qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

mte_helper.c (29217B)


      1 /*
      2  * ARM v8.5-MemTag Operations
      3  *
      4  * Copyright (c) 2020 Linaro, Ltd.
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2.1 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 
     20 #include "qemu/osdep.h"
     21 #include "qemu/log.h"
     22 #include "cpu.h"
     23 #include "internals.h"
     24 #include "exec/exec-all.h"
     25 #include "exec/ram_addr.h"
     26 #include "exec/cpu_ldst.h"
     27 #include "exec/helper-proto.h"
     28 #include "qapi/error.h"
     29 #include "qemu/guest-random.h"
     30 
     31 
     32 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
     33 {
     34     if (exclude == 0xffff) {
     35         return 0;
     36     }
     37     if (offset == 0) {
     38         while (exclude & (1 << tag)) {
     39             tag = (tag + 1) & 15;
     40         }
     41     } else {
     42         do {
     43             do {
     44                 tag = (tag + 1) & 15;
     45             } while (exclude & (1 << tag));
     46         } while (--offset > 0);
     47     }
     48     return tag;
     49 }
     50 
     51 /**
     52  * allocation_tag_mem:
     53  * @env: the cpu environment
     54  * @ptr_mmu_idx: the addressing regime to use for the virtual address
     55  * @ptr: the virtual address for which to look up tag memory
     56  * @ptr_access: the access to use for the virtual address
     57  * @ptr_size: the number of bytes in the normal memory access
     58  * @tag_access: the access to use for the tag memory
     59  * @tag_size: the number of bytes in the tag memory access
     60  * @ra: the return address for exception handling
     61  *
     62  * Our tag memory is formatted as a sequence of little-endian nibbles.
     63  * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
     64  * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
     65  * for the higher addr.
     66  *
     67  * Here, resolve the physical address from the virtual address, and return
     68  * a pointer to the corresponding tag byte.  Exit with exception if the
     69  * virtual address is not accessible for @ptr_access.
     70  *
     71  * The @ptr_size and @tag_size values may not have an obvious relation
     72  * due to the alignment of @ptr, and the number of tag checks required.
     73  *
     74  * If there is no tag storage corresponding to @ptr, return NULL.
     75  */
     76 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
     77                                    uint64_t ptr, MMUAccessType ptr_access,
     78                                    int ptr_size, MMUAccessType tag_access,
     79                                    int tag_size, uintptr_t ra)
     80 {
     81 #ifdef CONFIG_USER_ONLY
     82     uint64_t clean_ptr = useronly_clean_ptr(ptr);
     83     int flags = page_get_flags(clean_ptr);
     84     uint8_t *tags;
     85     uintptr_t index;
     86 
     87     if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
     88         cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access,
     89                               !(flags & PAGE_VALID), ra);
     90     }
     91 
     92     /* Require both MAP_ANON and PROT_MTE for the page. */
     93     if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
     94         return NULL;
     95     }
     96 
     97     tags = page_get_target_data(clean_ptr);
     98 
     99     index = extract32(ptr, LOG2_TAG_GRANULE + 1,
    100                       TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
    101     return tags + index;
    102 #else
    103     CPUTLBEntryFull *full;
    104     MemTxAttrs attrs;
    105     int in_page, flags;
    106     hwaddr ptr_paddr, tag_paddr, xlat;
    107     MemoryRegion *mr;
    108     ARMASIdx tag_asi;
    109     AddressSpace *tag_as;
    110     void *host;
    111 
    112     /*
    113      * Probe the first byte of the virtual address.  This raises an
    114      * exception for inaccessible pages, and resolves the virtual address
    115      * into the softmmu tlb.
    116      *
    117      * When RA == 0, this is for mte_probe.  The page is expected to be
    118      * valid.  Indicate to probe_access_flags no-fault, then assert that
    119      * we received a valid page.
    120      */
    121     flags = probe_access_full(env, ptr, ptr_access, ptr_mmu_idx,
    122                               ra == 0, &host, &full, ra);
    123     assert(!(flags & TLB_INVALID_MASK));
    124 
    125     /* If the virtual page MemAttr != Tagged, access unchecked. */
    126     if (full->pte_attrs != 0xf0) {
    127         return NULL;
    128     }
    129 
    130     /*
    131      * If not backed by host ram, there is no tag storage: access unchecked.
