qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

kvm.c (29604B)


      1 /*
      2  * ARM implementation of KVM hooks
      3  *
      4  * Copyright Christoffer Dall 2009-2010
      5  *
      6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
      7  * See the COPYING file in the top-level directory.
      8  *
      9  */
     10 
     11 #include "qemu/osdep.h"
     12 #include <sys/ioctl.h>
     13 
     14 #include <linux/kvm.h>
     15 
     16 #include "qemu/timer.h"
     17 #include "qemu/error-report.h"
     18 #include "qemu/main-loop.h"
     19 #include "qom/object.h"
     20 #include "qapi/error.h"
     21 #include "sysemu/sysemu.h"
     22 #include "sysemu/kvm.h"
     23 #include "sysemu/kvm_int.h"
     24 #include "kvm_arm.h"
     25 #include "cpu.h"
     26 #include "trace.h"
     27 #include "internals.h"
     28 #include "hw/pci/pci.h"
     29 #include "exec/memattrs.h"
     30 #include "exec/address-spaces.h"
     31 #include "hw/boards.h"
     32 #include "hw/irq.h"
     33 #include "qemu/log.h"
     34 
     35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
     36     KVM_CAP_LAST_INFO
     37 };
     38 
     39 static bool cap_has_mp_state;
     40 static bool cap_has_inject_serror_esr;
     41 static bool cap_has_inject_ext_dabt;
     42 
     43 static ARMHostCPUFeatures arm_host_cpu_features;
     44 
     45 int kvm_arm_vcpu_init(CPUState *cs)
     46 {
     47     ARMCPU *cpu = ARM_CPU(cs);
     48     struct kvm_vcpu_init init;
     49 
     50     init.target = cpu->kvm_target;
     51     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
     52 
     53     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
     54 }
     55 
     56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
     57 {
     58     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
     59 }
     60 
     61 void kvm_arm_init_serror_injection(CPUState *cs)
     62 {
     63     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
     64                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
     65 }
     66 
     67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
     68                                       int *fdarray,
     69                                       struct kvm_vcpu_init *init)
     70 {
     71     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
     72     int max_vm_pa_size;
     73 
     74     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
     75     if (kvmfd < 0) {
     76         goto err;
     77     }
     78     max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
     79     if (max_vm_pa_size < 0) {
     80         max_vm_pa_size = 0;
     81     }
     82     do {
     83         vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
     84     } while (vmfd == -1 && errno == EINTR);
     85     if (vmfd < 0) {
     86         goto err;
     87     }
     88     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
     89     if (cpufd < 0) {
     90         goto err;
     91     }
     92 
     93     if (!init) {
     94         /* Caller doesn't want the VCPU to be initialized, so skip it */
     95         goto finish;
     96     }
     97 
     98     if (init->target == -1) {
     99         struct kvm_vcpu_init preferred;
    100 
    101         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
    102         if (!ret) {
    103             init->target = preferred.target;
    104         }
    105     }
    106     if (ret >= 0) {
    107         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
    108         if (ret < 0) {
    109             goto err;
    110         }
    111     } else if (cpus_to_try) {
    112         /* Old kernel which doesn't know about the
    113          * PREFERRED_TARGET ioctl: we know it will only support
    114          * creating one kind of guest CPU which is its preferred
    115          * CPU type.
    116          */
    117         struct kvm_vcpu_init try;
    118 
    119         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
    120             try.target = *cpus_to_try++;
    121             memcpy(try.features, init->features, sizeof(init->features));
    122             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
    123             if (ret >= 0) {
    124                 break;
    125             }
    126         }
    127         if (ret < 0) {
    128             goto err;
    129         }
    130         init->target = try.target;
    131     } else {
    132         /* Treat a NULL cpus_to_try argument the same as an empty
    133          * list, which means we will fail the call since this must
    134          * be an old kernel which doesn't support PREFERRED_TARGET.
