qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

debug_helper.c (36871B)


      1 /*
      2  * ARM debug helpers.
      3  *
      4  * This code is licensed under the GNU GPL v2 or later.
      5  *
      6  * SPDX-License-Identifier: GPL-2.0-or-later
      7  */
      8 #include "qemu/osdep.h"
      9 #include "qemu/log.h"
     10 #include "cpu.h"
     11 #include "internals.h"
     12 #include "cpregs.h"
     13 #include "exec/exec-all.h"
     14 #include "exec/helper-proto.h"
     15 
     16 
     17 /* Return the Exception Level targeted by debug exceptions. */
     18 static int arm_debug_target_el(CPUARMState *env)
     19 {
     20     bool secure = arm_is_secure(env);
     21     bool route_to_el2 = false;
     22 
     23     if (arm_is_el2_enabled(env)) {
     24         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
     25                        env->cp15.mdcr_el2 & MDCR_TDE;
     26     }
     27 
     28     if (route_to_el2) {
     29         return 2;
     30     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
     31                !arm_el_is_aa64(env, 3) && secure) {
     32         return 3;
     33     } else {
     34         return 1;
     35     }
     36 }
     37 
     38 /*
     39  * Raise an exception to the debug target el.
     40  * Modify syndrome to indicate when origin and target EL are the same.
     41  */
     42 G_NORETURN static void
     43 raise_exception_debug(CPUARMState *env, uint32_t excp, uint32_t syndrome)
     44 {
     45     int debug_el = arm_debug_target_el(env);
     46     int cur_el = arm_current_el(env);
     47 
     48     /*
     49      * If singlestep is targeting a lower EL than the current one, then
     50      * DisasContext.ss_active must be false and we can never get here.
     51      * Similarly for watchpoint and breakpoint matches.
     52      */
     53     assert(debug_el >= cur_el);
     54     syndrome |= (debug_el == cur_el) << ARM_EL_EC_SHIFT;
     55     raise_exception(env, excp, syndrome, debug_el);
     56 }
     57 
     58 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
     59 static bool aa64_generate_debug_exceptions(CPUARMState *env)
     60 {
     61     int cur_el = arm_current_el(env);
     62     int debug_el;
     63 
     64     if (cur_el == 3) {
     65         return false;
     66     }
     67 
     68     /* MDCR_EL3.SDD disables debug events from Secure state */
     69     if (arm_is_secure_below_el3(env)
     70         && extract32(env->cp15.mdcr_el3, 16, 1)) {
     71         return false;
     72     }
     73 
     74     /*
     75      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
     76      * while not masking the (D)ebug bit in DAIF.
     77      */
     78     debug_el = arm_debug_target_el(env);
     79 
     80     if (cur_el == debug_el) {
     81         return extract32(env->cp15.mdscr_el1, 13, 1)
     82             && !(env->daif & PSTATE_D);
     83     }
     84 
     85     /* Otherwise the debug target needs to be a higher EL */
     86     return debug_el > cur_el;
     87 }
     88 
     89 static bool aa32_generate_debug_exceptions(CPUARMState *env)
     90 {
     91     int el = arm_current_el(env);
     92 
     93     if (el == 0 && arm_el_is_aa64(env, 1)) {
     94         return aa64_generate_debug_exceptions(env);
     95     }
     96 
     97     if (arm_is_secure(env)) {
     98         int spd;
     99 
    100         if (el == 0 && (env->cp15.sder & 1)) {
    101             /*
    102              * SDER.SUIDEN means debug exceptions from Secure EL0
    103              * are always enabled. Otherwise they are controlled by
    104              * SDCR.SPD like those from other Secure ELs.
    105              */
    106             return true;
    107         }
    108 
    109         spd = extract32(env->cp15.mdcr_el3, 14, 2);
    110         switch (spd) {
    111         case 1:
    112             /* SPD == 0b01 is reserved, but behaves as 0b00. */
    113         case 0:
    114             /*
    115              * For 0b00 we return true if external secure invasive debug
    116              * is enabled. On real hardware this is controlled by external
    117              * signals to the core. QEMU always permits debug, and behaves
    118              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
    119              */
    120             return true;
    121         case 2:
    122             return false;
    123         case 3:
    124             return true;
    125         }
    126     }
    127 
    128     return el != 2;
    129 }
    130 
    131 /*
    132  * Return true if debugging exceptions are currently enabled.