    132      * This is probably a guest os bug though, so log it.
    133      */
    134     if (unlikely(flags & TLB_MMIO)) {
    135         qemu_log_mask(LOG_GUEST_ERROR,
    136                       "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
    137                       "but is not backed by host ram\n", ptr);
    138         return NULL;
    139     }
    140 
    141     /*
    142      * Remember these values across the second lookup below,
    143      * which may invalidate this pointer via tlb resize.
    144      */
    145     ptr_paddr = full->phys_addr;
    146     attrs = full->attrs;
    147     full = NULL;
    148 
    149     /*
    150      * The Normal memory access can extend to the next page.  E.g. a single
    151      * 8-byte access to the last byte of a page will check only the last
    152      * tag on the first page.
    153      * Any page access exception has priority over tag check exception.
    154      */
    155     in_page = -(ptr | TARGET_PAGE_MASK);
    156     if (unlikely(ptr_size > in_page)) {
    157         flags |= probe_access_full(env, ptr + in_page, ptr_access,
    158                                    ptr_mmu_idx, ra == 0, &host, &full, ra);
    159         assert(!(flags & TLB_INVALID_MASK));
    160     }
    161 
    162     /* Any debug exception has priority over a tag check exception. */
    163     if (unlikely(flags & TLB_WATCHPOINT)) {
    164         int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
    165         assert(ra != 0);
    166         cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra);
    167     }
    168 
    169     /* Convert to the physical address in tag space.  */
    170     tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
    171 
    172     /* Look up the address in tag space. */
    173     tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
    174     tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
    175     mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
    176                                  tag_access == MMU_DATA_STORE, attrs);
    177 
    178     /*
    179      * Note that @mr will never be NULL.  If there is nothing in the address
    180      * space at @tag_paddr, the translation will return the unallocated memory
    181      * region.  For our purposes, the result must be ram.
    182      */
    183     if (unlikely(!memory_region_is_ram(mr))) {
    184         /* ??? Failure is a board configuration error. */
    185         qemu_log_mask(LOG_UNIMP,
    186                       "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
    187                       "Normal Memory @ 0x%" HWADDR_PRIx "\n",
    188                       tag_paddr, ptr_paddr);
    189         return NULL;
    190     }
    191 
    192     /*
    193      * Ensure the tag memory is dirty on write, for migration.
    194      * Tag memory can never contain code or display memory (vga).
    195      */
    196     if (tag_access == MMU_DATA_STORE) {
    197         ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
    198         cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
    199     }
    200 
    201     return memory_region_get_ram_ptr(mr) + xlat;
    202 #endif
    203 }
    204 
    205 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
    206 {
    207     uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
    208     int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
    209     int start = extract32(env->cp15.rgsr_el1, 0, 4);
    210     int seed = extract32(env->cp15.rgsr_el1, 8, 16);
    211     int offset, i, rtag;
    212 
    213     /*
    214      * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
    215      * deterministic algorithm.  Except that with RRND==1 the kernel is
    216      * not required to have set RGSR_EL1.SEED != 0, which is required for
    217      * the deterministic algorithm to function.  So we force a non-zero
    218      * SEED for that case.
    219      */
    220     if (unlikely(seed == 0) && rrnd) {
    221         do {
    222             Error *err = NULL;
    223             uint16_t two;
    224 
    225             if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
    226                 /*
    227                  * Failed, for unknown reasons in the crypto subsystem.
    228                  * Best we can do is log the reason and use a constant seed.