    135          */
    136         goto err;
    137     }
    138 
    139 finish:
    140     fdarray[0] = kvmfd;
    141     fdarray[1] = vmfd;
    142     fdarray[2] = cpufd;
    143 
    144     return true;
    145 
    146 err:
    147     if (cpufd >= 0) {
    148         close(cpufd);
    149     }
    150     if (vmfd >= 0) {
    151         close(vmfd);
    152     }
    153     if (kvmfd >= 0) {
    154         close(kvmfd);
    155     }
    156 
    157     return false;
    158 }
    159 
    160 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
    161 {
    162     int i;
    163 
    164     for (i = 2; i >= 0; i--) {
    165         close(fdarray[i]);
    166     }
    167 }
    168 
    169 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
    170 {
    171     CPUARMState *env = &cpu->env;
    172 
    173     if (!arm_host_cpu_features.dtb_compatible) {
    174         if (!kvm_enabled() ||
    175             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
    176             /* We can't report this error yet, so flag that we need to
    177              * in arm_cpu_realizefn().
    178              */
    179             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
    180             cpu->host_cpu_probe_failed = true;
    181             return;
    182         }
    183     }
    184 
    185     cpu->kvm_target = arm_host_cpu_features.target;
    186     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
    187     cpu->isar = arm_host_cpu_features.isar;
    188     env->features = arm_host_cpu_features.features;
    189 }
    190 
    191 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
    192 {
    193     return !ARM_CPU(obj)->kvm_adjvtime;
    194 }
    195 
    196 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
    197 {
    198     ARM_CPU(obj)->kvm_adjvtime = !value;
    199 }
    200 
    201 static bool kvm_steal_time_get(Object *obj, Error **errp)
    202 {
    203     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
    204 }
    205 
    206 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
    207 {
    208     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
    209 }
    210 
    211 /* KVM VCPU properties should be prefixed with "kvm-". */
    212 void kvm_arm_add_vcpu_properties(Object *obj)
    213 {
    214     ARMCPU *cpu = ARM_CPU(obj);
    215     CPUARMState *env = &cpu->env;
    216 
    217     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
    218         cpu->kvm_adjvtime = true;
    219         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
    220                                  kvm_no_adjvtime_set);
    221         object_property_set_description(obj, "kvm-no-adjvtime",
    222                                         "Set on to disable the adjustment of "
    223                                         "the virtual counter. VM stopped time "
    224                                         "will be counted.");
    225     }
    226 
    227     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
    228     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
    229                              kvm_steal_time_set);
    230     object_property_set_description(obj, "kvm-steal-time",
    231                                     "Set off to disable KVM steal time.");
    232 }
    233 
    234 bool kvm_arm_pmu_supported(void)
    235 {
    236     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
    237 }
    238 
    239 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
    240 {
    241     KVMState *s = KVM_STATE(ms->accelerator);
    242     int ret;
    243 
    244     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
    245     *fixed_ipa = ret <= 0;
    246 
    247     return ret > 0 ? ret : 40;
    248 }
    249 
    250 int kvm_arch_init(MachineState *ms, KVMState *s)
    251 {
    252     int ret = 0;
    253     /* For ARM interrupt delivery is always asynchronous,
    254      * whether we are using an in-kernel VGIC or not.
    255      */
    256     kvm_async_interrupts_allowed = true;
    257 
    258     /*
    259      * PSCI wakes up secondary cores, so we always need to
    260      * have vCPUs waiting in kernel space
    261      */
    262     kvm_halt_in_kernel_allowed = true;
    263 
    264     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
    265 
    266     if (ms->smp.cpus > 256 &&
    267         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
    268         error_report("Using more than 256 vcpus requires a host kernel "
    269                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
    270         ret = -EINVAL;
    271     }
    272 
    273     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
    274         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
    275             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
    276         } else {
    277             /* Set status for supporting the external dabt injection */
    278             cap_has_inject_ext_dabt = kvm_check_extension(s,
    279                                     KVM_CAP_ARM_INJECT_EXT_DABT);
    280         }
    281     }
    282 
    283     return ret;
    284 }
    285 
    286 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
    287 {
    288     return cpu->cpu_index;
    289 }
    290 
    291 /* We track all the KVM devices which need their memory addresses
    292  * passing to the kernel in a list of these structures.