    133  * This corresponds to what in ARM ARM pseudocode would be
    134  *    if UsingAArch32() then
    135  *        return AArch32.GenerateDebugExceptions()
    136  *    else
    137  *        return AArch64.GenerateDebugExceptions()
    138  * We choose to push the if() down into this function for clarity,
    139  * since the pseudocode has it at all callsites except for the one in
    140  * CheckSoftwareStep(), where it is elided because both branches would
    141  * always return the same value.
    142  */
    143 bool arm_generate_debug_exceptions(CPUARMState *env)
    144 {
    145     if ((env->cp15.oslsr_el1 & 1) || (env->cp15.osdlr_el1 & 1)) {
    146         return false;
    147     }
    148     if (is_a64(env)) {
    149         return aa64_generate_debug_exceptions(env);
    150     } else {
    151         return aa32_generate_debug_exceptions(env);
    152     }
    153 }
    154 
    155 /*
    156  * Is single-stepping active? (Note that the "is EL_D AArch64?" check
    157  * implicitly means this always returns false in pre-v8 CPUs.)
    158  */
    159 bool arm_singlestep_active(CPUARMState *env)
    160 {
    161     return extract32(env->cp15.mdscr_el1, 0, 1)
    162         && arm_el_is_aa64(env, arm_debug_target_el(env))
    163         && arm_generate_debug_exceptions(env);
    164 }
    165 
    166 /* Return true if the linked breakpoint entry lbn passes its checks */
    167 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
    168 {
    169     CPUARMState *env = &cpu->env;
    170     uint64_t bcr = env->cp15.dbgbcr[lbn];
    171     int brps = arm_num_brps(cpu);
    172     int ctx_cmps = arm_num_ctx_cmps(cpu);
    173     int bt;
    174     uint32_t contextidr;
    175     uint64_t hcr_el2;
    176 
    177     /*
    178      * Links to unimplemented or non-context aware breakpoints are
    179      * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
    180      * as if linked to an UNKNOWN context-aware breakpoint (in which
    181      * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
    182      * We choose the former.
    183      */
    184     if (lbn >= brps || lbn < (brps - ctx_cmps)) {
    185         return false;
    186     }
    187 
    188     bcr = env->cp15.dbgbcr[lbn];
    189 
    190     if (extract64(bcr, 0, 1) == 0) {
    191         /* Linked breakpoint disabled : generate no events */
    192         return false;
    193     }
    194 
    195     bt = extract64(bcr, 20, 4);
    196     hcr_el2 = arm_hcr_el2_eff(env);
    197 
    198     switch (bt) {
    199     case 3: /* linked context ID match */
    200         switch (arm_current_el(env)) {
    201         default:
    202             /* Context matches never fire in AArch64 EL3 */
    203             return false;
    204         case 2:
    205             if (!(hcr_el2 & HCR_E2H)) {
    206                 /* Context matches never fire in EL2 without E2H enabled. */
    207                 return false;
    208             }
    209             contextidr = env->cp15.contextidr_el[2];
    210             break;
    211         case 1:
    212             contextidr = env->cp15.contextidr_el[1];
    213             break;
    214         case 0:
    215             if ((hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
    216                 contextidr = env->cp15.contextidr_el[2];
    217             } else {
    218                 contextidr = env->cp15.contextidr_el[1];
    219             }
    220             break;
    221         }
    222         break;
    223 
    224     case 7:  /* linked contextidr_el1 match */
    225         contextidr = env->cp15.contextidr_el[1];
    226         break;
    227     case 13: /* linked contextidr_el2 match */
    228         contextidr = env->cp15.contextidr_el[2];
    229         break;
    230 
    231     case 9: /* linked VMID match (reserved if no EL2) */
    232     case 11: /* linked context ID and VMID match (reserved if no EL2) */
    233     case 15: /* linked full context ID match */
    234     default:
    235         /*
    236          * Links to Unlinked context breakpoints must generate no
    237          * events; we choose to do the same for reserved values too.
    238          */
    239         return false;
    240     }
    241 
    242     /*
    243      * We match the whole register even if this is AArch32 using the
    244      * short descriptor format (in which case it holds both PROCID and ASID),
    245      * since we don't implement the optional v7 context ID masking.