    229                  */
    230                 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
    231                               error_get_pretty(err));
    232                 error_free(err);
    233                 two = 1;
    234             }
    235             seed = two;
    236         } while (seed == 0);
    237     }
    238 
    239     /* RandomTag */
    240     for (i = offset = 0; i < 4; ++i) {
    241         /* NextRandomTagBit */
    242         int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
    243                    extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
    244         seed = (top << 15) | (seed >> 1);
    245         offset |= top << i;
    246     }
    247     rtag = choose_nonexcluded_tag(start, offset, exclude);
    248     env->cp15.rgsr_el1 = rtag | (seed << 8);
    249 
    250     return address_with_allocation_tag(rn, rtag);
    251 }
    252 
    253 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
    254                          int32_t offset, uint32_t tag_offset)
    255 {
    256     int start_tag = allocation_tag_from_addr(ptr);
    257     uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
    258     int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
    259 
    260     return address_with_allocation_tag(ptr + offset, rtag);
    261 }
    262 
    263 static int load_tag1(uint64_t ptr, uint8_t *mem)
    264 {
    265     int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
    266     return extract32(*mem, ofs, 4);
    267 }
    268 
    269 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
    270 {
    271     int mmu_idx = cpu_mmu_index(env, false);
    272     uint8_t *mem;
    273     int rtag = 0;
    274 
    275     /* Trap if accessing an invalid page.  */
    276     mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
    277                              MMU_DATA_LOAD, 1, GETPC());
    278 
    279     /* Load if page supports tags. */
    280     if (mem) {
    281         rtag = load_tag1(ptr, mem);
    282     }
    283 
    284     return address_with_allocation_tag(xt, rtag);
    285 }
    286 
    287 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
    288 {
    289     if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
    290         arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
    291                                     cpu_mmu_index(env, false), ra);
    292         g_assert_not_reached();
    293     }
    294 }
    295 
    296 /* For use in a non-parallel context, store to the given nibble.  */
    297 static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
    298 {
    299     int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
    300     *mem = deposit32(*mem, ofs, 4, tag);
    301 }
    302 
    303 /* For use in a parallel context, atomically store to the given nibble.  */
    304 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
    305 {
    306     int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
    307     uint8_t old = qatomic_read(mem);
    308 
    309     while (1) {
    310         uint8_t new = deposit32(old, ofs, 4, tag);
    311         uint8_t cmp = qatomic_cmpxchg(mem, old, new);
    312         if (likely(cmp == old)) {
    313             return;
    314         }
    315         old = cmp;
    316     }
    317 }
    318 
    319 typedef void stg_store1(uint64_t, uint8_t *, int);
    320 
    321 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
    322                           uintptr_t ra, stg_store1 store1)
    323 {
    324     int mmu_idx = cpu_mmu_index(env, false);
    325     uint8_t *mem;
    326 
    327     check_tag_aligned(env, ptr, ra);
    328 
    329     /* Trap if accessing an invalid page.  */
    330     mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
    331                              MMU_DATA_STORE, 1, ra);
    332 
    333     /* Store if page supports tags. */
    334     if (mem) {
    335         store1(ptr, mem, allocation_tag_from_addr(xt));
    336     }
    337 }
    338 
    339 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
    340 {
    341     do_stg(env, ptr, xt, GETPC(), store_tag1);
    342 }
    343 
    344 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
    345 {
    346     do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
    347 }
    348 
    349 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
    350 {
    351     int mmu_idx = cpu_mmu_index(env, false);
    352     uintptr_t ra = GETPC();
    353 
    354     check_tag_aligned(env, ptr, ra);
    355     probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
    356 }
    357 
    358 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
    359                            uintptr_t ra, stg_store1 store1)
    360 {
    361     int mmu_idx = cpu_mmu_index(env, false);
    362     int tag = allocation_tag_from_addr(xt);
    363     uint8_t *mem1, *mem2;
    364 
    365     check_tag_aligned(env, ptr, ra);
    366 
    367     /*
    368      * Trap if accessing an invalid page(s).
    369      * This takes priority over !allocation_tag_access_enabled.