    293  * When board init is complete we run through the list and
    294  * tell the kernel the base addresses of the memory regions.
    295  * We use a MemoryListener to track mapping and unmapping of
    296  * the regions during board creation, so the board models don't
    297  * need to do anything special for the KVM case.
    298  *
    299  * Sometimes the address must be OR'ed with some other fields
    300  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
    301  * @kda_addr_ormask aims at storing the value of those fields.
    302  */
    303 typedef struct KVMDevice {
    304     struct kvm_arm_device_addr kda;
    305     struct kvm_device_attr kdattr;
    306     uint64_t kda_addr_ormask;
    307     MemoryRegion *mr;
    308     QSLIST_ENTRY(KVMDevice) entries;
    309     int dev_fd;
    310 } KVMDevice;
    311 
    312 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
    313 
    314 static void kvm_arm_devlistener_add(MemoryListener *listener,
    315                                     MemoryRegionSection *section)
    316 {
    317     KVMDevice *kd;
    318 
    319     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
    320         if (section->mr == kd->mr) {
    321             kd->kda.addr = section->offset_within_address_space;
    322         }
    323     }
    324 }
    325 
    326 static void kvm_arm_devlistener_del(MemoryListener *listener,
    327                                     MemoryRegionSection *section)
    328 {
    329     KVMDevice *kd;
    330 
    331     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
    332         if (section->mr == kd->mr) {
    333             kd->kda.addr = -1;
    334         }
    335     }
    336 }
    337 
    338 static MemoryListener devlistener = {
    339     .name = "kvm-arm",
    340     .region_add = kvm_arm_devlistener_add,
    341     .region_del = kvm_arm_devlistener_del,
    342 };
    343 
    344 static void kvm_arm_set_device_addr(KVMDevice *kd)
    345 {
    346     struct kvm_device_attr *attr = &kd->kdattr;
    347     int ret;
    348 
    349     /* If the device control API is available and we have a device fd on the
    350      * KVMDevice struct, let's use the newer API
    351      */
    352     if (kd->dev_fd >= 0) {
    353         uint64_t addr = kd->kda.addr;
    354 
    355         addr |= kd->kda_addr_ormask;
    356         attr->addr = (uintptr_t)&addr;
    357         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
    358     } else {
    359         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
    360     }
    361 
    362     if (ret < 0) {
    363         fprintf(stderr, "Failed to set device address: %s\n",
    364                 strerror(-ret));
    365         abort();
    366     }
    367 }
    368 
    369 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
    370 {
    371     KVMDevice *kd, *tkd;
    372 
    373     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
    374         if (kd->kda.addr != -1) {
    375             kvm_arm_set_device_addr(kd);
    376         }
    377         memory_region_unref(kd->mr);
    378         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
    379         g_free(kd);
    380     }
    381     memory_listener_unregister(&devlistener);
    382 }
    383 
    384 static Notifier notify = {
    385     .notify = kvm_arm_machine_init_done,
    386 };
    387 
    388 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
    389                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
    390 {
    391     KVMDevice *kd;
    392 
    393     if (!kvm_irqchip_in_kernel()) {
    394         return;
    395     }
    396 
    397     if (QSLIST_EMPTY(&kvm_devices_head)) {
    398         memory_listener_register(&devlistener, &address_space_memory);
    399         qemu_add_machine_init_done_notifier(&notify);
    400     }
    401     kd = g_new0(KVMDevice, 1);
    402     kd->mr = mr;
    403     kd->kda.id = devid;
    404     kd->kda.addr = -1;
    405     kd->kdattr.flags = 0;
    406     kd->kdattr.group = group;
    407     kd->kdattr.attr = attr;
    408     kd->dev_fd = dev_fd;
    409     kd->kda_addr_ormask = addr_ormask;
    410     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
    411     memory_region_ref(kd->mr);
    412 }
    413 
    414 static int compare_u64(const void *a, const void *b)
    415 {
    416     if (*(uint64_t *)a > *(uint64_t *)b) {
    417         return 1;
    418     }
    419     if (*(uint64_t *)a < *(uint64_t *)b) {
    420         return -1;
    421     }
    422     return 0;
    423 }
    424 
    425 /*
    426  * cpreg_values are sorted in ascending order by KVM register ID
    427  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
    428  * the storage for a KVM register by ID with a binary search.