    246      */
    247     return contextidr == (uint32_t)env->cp15.dbgbvr[lbn];
    248 }
    249 
    250 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
    251 {
    252     CPUARMState *env = &cpu->env;
    253     uint64_t cr;
    254     int pac, hmc, ssc, wt, lbn;
    255     /*
    256      * Note that for watchpoints the check is against the CPU security
    257      * state, not the S/NS attribute on the offending data access.
    258      */
    259     bool is_secure = arm_is_secure(env);
    260     int access_el = arm_current_el(env);
    261 
    262     if (is_wp) {
    263         CPUWatchpoint *wp = env->cpu_watchpoint[n];
    264 
    265         if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
    266             return false;
    267         }
    268         cr = env->cp15.dbgwcr[n];
    269         if (wp->hitattrs.user) {
    270             /*
    271              * The LDRT/STRT/LDT/STT "unprivileged access" instructions should
    272              * match watchpoints as if they were accesses done at EL0, even if
    273              * the CPU is at EL1 or higher.
    274              */
    275             access_el = 0;
    276         }
    277     } else {
    278         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
    279 
    280         if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
    281             return false;
    282         }
    283         cr = env->cp15.dbgbcr[n];
    284     }
    285     /*
    286      * The WATCHPOINT_HIT flag guarantees us that the watchpoint is
    287      * enabled and that the address and access type match; for breakpoints
    288      * we know the address matched; check the remaining fields, including
    289      * linked breakpoints. We rely on WCR and BCR having the same layout
    290      * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
    291      * Note that some combinations of {PAC, HMC, SSC} are reserved and
    292      * must act either like some valid combination or as if the watchpoint
    293      * were disabled. We choose the former, and use this together with
    294      * the fact that EL3 must always be Secure and EL2 must always be
    295      * Non-Secure to simplify the code slightly compared to the full
    296      * table in the ARM ARM.
    297      */
    298     pac = FIELD_EX64(cr, DBGWCR, PAC);
    299     hmc = FIELD_EX64(cr, DBGWCR, HMC);
    300     ssc = FIELD_EX64(cr, DBGWCR, SSC);
    301 
    302     switch (ssc) {
    303     case 0:
    304         break;
    305     case 1:
    306     case 3:
    307         if (is_secure) {
    308             return false;
    309         }
    310         break;
    311     case 2:
    312         if (!is_secure) {
    313             return false;
    314         }
    315         break;
    316     }
    317 
    318     switch (access_el) {
    319     case 3:
    320     case 2:
    321         if (!hmc) {
    322             return false;
    323         }
    324         break;
    325     case 1:
    326         if (extract32(pac, 0, 1) == 0) {
    327             return false;
    328         }
    329         break;
    330     case 0:
    331         if (extract32(pac, 1, 1) == 0) {
    332             return false;
    333         }
    334         break;
    335     default:
    336         g_assert_not_reached();
    337     }
    338 
    339     wt = FIELD_EX64(cr, DBGWCR, WT);
    340     lbn = FIELD_EX64(cr, DBGWCR, LBN);
    341 
    342     if (wt && !linked_bp_matches(cpu, lbn)) {
    343         return false;
    344     }
    345 
    346     return true;
    347 }
    348 
    349 static bool check_watchpoints(ARMCPU *cpu)
    350 {
    351     CPUARMState *env = &cpu->env;
    352     int n;
    353 
    354     /*
    355      * If watchpoints are disabled globally or we can't take debug
    356      * exceptions here then watchpoint firings are ignored.
    357      */
    358     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
    359         || !arm_generate_debug_exceptions(env)) {
    360         return false;
    361     }
    362 
    363     for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
    364         if (bp_wp_matches(cpu, n, true)) {
    365             return true;
    366         }
    367     }
    368     return false;
    369 }
    370 
    371 bool arm_debug_check_breakpoint(CPUState *cs)
    372 {
    373     ARMCPU *cpu = ARM_CPU(cs);
    374     CPUARMState *env = &cpu->env;
    375     target_ulong pc;
    376     int n;
    377 
    378     /*
    379      * If breakpoints are disabled globally or we can't take debug
    380      * exceptions here then breakpoint firings are ignored.