    370      */
    371     if (ptr & TAG_GRANULE) {
    372         /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
    373         mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
    374                                   TAG_GRANULE, MMU_DATA_STORE, 1, ra);
    375         mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
    376                                   MMU_DATA_STORE, TAG_GRANULE,
    377                                   MMU_DATA_STORE, 1, ra);
    378 
    379         /* Store if page(s) support tags. */
    380         if (mem1) {
    381             store1(TAG_GRANULE, mem1, tag);
    382         }
    383         if (mem2) {
    384             store1(0, mem2, tag);
    385         }
    386     } else {
    387         /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
    388         mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
    389                                   2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
    390         if (mem1) {
    391             tag |= tag << 4;
    392             qatomic_set(mem1, tag);
    393         }
    394     }
    395 }
    396 
    397 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
    398 {
    399     do_st2g(env, ptr, xt, GETPC(), store_tag1);
    400 }
    401 
    402 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
    403 {
    404     do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
    405 }
    406 
    407 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
    408 {
    409     int mmu_idx = cpu_mmu_index(env, false);
    410     uintptr_t ra = GETPC();
    411     int in_page = -(ptr | TARGET_PAGE_MASK);
    412 
    413     check_tag_aligned(env, ptr, ra);
    414 
    415     if (likely(in_page >= 2 * TAG_GRANULE)) {
    416         probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
    417     } else {
    418         probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
    419         probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
    420     }
    421 }
    422 
    423 #define LDGM_STGM_SIZE  (4 << GMID_EL1_BS)
    424 
    425 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
    426 {
    427     int mmu_idx = cpu_mmu_index(env, false);
    428     uintptr_t ra = GETPC();
    429     void *tag_mem;
    430 
    431     ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
    432 
    433     /* Trap if accessing an invalid page.  */
    434     tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
    435                                  LDGM_STGM_SIZE, MMU_DATA_LOAD,
    436                                  LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
    437 
    438     /* The tag is squashed to zero if the page does not support tags.  */
    439     if (!tag_mem) {
    440         return 0;
    441     }
    442 
    443     QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
    444     /*
    445      * We are loading 64-bits worth of tags.  The ordering of elements
    446      * within the word corresponds to a 64-bit little-endian operation.
    447      */
    448     return ldq_le_p(tag_mem);
    449 }
    450 
    451 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
    452 {
    453     int mmu_idx = cpu_mmu_index(env, false);
    454     uintptr_t ra = GETPC();
    455     void *tag_mem;
    456 
    457     ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
    458 
    459     /* Trap if accessing an invalid page.  */
    460     tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
    461                                  LDGM_STGM_SIZE, MMU_DATA_LOAD,
    462                                  LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
    463 
    464     /*
    465      * Tag store only happens if the page support tags,
    466      * and if the OS has enabled access to the tags.
    467      */
    468     if (!tag_mem) {
    469         return;
    470     }
    471 
    472     QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
    473     /*
    474      * We are storing 64-bits worth of tags.  The ordering of elements
    475      * within the word corresponds to a 64-bit little-endian operation.
    476      */
    477     stq_le_p(tag_mem, val);
    478 }
    479 
    480 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
    481 {
    482     uintptr_t ra = GETPC();
    483     int mmu_idx = cpu_mmu_index(env, false);
    484     int log2_dcz_bytes, log2_tag_bytes;
    485     intptr_t dcz_bytes, tag_bytes;
    486     uint8_t *mem;
    487 
    488     /*
    489      * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
    490      * i.e. 32 bytes, which is an unreasonably small dcz anyway,
    491      * to make sure that we can access one complete tag byte here.
    492      */
    493     log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
    494     log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
    495     dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
    496     tag_bytes = (intptr_t)1 << log2_tag_bytes;
    497     ptr &= -dcz_bytes;
    498 
    499     mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
    500                              MMU_DATA_STORE, tag_bytes, ra);
    501     if (mem) {
    502         int tag_pair = (val & 0xf) * 0x11;
    503         memset(mem, tag_pair, tag_bytes);
    504     }
    505 }
    506 
    507 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
    508                                 uint64_t dirty_ptr, uintptr_t ra)
    509 {
    510     int is_write, syn;
    511 
    512     env->exception.vaddress = dirty_ptr;
    513 
    514     is_write = FIELD_EX32(desc, MTEDESC, WRITE);
    515     syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
    516                                 0x11);
    517     raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
    518     g_assert_not_reached();
    519 }
    520 
    521 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
    522                                  uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
    523 {
    524     int select;
    525 
    526     if (regime_has_2_ranges(arm_mmu_idx)) {
    527         select = extract64(dirty_ptr, 55, 1);
    528     } else {
    529         select = 0;
    530     }
    531     env->cp15.tfsr_el[el] |= 1 << select;
    532 #ifdef CONFIG_USER_ONLY
    533     /*
    534      * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
    535      * which then sends a SIGSEGV when the thread is next scheduled.