    429  */
    430 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
    431 {
    432     uint64_t *res;
    433 
    434     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
    435                   sizeof(uint64_t), compare_u64);
    436     assert(res);
    437 
    438     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
    439 }
    440 
    441 /* Initialize the ARMCPU cpreg list according to the kernel's
    442  * definition of what CPU registers it knows about (and throw away
    443  * the previous TCG-created cpreg list).
    444  */
    445 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
    446 {
    447     struct kvm_reg_list rl;
    448     struct kvm_reg_list *rlp;
    449     int i, ret, arraylen;
    450     CPUState *cs = CPU(cpu);
    451 
    452     rl.n = 0;
    453     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
    454     if (ret != -E2BIG) {
    455         return ret;
    456     }
    457     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
    458     rlp->n = rl.n;
    459     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
    460     if (ret) {
    461         goto out;
    462     }
    463     /* Sort the list we get back from the kernel, since cpreg_tuples
    464      * must be in strictly ascending order.
    465      */
    466     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
    467 
    468     for (i = 0, arraylen = 0; i < rlp->n; i++) {
    469         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
    470             continue;
    471         }
    472         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
    473         case KVM_REG_SIZE_U32:
    474         case KVM_REG_SIZE_U64:
    475             break;
    476         default:
    477             fprintf(stderr, "Can't handle size of register in kernel list\n");
    478             ret = -EINVAL;
    479             goto out;
    480         }
    481 
    482         arraylen++;
    483     }
    484 
    485     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
    486     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
    487     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
    488                                          arraylen);
    489     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
    490                                         arraylen);
    491     cpu->cpreg_array_len = arraylen;
    492     cpu->cpreg_vmstate_array_len = arraylen;
    493 
    494     for (i = 0, arraylen = 0; i < rlp->n; i++) {
    495         uint64_t regidx = rlp->reg[i];
    496         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
    497             continue;
    498         }
    499         cpu->cpreg_indexes[arraylen] = regidx;
    500         arraylen++;
    501     }
    502     assert(cpu->cpreg_array_len == arraylen);
    503 
    504     if (!write_kvmstate_to_list(cpu)) {
    505         /* Shouldn't happen unless kernel is inconsistent about
    506          * what registers exist.