    381      */
    382     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
    383         || !arm_generate_debug_exceptions(env)) {
    384         return false;
    385     }
    386 
    387     /*
    388      * Single-step exceptions have priority over breakpoint exceptions.
    389      * If single-step state is active-pending, suppress the bp.
    390      */
    391     if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
    392         return false;
    393     }
    394 
    395     /*
    396      * PC alignment faults have priority over breakpoint exceptions.
    397      */
    398     pc = is_a64(env) ? env->pc : env->regs[15];
    399     if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
    400         return false;
    401     }
    402 
    403     /*
    404      * Instruction aborts have priority over breakpoint exceptions.
    405      * TODO: We would need to look up the page for PC and verify that
    406      * it is present and executable.
    407      */
    408 
    409     for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
    410         if (bp_wp_matches(cpu, n, false)) {
    411             return true;
    412         }
    413     }
    414     return false;
    415 }
    416 
    417 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
    418 {
    419     /*
    420      * Called by core code when a CPU watchpoint fires; need to check if this
    421      * is also an architectural watchpoint match.
    422      */
    423     ARMCPU *cpu = ARM_CPU(cs);
    424 
    425     return check_watchpoints(cpu);
    426 }
    427 
    428 /*
    429  * Return the FSR value for a debug exception (watchpoint, hardware
    430  * breakpoint or BKPT insn) targeting the specified exception level.
    431  */
    432 static uint32_t arm_debug_exception_fsr(CPUARMState *env)
    433 {
    434     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
    435     int target_el = arm_debug_target_el(env);
    436     bool using_lpae = false;
    437 
    438     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
    439         using_lpae = true;
    440     } else {
    441         if (arm_feature(env, ARM_FEATURE_LPAE) &&
    442             (env->cp15.tcr_el[target_el] & TTBCR_EAE)) {
    443             using_lpae = true;
    444         }
    445     }
    446 
    447     if (using_lpae) {
    448         return arm_fi_to_lfsc(&fi);
    449     } else {
    450         return arm_fi_to_sfsc(&fi);
    451     }
    452 }
    453 
    454 void arm_debug_excp_handler(CPUState *cs)
    455 {
    456     /*
    457      * Called by core code when a watchpoint or breakpoint fires;
    458      * need to check which one and raise the appropriate exception.
    459      */
    460     ARMCPU *cpu = ARM_CPU(cs);
    461     CPUARMState *env = &cpu->env;
    462     CPUWatchpoint *wp_hit = cs->watchpoint_hit;
    463 
    464     if (wp_hit) {
    465         if (wp_hit->flags & BP_CPU) {
    466             bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
    467 
    468             cs->watchpoint_hit = NULL;
    469 
    470             env->exception.fsr = arm_debug_exception_fsr(env);
    471             env->exception.vaddress = wp_hit->hitaddr;
    472             raise_exception_debug(env, EXCP_DATA_ABORT,
    473                                   syn_watchpoint(0, 0, wnr));
    474         }
    475     } else {
    476         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
    477 
    478         /*
    479          * (1) GDB breakpoints should be handled first.
    480          * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
    481          * since singlestep is also done by generating a debug internal
    482          * exception.
    483          */
    484         if (cpu_breakpoint_test(cs, pc, BP_GDB)
    485             || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
    486             return;
    487         }
    488 
    489         env->exception.fsr = arm_debug_exception_fsr(env);
    490         /*
    491          * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
    492          * values to the guest that it shouldn't be able to see at its
    493          * exception/security level.
    494          */
    495         env->exception.vaddress = 0;
    496         raise_exception_debug(env, EXCP_PREFETCH_ABORT, syn_breakpoint(0));
    497     }
    498 }
    499 
    500 /*
    501  * Raise an EXCP_BKPT with the specified syndrome register value,
    502  * targeting the correct exception level for debug exceptions.
    503  */
    504 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
    505 {
    506     int debug_el = arm_debug_target_el(env);
    507     int cur_el = arm_current_el(env);
    508 
    509     /* FSR will only be used if the debug target EL is AArch32. */
    510     env->exception.fsr = arm_debug_exception_fsr(env);
    511     /*
    512      * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
    513      * values to the guest that it shouldn't be able to see at its
    514      * exception/security level.