    536      * This cpu will return to the main loop at the end of the TB,
    537      * which is rather sooner than "normal".  But the alternative
    538      * is waiting until the next syscall.
    539      */
    540     qemu_cpu_kick(env_cpu(env));
    541 #endif
    542 }
    543 
    544 /* Record a tag check failure.  */
    545 static void mte_check_fail(CPUARMState *env, uint32_t desc,
    546                            uint64_t dirty_ptr, uintptr_t ra)
    547 {
    548     int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
    549     ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
    550     int el, reg_el, tcf;
    551     uint64_t sctlr;
    552 
    553     reg_el = regime_el(env, arm_mmu_idx);
    554     sctlr = env->cp15.sctlr_el[reg_el];
    555 
    556     switch (arm_mmu_idx) {
    557     case ARMMMUIdx_E10_0:
    558     case ARMMMUIdx_E20_0:
    559         el = 0;
    560         tcf = extract64(sctlr, 38, 2);
    561         break;
    562     default:
    563         el = reg_el;
    564         tcf = extract64(sctlr, 40, 2);
    565     }
    566 
    567     switch (tcf) {
    568     case 1:
    569         /* Tag check fail causes a synchronous exception. */
    570         mte_sync_check_fail(env, desc, dirty_ptr, ra);
    571         break;
    572 
    573     case 0:
    574         /*
    575          * Tag check fail does not affect the PE.
    576          * We eliminate this case by not setting MTE_ACTIVE
    577          * in tb_flags, so that we never make this runtime call.
    578          */
    579         g_assert_not_reached();
    580 
    581     case 2:
    582         /* Tag check fail causes asynchronous flag set.  */
    583         mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
    584         break;
    585 
    586     case 3:
    587         /*
    588          * Tag check fail causes asynchronous flag set for stores, or
    589          * a synchronous exception for loads.
    590          */
    591         if (FIELD_EX32(desc, MTEDESC, WRITE)) {
    592             mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
    593         } else {
    594             mte_sync_check_fail(env, desc, dirty_ptr, ra);
    595         }
    596         break;
    597     }
    598 }
    599 
    600 /**
    601  * checkN:
    602  * @tag: tag memory to test
    603  * @odd: true to begin testing at tags at odd nibble
    604  * @cmp: the tag to compare against
    605  * @count: number of tags to test
    606  *
    607  * Return the number of successful tests.
    608  * Thus a return value < @count indicates a failure.
    609  *
    610  * A note about sizes: count is expected to be small.
    611  *
    612  * The most common use will be LDP/STP of two integer registers,
    613  * which means 16 bytes of memory touching at most 2 tags, but
    614  * often the access is aligned and thus just 1 tag.
    615  *
    616  * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
    617  * touching at most 5 tags.  SVE LDR/STR (vector) with the default
    618  * vector length is also 64 bytes; the maximum architectural length
    619  * is 256 bytes touching at most 9 tags.
    620  *
    621  * The loop below uses 7 logical operations and 1 memory operation
    622  * per tag pair.  An implementation that loads an aligned word and
    623  * uses masking to ignore adjacent tags requires 18 logical operations
    624  * and thus does not begin to pay off until 6 tags.
    625  * Which, according to the survey above, is unlikely to be common.
    626  */
    627 static int checkN(uint8_t *mem, int odd, int cmp, int count)
    628 {
    629     int n = 0, diff;
    630 
    631     /* Replicate the test tag and compare.  */
    632     cmp *= 0x11;
    633     diff = *mem++ ^ cmp;
    634 
    635     if (odd) {
    636         goto start_odd;
    637     }
    638 
    639     while (1) {
    640         /* Test even tag. */
    641         if (unlikely((diff) & 0x0f)) {
    642             break;
    643         }
    644         if (++n == count) {
    645             break;
    646         }
    647 
    648     start_odd:
    649         /* Test odd tag. */
    650         if (unlikely((diff) & 0xf0)) {
    651             break;
    652         }
    653         if (++n == count) {
    654             break;
    655         }
    656 
    657         diff = *mem++ ^ cmp;
    658     }
    659     return n;
    660 }
    661 
    662 /**
    663  * mte_probe_int() - helper for mte_probe and mte_check
    664  * @env: CPU environment
    665  * @desc: MTEDESC descriptor
    666  * @ptr: virtual address of the base of the access
    667  * @fault: return virtual address of the first check failure
    668  *
    669  * Internal routine for both mte_probe and mte_check.