    507          */
    508         fprintf(stderr, "Initial read of kernel register state failed\n");
    509         ret = -EINVAL;
    510         goto out;
    511     }
    512 
    513 out:
    514     g_free(rlp);
    515     return ret;
    516 }
    517 
    518 bool write_kvmstate_to_list(ARMCPU *cpu)
    519 {
    520     CPUState *cs = CPU(cpu);
    521     int i;
    522     bool ok = true;
    523 
    524     for (i = 0; i < cpu->cpreg_array_len; i++) {
    525         struct kvm_one_reg r;
    526         uint64_t regidx = cpu->cpreg_indexes[i];
    527         uint32_t v32;
    528         int ret;
    529 
    530         r.id = regidx;
    531 
    532         switch (regidx & KVM_REG_SIZE_MASK) {
    533         case KVM_REG_SIZE_U32:
    534             r.addr = (uintptr_t)&v32;
    535             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    536             if (!ret) {
    537                 cpu->cpreg_values[i] = v32;
    538             }
    539             break;
    540         case KVM_REG_SIZE_U64:
    541             r.addr = (uintptr_t)(cpu->cpreg_values + i);
    542             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    543             break;
    544         default:
    545             g_assert_not_reached();
    546         }
    547         if (ret) {
    548             ok = false;
    549         }
    550     }
    551     return ok;
    552 }
    553 
    554 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
    555 {
    556     CPUState *cs = CPU(cpu);
    557     int i;
    558     bool ok = true;
    559 
    560     for (i = 0; i < cpu->cpreg_array_len; i++) {
    561         struct kvm_one_reg r;
    562         uint64_t regidx = cpu->cpreg_indexes[i];
    563         uint32_t v32;
    564         int ret;
    565 
    566         if (kvm_arm_cpreg_level(regidx) > level) {
    567             continue;
    568         }
    569 
    570         r.id = regidx;
    571         switch (regidx & KVM_REG_SIZE_MASK) {
    572         case KVM_REG_SIZE_U32:
    573             v32 = cpu->cpreg_values[i];
    574             r.addr = (uintptr_t)&v32;
    575             break;
    576         case KVM_REG_SIZE_U64:
    577             r.addr = (uintptr_t)(cpu->cpreg_values + i);
    578             break;
    579         default:
    580             g_assert_not_reached();
    581         }
    582         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
    583         if (ret) {
    584             /* We might fail for "unknown register" and also for
    585              * "you tried to set a register which is constant with
    586              * a different value from what it actually contains".
    587              */
    588             ok = false;
    589         }
    590     }
    591     return ok;
    592 }
    593 
    594 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
    595 {
    596     /* KVM virtual time adjustment */
    597     if (cpu->kvm_vtime_dirty) {
    598         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
    599     }
    600 }
    601 
    602 void kvm_arm_cpu_post_load(ARMCPU *cpu)
    603 {
    604     /* KVM virtual time adjustment */
    605     if (cpu->kvm_adjvtime) {
    606         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
    607         cpu->kvm_vtime_dirty = true;
    608     }
    609 }
    610 
    611 void kvm_arm_reset_vcpu(ARMCPU *cpu)
    612 {
    613     int ret;
    614 
    615     /* Re-init VCPU so that all registers are set to
    616      * their respective reset values.
    617      */
    618     ret = kvm_arm_vcpu_init(CPU(cpu));
    619     if (ret < 0) {
    620         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
    621         abort();
    622     }
    623     if (!write_kvmstate_to_list(cpu)) {
    624         fprintf(stderr, "write_kvmstate_to_list failed\n");
    625         abort();
    626     }
    627     /*
    628      * Sync the reset values also into the CPUState. This is necessary
    629      * because the next thing we do will be a kvm_arch_put_registers()
    630      * which will update the list values from the CPUState before copying
    631      * the list values back to KVM. It's OK to ignore failure returns here
    632      * for the same reason we do so in kvm_arch_get_registers().
    633      */
    634     write_list_to_cpustate(cpu);
    635 }
    636 
    637 /*
    638  * Update KVM's MP_STATE based on what QEMU thinks it is
    639  */
    640 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
    641 {
    642     if (cap_has_mp_state) {
    643         struct kvm_mp_state mp_state = {
    644             .mp_state = (cpu->power_state == PSCI_OFF) ?
