)
   3246 
   3247 DO_VCMP_FP_BOTH(vfcmpneh, vfcmpne_scalarh, 2, float16, !float16_eq)
   3248 DO_VCMP_FP_BOTH(vfcmpnes, vfcmpne_scalars, 4, float32, !float32_eq)
   3249 
   3250 DO_VCMP_FP_BOTH(vfcmpgeh, vfcmpge_scalarh, 2, float16, DO_GE16)
   3251 DO_VCMP_FP_BOTH(vfcmpges, vfcmpge_scalars, 4, float32, DO_GE32)
   3252 
   3253 DO_VCMP_FP_BOTH(vfcmplth, vfcmplt_scalarh, 2, float16, !DO_GE16)
   3254 DO_VCMP_FP_BOTH(vfcmplts, vfcmplt_scalars, 4, float32, !DO_GE32)
   3255 
   3256 DO_VCMP_FP_BOTH(vfcmpgth, vfcmpgt_scalarh, 2, float16, DO_GT16)
   3257 DO_VCMP_FP_BOTH(vfcmpgts, vfcmpgt_scalars, 4, float32, DO_GT32)
   3258 
   3259 DO_VCMP_FP_BOTH(vfcmpleh, vfcmple_scalarh, 2, float16, !DO_GT16)
   3260 DO_VCMP_FP_BOTH(vfcmples, vfcmple_scalars, 4, float32, !DO_GT32)
   3261 
   3262 #define DO_VCVT_FIXED(OP, ESIZE, TYPE, FN)                              \
   3263     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm,   \
   3264                                 uint32_t shift)                         \
   3265     {                                                                   \
   3266         TYPE *d = vd, *m = vm;                                          \
   3267         TYPE r;                                                         \
   3268         uint16_t mask = mve_element_mask(env);                          \
   3269         unsigned e;                                                     \
   3270         float_status *fpst;                                             \
   3271         float_status scratch_fpst;                                      \
   3272         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   3273             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
   3274                 continue;                                               \
   3275             }                                                           \
   3276             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
   3277                 &env->vfp.standard_fp_status;                           \
   3278             if (!(mask & 1)) {                                          \
   3279                 /* We need the result but without updating flags */     \
   3280                 scratch_fpst = *fpst;                                   \
   3281                 fpst = &scratch_fpst;                                   \
   3282             }                                                           \
   3283             r = FN(m[H##ESIZE(e)], shift, fpst);                        \
   3284             mergemask(&d[H##ESIZE(e)], r, mask);                        \
   3285         }                                                               \
   3286         mve_advance_vpt(env);                                           \
   3287     }
   3288 
   3289 DO_VCVT_FIXED(vcvt_sh, 2, int16_t, helper_vfp_shtoh)
   3290 DO_VCVT_FIXED(vcvt_uh, 2, uint16_t, helper_vfp_uhtoh)
   3291 DO_VCVT_FIXED(vcvt_hs, 2, int16_t, helper_vfp_toshh_round_to_zero)
   3292 DO_VCVT_FIXED(vcvt_hu, 2, uint16_t, helper_vfp_touhh_round_to_zero)
   3293 DO_VCVT_FIXED(vcvt_sf, 4, int32_t, helper_vfp_sltos)
   3294 DO_VCVT_FIXED(vcvt_uf, 4, uint32_t, helper_vfp_ultos)
   3295 DO_VCVT_FIXED(vcvt_fs, 4, int32_t, helper_vfp_tosls_round_to_zero)
   3296 DO_VCVT_FIXED(vcvt_fu, 4, uint32_t, helper_vfp_touls_round_to_zero)
   3297 
   3298 /* VCVT with specified rmode */
   3299 #define DO_VCVT_RMODE(OP, ESIZE, TYPE, FN)                              \
   3300     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
   3301                                 void *vd, void *vm, uint32_t rmode)     \
   3302     {                                                                   \
   3303         TYPE *d = vd, *m = vm;                                          \
   3304         TYPE r;                                                         \
   3305         uint16_t mask = mve_element_mask(env);                          \
   3306         unsigned e;                                                     \
   3307         float_status *fpst;                                             \
   3308         float_status scratch_fpst;                                      \
   3309         float_status *base_fpst = (ESIZE == 2) ?                        \
   3310             &env->vfp.standard_fp_status_f16 :                          \
   3311             &env->vfp.standard_fp_status;                               \
   3312         uint32_t prev_rmode = get_float_rounding_mode(base_fpst);       \
   3313         set_float_rounding_mode(rmode, base_fpst);                      \
   3314         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   3315             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
   3316                 continue;                                               \
   3317             }                                                           \
   3318             fpst = base_fpst;                                           \
   3319             if (!(mask & 1)) {                                          \
   3320                 /* We need the result but without updating flags */     \
   3321                 scratch_fpst = *fpst;                                   \
   3322                 fpst = &scratch_fpst;                                   \
   3323             }                                                           \
   3324             r = FN(m[H##ESIZE(e)], 0, fpst);                            \
   3325             mergemask(&d[H##ESIZE(e)], r, mask);                        \
   3326         }                                                               \
   3327         set_float_rounding_mode(prev_rmode, base_fpst);                 \
   3328         mve_advance_vpt(env);                                           \
   3329     }
   3330 
   3331 DO_VCVT_RMODE(vcvt_rm_sh, 2, uint16_t, helper_vfp_toshh)
   3332 DO_VCVT_RMODE(vcvt_rm_uh, 2, uint16_t, helper_vfp_touhh)
   3333 DO_VCVT_RMODE(vcvt_rm_ss, 4, uint32_t, helper_vfp_tosls)
   3334 DO_VCVT_RMODE(vcvt_rm_us, 4, uint32_t, helper_vfp_touls)
   3335 
   3336 #define DO_VRINT_RM_H(M, F, S) helper_rinth(M, S)
   3337 #define DO_VRINT_RM_S(M, F, S) helper_rints(M, S)
   3338 
   3339 DO_VCVT_RMODE(vrint_rm_h, 2, uint16_t, DO_VRINT_RM_H)
   3340 DO_VCVT_RMODE(vrint_rm_s, 4, uint32_t, DO_VRINT_RM_S)
   3341 
   3342 /*
   3343  * VCVT between halfprec and singleprec. As usual for halfprec
   3344  * conversions, FZ16 is ignored and AHP is observed.