    670  * Return zero on failure, filling in *fault.
    671  * Return negative on trivial success for tbi disabled.
    672  * Return positive on success with tbi enabled.
    673  */
    674 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
    675                          uintptr_t ra, uint64_t *fault)
    676 {
    677     int mmu_idx, ptr_tag, bit55;
    678     uint64_t ptr_last, prev_page, next_page;
    679     uint64_t tag_first, tag_last;
    680     uint64_t tag_byte_first, tag_byte_last;
    681     uint32_t sizem1, tag_count, tag_size, n, c;
    682     uint8_t *mem1, *mem2;
    683     MMUAccessType type;
    684 
    685     bit55 = extract64(ptr, 55, 1);
    686     *fault = ptr;
    687 
    688     /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
    689     if (unlikely(!tbi_check(desc, bit55))) {
    690         return -1;
    691     }
    692 
    693     ptr_tag = allocation_tag_from_addr(ptr);
    694 
    695     if (tcma_check(desc, bit55, ptr_tag)) {
    696         return 1;
    697     }
    698 
    699     mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
    700     type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
    701     sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
    702 
    703     /* Find the addr of the end of the access */
    704     ptr_last = ptr + sizem1;
    705 
    706     /* Round the bounds to the tag granule, and compute the number of tags. */
    707     tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
    708     tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
    709     tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
    710 
    711     /* Round the bounds to twice the tag granule, and compute the bytes. */
    712     tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE);
    713     tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE);
    714 
    715     /* Locate the page boundaries. */
    716     prev_page = ptr & TARGET_PAGE_MASK;
    717     next_page = prev_page + TARGET_PAGE_SIZE;
    718 
    719     if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
    720         /* Memory access stays on one page. */
    721         tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1;
    722         mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
    723                                   MMU_DATA_LOAD, tag_size, ra);
    724         if (!mem1) {
    725             return 1;
    726         }
    727         /* Perform all of the comparisons. */
    728         n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
    729     } else {
    730         /* Memory access crosses to next page. */
    731         tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE);
    732         mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
    733                                   MMU_DATA_LOAD, tag_size, ra);
    734 
    735         tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1;
    736         mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
    737                                   ptr_last - next_page + 1,
    738                                   MMU_DATA_LOAD, tag_size, ra);
    739 
    740         /*
    741          * Perform all of the comparisons.
    742          * Note the possible but unlikely case of the operation spanning
    743          * two pages that do not both have tagging enabled.
    744          */
    745         n = c = (next_page - tag_first) / TAG_GRANULE;
    746         if (mem1) {
    747             n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
    748         }
    749         if (n == c) {
    750             if (!mem2) {
    751                 return 1;
    752             }
    753             n += checkN(mem2, 0, ptr_tag, tag_count - c);
    754         }
    755     }
    756 
    757     if (likely(n == tag_count)) {
    758         return 1;
    759     }
    760 
    761     /*
    762      * If we failed, we know which granule.  For the first granule, the
    763      * failure address is @ptr, the first byte accessed.  Otherwise the
    764      * failure address is the first byte of the nth granule.
    765      */
    766     if (n > 0) {
    767         *fault = tag_first + n * TAG_GRANULE;
    768     }
    769     return 0;
    770 }
    771 
    772 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
    773 {
    774     uint64_t fault;
    775     int ret = mte_probe_int(env, desc, ptr, ra, &fault);
    776 
    777     if (unlikely(ret == 0)) {
    778         mte_check_fail(env, desc, fault, ra);
    779     } else if (ret < 0) {
    780         return ptr;
    781     }
    782     return useronly_clean_ptr(ptr);
    783 }
    784 
    785 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
    786 {
    787     return mte_check(env, desc, ptr, GETPC());
    788 }
    789 
    790 /*
    791  * No-fault version of mte_check, to be used by SVE for MemSingleNF.