    515      */
    516     env->exception.vaddress = 0;
    517     /*
    518      * Other kinds of architectural debug exception are ignored if
    519      * they target an exception level below the current one (in QEMU
    520      * this is checked by arm_generate_debug_exceptions()). Breakpoint
    521      * instructions are special because they always generate an exception
    522      * to somewhere: if they can't go to the configured debug exception
    523      * level they are taken to the current exception level.
    524      */
    525     if (debug_el < cur_el) {
    526         debug_el = cur_el;
    527     }
    528     raise_exception(env, EXCP_BKPT, syndrome, debug_el);
    529 }
    530 
    531 void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
    532 {
    533     raise_exception_debug(env, EXCP_UDEF, syndrome);
    534 }
    535 
    536 /*
    537  * Check for traps to "powerdown debug" registers, which are controlled
    538  * by MDCR.TDOSA
    539  */
    540 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
    541                                    bool isread)
    542 {
    543     int el = arm_current_el(env);
    544     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
    545     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
    546         (arm_hcr_el2_eff(env) & HCR_TGE);
    547 
    548     if (el < 2 && mdcr_el2_tdosa) {
    549         return CP_ACCESS_TRAP_EL2;
    550     }
    551     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
    552         return CP_ACCESS_TRAP_EL3;
    553     }
    554     return CP_ACCESS_OK;
    555 }
    556 
    557 /*
    558  * Check for traps to "debug ROM" registers, which are controlled
    559  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
    560  */
    561 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
    562                                   bool isread)
    563 {
    564     int el = arm_current_el(env);
    565     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
    566     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
    567         (arm_hcr_el2_eff(env) & HCR_TGE);
    568 
    569     if (el < 2 && mdcr_el2_tdra) {
    570         return CP_ACCESS_TRAP_EL2;
    571     }
    572     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
    573         return CP_ACCESS_TRAP_EL3;
    574     }
    575     return CP_ACCESS_OK;
    576 }
    577 
    578 /*
    579  * Check for traps to general debug registers, which are controlled
    580  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
    581  */
    582 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
    583                                   bool isread)
    584 {
    585     int el = arm_current_el(env);
    586     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
    587     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
    588         (arm_hcr_el2_eff(env) & HCR_TGE);
    589 
    590     if (el < 2 && mdcr_el2_tda) {
    591         return CP_ACCESS_TRAP_EL2;
    592     }
    593     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
    594         return CP_ACCESS_TRAP_EL3;
    595     }
    596     return CP_ACCESS_OK;
    597 }
    598 
    599 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
    600                         uint64_t value)
    601 {
    602     /*
    603      * Writes to OSLAR_EL1 may update the OS lock status, which can be
    604      * read via a bit in OSLSR_EL1.
    605      */
    606     int oslock;
    607 
    608     if (ri->state == ARM_CP_STATE_AA32) {
    609         oslock = (value == 0xC5ACCE55);
    610     } else {
    611         oslock = value & 1;
    612     }
    613 
    614     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
    615 }
    616 
    617 static void osdlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
    618                         uint64_t value)
    619 {
    620     ARMCPU *cpu = env_archcpu(env);
    621     /*
    622      * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
    623      * implemented this is RAZ/WI.
    624      */
    625     if(arm_feature(env, ARM_FEATURE_AARCH64)
    626        ? cpu_isar_feature(aa64_doublelock, cpu)
    627        : cpu_isar_feature(aa32_doublelock, cpu)) {
    628         env->cp15.osdlr_el1 = value & 1;
    629     }
    630 }
    631 
    632 static const ARMCPRegInfo debug_cp_reginfo[] = {
    633     /*
    634      * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
    635      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
    636      * unlike DBGDRAR it is never accessible from EL0.
    637      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
    638      * accessor.
    639      */
    640     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
    641       .access = PL0_R, .accessfn = access_tdra,
    642       .type = ARM_CP_CONST, .resetvalue = 0 },
    643     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
    644       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
    645       .access = PL1_R, .accessfn = access_tdra,
    646       .type = ARM_CP_CONST, .resetvalue = 0 },
    647     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
    648       .access = PL0_R, .accessfn = access_tdra,
    649       .type = ARM_CP_CONST, .resetvalue = 0 },
    650     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
    651     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
    652       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
    653       .access = PL1_RW, .accessfn = access_tda,
    654       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
    655       .resetvalue = 0 },
    656     /*
    657      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
    658      * Debug Communication Channel is not implemented.