   3345  */
   3346 static void do_vcvt_sh(CPUARMState *env, void *vd, void *vm, int top)
   3347 {
   3348     uint16_t *d = vd;
   3349     uint32_t *m = vm;
   3350     uint16_t r;
   3351     uint16_t mask = mve_element_mask(env);
   3352     bool ieee = !(env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_AHP);
   3353     unsigned e;
   3354     float_status *fpst;
   3355     float_status scratch_fpst;
   3356     float_status *base_fpst = &env->vfp.standard_fp_status;
   3357     bool old_fz = get_flush_to_zero(base_fpst);
   3358     set_flush_to_zero(false, base_fpst);
   3359     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
   3360         if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
   3361             continue;
   3362         }
   3363         fpst = base_fpst;
   3364         if (!(mask & 1)) {
   3365             /* We need the result but without updating flags */
   3366             scratch_fpst = *fpst;
   3367             fpst = &scratch_fpst;
   3368         }
   3369         r = float32_to_float16(m[H4(e)], ieee, fpst);
   3370         mergemask(&d[H2(e * 2 + top)], r, mask >> (top * 2));
   3371     }
   3372     set_flush_to_zero(old_fz, base_fpst);
   3373     mve_advance_vpt(env);
   3374 }
   3375 
   3376 static void do_vcvt_hs(CPUARMState *env, void *vd, void *vm, int top)
   3377 {
   3378     uint32_t *d = vd;
   3379     uint16_t *m = vm;
   3380     uint32_t r;
   3381     uint16_t mask = mve_element_mask(env);
   3382     bool ieee = !(env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_AHP);
   3383     unsigned e;
   3384     float_status *fpst;
   3385     float_status scratch_fpst;
   3386     float_status *base_fpst = &env->vfp.standard_fp_status;
   3387     bool old_fiz = get_flush_inputs_to_zero(base_fpst);
   3388     set_flush_inputs_to_zero(false, base_fpst);
   3389     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
   3390         if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
   3391             continue;
   3392         }
   3393         fpst = base_fpst;
   3394         if (!(mask & (1 << (top * 2)))) {
   3395             /* We need the result but without updating flags */
   3396             scratch_fpst = *fpst;
   3397             fpst = &scratch_fpst;
   3398         }
   3399         r = float16_to_float32(m[H2(e * 2 + top)], ieee, fpst);
   3400         mergemask(&d[H4(e)], r, mask);
   3401     }
   3402     set_flush_inputs_to_zero(old_fiz, base_fpst);
   3403     mve_advance_vpt(env);
   3404 }
   3405 
   3406 void HELPER(mve_vcvtb_sh)(CPUARMState *env, void *vd, void *vm)
   3407 {
   3408     do_vcvt_sh(env, vd, vm, 0);
   3409 }
   3410 void HELPER(mve_vcvtt_sh)(CPUARMState *env, void *vd, void *vm)
   3411 {
   3412     do_vcvt_sh(env, vd, vm, 1);
   3413 }
   3414 void HELPER(mve_vcvtb_hs)(CPUARMState *env, void *vd, void *vm)
   3415 {
   3416     do_vcvt_hs(env, vd, vm, 0);
   3417 }
   3418 void HELPER(mve_vcvtt_hs)(CPUARMState *env, void *vd, void *vm)
   3419 {
   3420     do_vcvt_hs(env, vd, vm, 1);
   3421 }
   3422 
   3423 #define DO_1OP_FP(OP, ESIZE, TYPE, FN)                                  \
   3424     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm)   \
   3425     {                                                                   \
   3426         TYPE *d = vd, *m = vm;                                          \
   3427         TYPE r;                                                         \
   3428         uint16_t mask = mve_element_mask(env);                          \
   3429         unsigned e;                                                     \
   3430         float_status *fpst;                                             \
   3431         float_status scratch_fpst;                                      \
   3432         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
   3433             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
   3434                 continue;                                               \
   3435             }                                                           \
   3436             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
   3437                 &env->vfp.standard_fp_status;                           \
   3438             if (!(mask & 1)) {                                          \
   3439                 /* We need the result but without updating flags */     \
   3440                 scratch_fpst = *fpst;                                   \
   3441                 fpst = &scratch_fpst;                                   \
   3442             }                                                           \
   3443             r = FN(m[H##ESIZE(e)], fpst);                               \
   3444             mergemask(&d[H##ESIZE(e)], r, mask);                        \
   3445         }                                                               \
   3446         mve_advance_vpt(env);                                           \
   3447     }
   3448 
   3449 DO_1OP_FP(vrintx_h, 2, float16, float16_round_to_int)
   3450 DO_1OP_FP(vrintx_s, 4, float32, float32_round_to_int)