    645             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
    646         };
    647         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
    648         if (ret) {
    649             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
    650                     __func__, ret, strerror(-ret));
    651             return -1;
    652         }
    653     }
    654 
    655     return 0;
    656 }
    657 
    658 /*
    659  * Sync the KVM MP_STATE into QEMU
    660  */
    661 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
    662 {
    663     if (cap_has_mp_state) {
    664         struct kvm_mp_state mp_state;
    665         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
    666         if (ret) {
    667             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
    668                     __func__, ret, strerror(-ret));
    669             abort();
    670         }
    671         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
    672             PSCI_OFF : PSCI_ON;
    673     }
    674 
    675     return 0;
    676 }
    677 
    678 void kvm_arm_get_virtual_time(CPUState *cs)
    679 {
    680     ARMCPU *cpu = ARM_CPU(cs);
    681     struct kvm_one_reg reg = {
    682         .id = KVM_REG_ARM_TIMER_CNT,
    683         .addr = (uintptr_t)&cpu->kvm_vtime,
    684     };
    685     int ret;
    686 
    687     if (cpu->kvm_vtime_dirty) {
    688         return;
    689     }
    690 
    691     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    692     if (ret) {
    693         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
    694         abort();
    695     }
    696 
    697     cpu->kvm_vtime_dirty = true;
    698 }
    699 
    700 void kvm_arm_put_virtual_time(CPUState *cs)
    701 {
    702     ARMCPU *cpu = ARM_CPU(cs);
    703     struct kvm_one_reg reg = {
    704         .id = KVM_REG_ARM_TIMER_CNT,
    705         .addr = (uintptr_t)&cpu->kvm_vtime,
    706     };
    707     int ret;
    708 
    709     if (!cpu->kvm_vtime_dirty) {
    710         return;
    711     }
    712 
    713     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    714     if (ret) {
    715         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
    716         abort();
    717     }
    718 
    719     cpu->kvm_vtime_dirty = false;
    720 }
    721 
    722 int kvm_put_vcpu_events(ARMCPU *cpu)
    723 {
    724     CPUARMState *env = &cpu->env;
    725     struct kvm_vcpu_events events;
    726     int ret;
    727 
    728     if (!kvm_has_vcpu_events()) {
    729         return 0;
    730     }
    731 
    732     memset(&events, 0, sizeof(events));
    733     events.exception.serror_pending = env->serror.pending;
    734 
    735     /* Inject SError to guest with specified syndrome if host kernel
    736      * supports it, otherwise inject SError without syndrome.
    737      */
    738     if (cap_has_inject_serror_esr) {
    739         events.exception.serror_has_esr = env->serror.has_esr;
    740         events.exception.serror_esr = env->serror.esr;
    741     }
    742 
    743     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
    744     if (ret) {
    745         error_report("failed to put vcpu events");
    746     }
    747 
    748     return ret;
    749 }
    750 
    751 int kvm_get_vcpu_events(ARMCPU *cpu)
    752 {
    753     CPUARMState *env = &cpu->env;
    754     struct kvm_vcpu_events events;
    755     int ret;
    756 
    757     if (!kvm_has_vcpu_events()) {
    758         return 0;
    759     }
    760 
    761     memset(&events, 0, sizeof(events));
    762     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
    763     if (ret) {
    764         error_report("failed to get vcpu events");
    765         return ret;
    766     }
    767 
    768     env->serror.pending = events.exception.serror_pending;
    769     env->serror.has_esr = events.exception.serror_has_esr;
    770     env->serror.esr = events.exception.serror_esr;
    771 
    772     return 0;
    773 }
    774 
    775 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
    776 {
    777     ARMCPU *cpu = ARM_CPU(cs);
    778     CPUARMState *env = &cpu->env;
    779 
    780     if (unlikely(env->ext_dabt_raised)) {
    781         /*
    782          * Verifying that the ext DABT has been properly injected,
    783          * otherwise risking indefinitely re-running the faulting instruction
    784          * Covering a very narrow case for kernels 5.5..5.5.4
    785          * when injected abort was misconfigured to be
    786          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
    787          */
    788         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
    789             unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
    790 
    791             error_report("Data abort exception with no valid ISS generated by "
    792                    "guest memory access. KVM unable to emulate faulting "
    793                    "instruction. Failed to inject an external data abort "
    794                    "into the guest.");
    795             abort();
    796        }
    797        /* Clear the status */
    798        env->ext_dabt_raised = 0;
    799     }
    800 }
    801 
    802 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
    803 {
    804     ARMCPU *cpu;
    805     uint32_t switched_level;
    806 
    807     if (kvm_irqchip_in_kernel()) {
    808         /*
    809          * We only need to sync timer states with user-space interrupt
    810          * controllers, so return early and save cycles if we don't.