    659      */
    660     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
    661       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
    662       .access = PL0_R, .accessfn = access_tda,
    663       .type = ARM_CP_CONST, .resetvalue = 0 },
    664     /*
    665      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
    666      * it is unlikely a guest will care.
    667      * We don't implement the configurable EL0 access.
    668      */
    669     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
    670       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
    671       .type = ARM_CP_ALIAS,
    672       .access = PL1_R, .accessfn = access_tda,
    673       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
    674     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
    675       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
    676       .access = PL1_W, .type = ARM_CP_NO_RAW,
    677       .accessfn = access_tdosa,
    678       .writefn = oslar_write },
    679     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
    680       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
    681       .access = PL1_R, .resetvalue = 10,
    682       .accessfn = access_tdosa,
    683       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
    684     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
    685     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
    686       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
    687       .access = PL1_RW, .accessfn = access_tdosa,
    688       .writefn = osdlr_write,
    689       .fieldoffset = offsetof(CPUARMState, cp15.osdlr_el1) },
    690     /*
    691      * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
    692      * implement vector catch debug events yet.
    693      */
    694     { .name = "DBGVCR",
    695       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
    696       .access = PL1_RW, .accessfn = access_tda,
    697       .type = ARM_CP_NOP },
    698     /*
    699      * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
    700      * to save and restore a 32-bit guest's DBGVCR)
    701      */
    702     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
    703       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
    704       .access = PL2_RW, .accessfn = access_tda,
    705       .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
    706     /*
    707      * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
    708      * Channel but Linux may try to access this register. The 32-bit
    709      * alias is DBGDCCINT.
    710      */
    711     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
    712       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
    713       .access = PL1_RW, .accessfn = access_tda,
    714       .type = ARM_CP_NOP },
    715 };
    716 
    717 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
    718     /* 64 bit access versions of the (dummy) debug registers */
    719     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
    720       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
    721     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
    722       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
    723 };
    724 
    725 void hw_watchpoint_update(ARMCPU *cpu, int n)
    726 {
    727     CPUARMState *env = &cpu->env;
    728     vaddr len = 0;
    729     vaddr wvr = env->cp15.dbgwvr[n];
    730     uint64_t wcr = env->cp15.dbgwcr[n];
    731     int mask;
    732     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
    733 
    734     if (env->cpu_watchpoint[n]) {
    735         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
    736         env->cpu_watchpoint[n] = NULL;
    737     }
    738 
    739     if (!FIELD_EX64(wcr, DBGWCR, E)) {
    740         /* E bit clear : watchpoint disabled */
    741         return;
    742     }
    743 
    744     switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
    745     case 0:
    746         /* LSC 00 is reserved and must behave as if the wp is disabled */
    747         return;
    748     case 1:
    749         flags |= BP_MEM_READ;
    750         break;
    751     case 2:
    752         flags |= BP_MEM_WRITE;
    753         break;
    754     case 3:
    755         flags |= BP_MEM_ACCESS;
    756         break;
    757     }
    758 
    759     /*
    760      * Attempts to use both MASK and BAS fields simultaneously are
    761      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
    762      * thus generating a watchpoint for every byte in the masked region.
    763      */
    764     mask = FIELD_EX64(wcr, DBGWCR, MASK);
    765     if (mask == 1 || mask == 2) {
    766         /*
    767          * Reserved values of MASK; we must act as if the mask value was
    768          * some non-reserved value, or as if the watchpoint were disabled.
    769          * We choose the latter.
    770          */
    771         return;
    772     } else if (mask) {
    773         /* Watchpoint covers an aligned area up to 2GB in size */
    774         len = 1ULL << mask;
    775         /*
    776          * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
    777          * whether the watchpoint fires when the unmasked bits match; we opt
    778          * to generate the exceptions.
    779          */
    780         wvr &= ~(len - 1);
    781     } else {
    782         /* Watchpoint covers bytes defined by the byte address select bits */
    783         int bas = FIELD_EX64(wcr, DBGWCR, BAS);
    784         int basstart;
    785 
    786         if (extract64(wvr, 2, 1)) {
    787             /*
    788              * Deprecated case of an only 4-aligned address. BAS[7:4] are
    789              * ignored, and BAS[3:0] define which bytes to watch.