    792  * Returns false if the access is Checked and the check failed.  This
    793  * is only intended to probe the tag -- the validity of the page must
    794  * be checked beforehand.
    795  */
    796 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
    797 {
    798     uint64_t fault;
    799     int ret = mte_probe_int(env, desc, ptr, 0, &fault);
    800 
    801     return ret != 0;
    802 }
    803 
    804 /*
    805  * Perform an MTE checked access for DC_ZVA.
    806  */
    807 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
    808 {
    809     uintptr_t ra = GETPC();
    810     int log2_dcz_bytes, log2_tag_bytes;
    811     int mmu_idx, bit55;
    812     intptr_t dcz_bytes, tag_bytes, i;
    813     void *mem;
    814     uint64_t ptr_tag, mem_tag, align_ptr;
    815 
    816     bit55 = extract64(ptr, 55, 1);
    817 
    818     /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
    819     if (unlikely(!tbi_check(desc, bit55))) {
    820         return ptr;
    821     }
    822 
    823     ptr_tag = allocation_tag_from_addr(ptr);
    824 
    825     if (tcma_check(desc, bit55, ptr_tag)) {
    826         goto done;
    827     }
    828 
    829     /*
    830      * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
    831      * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
    832      * sure that we can access one complete tag byte here.
    833      */
    834     log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
    835     log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
    836     dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
    837     tag_bytes = (intptr_t)1 << log2_tag_bytes;
    838     align_ptr = ptr & -dcz_bytes;
    839 
    840     /*
    841      * Trap if accessing an invalid page.  DC_ZVA requires that we supply
    842      * the original pointer for an invalid page.  But watchpoints require
    843      * that we probe the actual space.  So do both.
    844      */
    845     mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
    846     (void) probe_write(env, ptr, 1, mmu_idx, ra);
    847     mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
    848                              dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra);
    849     if (!mem) {
    850         goto done;
    851     }
    852 
    853     /*
    854      * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
    855      * it is quite easy to perform all of the comparisons at once without
    856      * any extra masking.
    857      *
    858      * The most common zva block size is 64; some of the thunderx cpus use
    859      * a block size of 128.  For user-only, aarch64_max_initfn will set the
    860      * block size to 512.  Fill out the other cases for future-proofing.
    861      *
    862      * In order to be able to find the first miscompare later, we want the
    863      * tag bytes to be in little-endian order.
    864      */
    865     switch (log2_tag_bytes) {
    866     case 0: /* zva_blocksize 32 */
    867         mem_tag = *(uint8_t *)mem;
    868         ptr_tag *= 0x11u;
    869         break;
    870     case 1: /* zva_blocksize 64 */
    871         mem_tag = cpu_to_le16(*(uint16_t *)mem);
    872         ptr_tag *= 0x1111u;
    873         break;
    874     case 2: /* zva_blocksize 128 */
    875         mem_tag = cpu_to_le32(*(uint32_t *)mem);
    876         ptr_tag *= 0x11111111u;
    877         break;
    878     case 3: /* zva_blocksize 256 */
    879         mem_tag = cpu_to_le64(*(uint64_t *)mem);
    880         ptr_tag *= 0x1111111111111111ull;
    881         break;
    882 
    883     default: /* zva_blocksize 512, 1024, 2048 */
    884         ptr_tag *= 0x1111111111111111ull;
    885         i = 0;
    886         do {
    887             mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
    888             if (unlikely(mem_tag != ptr_tag)) {
    889                 goto fail;
    890             }
    891             i += 8;
    892             align_ptr += 16 * TAG_GRANULE;
    893         } while (i < tag_bytes);
    894         goto done;
    895     }
    896 
    897     if (likely(mem_tag == ptr_tag)) {
    898         goto done;
    899     }
    900 
    901  fail:
    902     /* Locate the first nibble that differs. */
    903     i = ctz64(mem_tag ^ ptr_tag) >> 4;
    904     mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
    905 
    906  done:
    907     return useronly_clean_ptr(ptr);
    908 }