    811          */
    812         return MEMTXATTRS_UNSPECIFIED;
    813     }
    814 
    815     cpu = ARM_CPU(cs);
    816 
    817     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
    818     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
    819         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
    820 
    821         qemu_mutex_lock_iothread();
    822 
    823         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
    824             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
    825                          !!(run->s.regs.device_irq_level &
    826                             KVM_ARM_DEV_EL1_VTIMER));
    827             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
    828         }
    829 
    830         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
    831             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
    832                          !!(run->s.regs.device_irq_level &
    833                             KVM_ARM_DEV_EL1_PTIMER));
    834             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
    835         }
    836 
    837         if (switched_level & KVM_ARM_DEV_PMU) {
    838             qemu_set_irq(cpu->pmu_interrupt,
    839                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
    840             switched_level &= ~KVM_ARM_DEV_PMU;
    841         }
    842 
    843         if (switched_level) {
    844             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
    845                           __func__, switched_level);
    846         }
    847 
    848         /* We also mark unknown levels as processed to not waste cycles */
    849         cpu->device_irq_level = run->s.regs.device_irq_level;
    850         qemu_mutex_unlock_iothread();
    851     }
    852 
    853     return MEMTXATTRS_UNSPECIFIED;
    854 }
    855 
    856 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
    857 {
    858     CPUState *cs = opaque;
    859     ARMCPU *cpu = ARM_CPU(cs);
    860 
    861     if (running) {
    862         if (cpu->kvm_adjvtime) {
    863             kvm_arm_put_virtual_time(cs);
    864         }
    865     } else {
    866         if (cpu->kvm_adjvtime) {
    867             kvm_arm_get_virtual_time(cs);
    868         }
    869     }
    870 }
    871 
    872 /**
    873  * kvm_arm_handle_dabt_nisv:
    874  * @cs: CPUState
    875  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
    876  *           ISV bit set to '0b0' -> no valid instruction syndrome
    877  * @fault_ipa: faulting address for the synchronous data abort
    878  *
    879  * Returns: 0 if the exception has been handled, < 0 otherwise
    880  */
    881 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
    882                                     uint64_t fault_ipa)
    883 {
    884     ARMCPU *cpu = ARM_CPU(cs);
    885     CPUARMState *env = &cpu->env;
    886     /*
    887      * Request KVM to inject the external data abort into the guest
    888      */
    889     if (cap_has_inject_ext_dabt) {
    890         struct kvm_vcpu_events events = { };
    891         /*
    892          * The external data abort event will be handled immediately by KVM
    893          * using the address fault that triggered the exit on given VCPU.
    894          * Requesting injection of the external data abort does not rely
    895          * on any other VCPU state. Therefore, in this particular case, the VCPU
    896          * synchronization can be exceptionally skipped.
    897          */
    898         events.exception.ext_dabt_pending = 1;
    899         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
    900         if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
    901             env->ext_dabt_raised = 1;
    902             return 0;
    903         }
    904     } else {
    905         error_report("Data abort exception triggered by guest memory access "
    906                      "at physical address: 0x"  TARGET_FMT_lx,
    907                      (target_ulong)fault_ipa);
    908         error_printf("KVM unable to emulate faulting instruction.\n");
    909     }
    910     return -1;
    911 }
    912 
    913 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
    914 {
    915     int ret = 0;
    916 
    917     switch (run->exit_reason) {
    918     case KVM_EXIT_DEBUG:
    919         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
    920             ret = EXCP_DEBUG;
    921         } /* otherwise return to guest */
    922         break;
    923     case KVM_EXIT_ARM_NISV:
    924         /* External DABT with no valid iss to decode */
    925         ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
    926                                        run->arm_nisv.fault_ipa);
    927         break;
    928     default:
    929         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
    930                       __func__, run->exit_reason);
    931         break;
    932     }
    933     return ret;
    934 }
    935 
    936 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
    937 {
    938     return true;
    939 }
    940 
    941 int kvm_arch_process_async_events(CPUState *cs)
    942 {
    943     return 0;
    944 }
    945 
    946 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
    947 {
    948     if (kvm_sw_breakpoints_active(cs)) {
    949         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
    950     }
    951     if (kvm_arm_hw_debug_active(cs)) {
    952         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
    953         kvm_arm_copy_hw_debug_data(&dbg->arch);
    954     }
    955 }
    956 
    957 void kvm_arch_init_irq_routing(KVMState *s)
    958 {
    959 }
    960 
    961 int kvm_arch_irqchip_create(KVMState *s)
    962 {
    963     if (kvm_kernel_irqchip_split()) {
    964         error_report("-machine kernel_irqchip=split is not supported on ARM.");
    965         exit(1);
    966     }
    967 
    968     /* If we can create the VGIC using the newer device control API, we
    969      * let the device do this when it initializes itself, otherwise we
    970      * fall back to the old API */
    971     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
    972 }
    973 
    974 int kvm_arm_vgic_probe(void)
    975 {
    976     int val = 0;
    977 
    978     if (kvm_create_device(kvm_state,
    979                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
    980         val |= KVM_ARM_VGIC_V3;
    981     }
    982     if (kvm_create_device(kvm_state,
    983                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
    984         val |= KVM_ARM_VGIC_V2;
    985     }
    986     return val;
    987 }
    988 
    989 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
    990 {
    991     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
    992     int cpu_idx1 = cpu % 256;
    993     int cpu_idx2 = cpu / 256;
    994 
    995     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
    996                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
    997 
    998     return kvm_set_irq(kvm_state, kvm_irq, !!level);
    999 }
   1000 
   1001 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
   1002                              uint64_t address, uint32_t data, PCIDevice *dev)
   1003 {
   1004     AddressSpace *as = pci_device_iommu_address_space(dev);
   1005     hwaddr xlat, len, doorbell_gpa;
   1006     MemoryRegionSection mrs;
   1007     MemoryRegion *mr;
   1008 
   1009     if (as == &address_space_memory) {
   1010         return 0;
   1011     }
   1012 
   1013     /* MSI doorbell address is translated by an IOMMU */
   1014 
   1015     RCU_READ_LOCK_GUARD();
   1016 
   1017     mr = address_space_translate(as, address, &xlat, &len, true,
   1018                                  MEMTXATTRS_UNSPECIFIED);
   1019 
   1020     if (!mr) {
   1021         return 1;
   1022     }
   1023 
   1024     mrs = memory_region_find(mr, xlat, 1);
   1025 
   1026     if (!mrs.mr) {
   1027         return 1;
   1028     }
   1029 
   1030     doorbell_gpa = mrs.offset_within_address_space;
   1031     memory_region_unref(mrs.mr);
   1032 
   1033     route->u.msi.address_lo = doorbell_gpa;
   1034     route->u.msi.address_hi = doorbell_gpa >> 32;
   1035 
   1036     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
   1037 
   1038     return 0;
   1039 }
   1040 
   1041 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
   1042                                 int vector, PCIDevice *dev)
   1043 {
   1044     return 0;
   1045 }
   1046 
   1047 int kvm_arch_release_virq_post(int virq)
   1048 {
   1049     return 0;
   1050 }
   1051 
   1052 int kvm_arch_msi_data_to_gsi(uint32_t data)
   1053 {
   1054     return (data - 32) & 0xffff;
   1055 }
   1056 
   1057 bool kvm_arch_cpu_check_are_resettable(void)
   1058 {
   1059     return true;
   1060 }
   1061 
   1062 void kvm_arch_accel_class_init(ObjectClass *oc)
   1063 {
   1064 }