    790              */
    791             bas &= 0xf;
    792         }
    793 
    794         if (bas == 0) {
    795             /* This must act as if the watchpoint is disabled */
    796             return;
    797         }
    798 
    799         /*
    800          * The BAS bits are supposed to be programmed to indicate a contiguous
    801          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
    802          * we fire for each byte in the word/doubleword addressed by the WVR.
    803          * We choose to ignore any non-zero bits after the first range of 1s.
    804          */
    805         basstart = ctz32(bas);
    806         len = cto32(bas >> basstart);
    807         wvr += basstart;
    808     }
    809 
    810     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
    811                           &env->cpu_watchpoint[n]);
    812 }
    813 
    814 void hw_watchpoint_update_all(ARMCPU *cpu)
    815 {
    816     int i;
    817     CPUARMState *env = &cpu->env;
    818 
    819     /*
    820      * Completely clear out existing QEMU watchpoints and our array, to
    821      * avoid possible stale entries following migration load.
    822      */
    823     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
    824     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
    825 
    826     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
    827         hw_watchpoint_update(cpu, i);
    828     }
    829 }
    830 
    831 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
    832                          uint64_t value)
    833 {
    834     ARMCPU *cpu = env_archcpu(env);
    835     int i = ri->crm;
    836 
    837     /*
    838      * Bits [1:0] are RES0.
    839      *
    840      * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
    841      * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
    842      * they contain the value written.  It is CONSTRAINED UNPREDICTABLE
    843      * whether the RESS bits are ignored when comparing an address.
    844      *
    845      * Therefore we are allowed to compare the entire register, which lets
    846      * us avoid considering whether or not FEAT_LVA is actually enabled.
    847      */
    848     value &= ~3ULL;
    849 
    850     raw_write(env, ri, value);
    851     hw_watchpoint_update(cpu, i);
    852 }
    853 
    854 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
    855                          uint64_t value)
    856 {
    857     ARMCPU *cpu = env_archcpu(env);
    858     int i = ri->crm;
    859 
    860     raw_write(env, ri, value);
    861     hw_watchpoint_update(cpu, i);
    862 }
    863 
    864 void hw_breakpoint_update(ARMCPU *cpu, int n)
    865 {
    866     CPUARMState *env = &cpu->env;
    867     uint64_t bvr = env->cp15.dbgbvr[n];
    868     uint64_t bcr = env->cp15.dbgbcr[n];
    869     vaddr addr;
    870     int bt;
    871     int flags = BP_CPU;
    872 
    873     if (env->cpu_breakpoint[n]) {
    874         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
    875         env->cpu_breakpoint[n] = NULL;
    876     }
    877 
    878     if (!extract64(bcr, 0, 1)) {
    879         /* E bit clear : watchpoint disabled */
    880         return;
    881     }
    882 
    883     bt = extract64(bcr, 20, 4);
    884 
    885     switch (bt) {
    886     case 4: /* unlinked address mismatch (reserved if AArch64) */
    887     case 5: /* linked address mismatch (reserved if AArch64) */
    888         qemu_log_mask(LOG_UNIMP,
    889                       "arm: address mismatch breakpoint types not implemented\n");
    890         return;
    891     case 0: /* unlinked address match */
    892     case 1: /* linked address match */
    893     {
    894         /*
    895          * Bits [1:0] are RES0.
    896          *
    897          * It is IMPLEMENTATION DEFINED whether bits [63:49]
    898          * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
    899          * of the VA field ([48] or [52] for FEAT_LVA), or whether the
    900          * value is read as written.  It is CONSTRAINED UNPREDICTABLE
    901          * whether the RESS bits are ignored when comparing an address.
    902          * Therefore we are allowed to compare the entire register, which
    903          * lets us avoid considering whether FEAT_LVA is actually enabled.
    904          *
    905          * The BAS field is used to allow setting breakpoints on 16-bit
    906          * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
    907          * a bp will fire if the addresses covered by the bp and the addresses
    908          * covered by the insn overlap but the insn doesn't start at the
    909          * start of the bp address range. We choose to require the insn and
    910          * the bp to have the same address. The constraints on writing to
    911          * BAS enforced in dbgbcr_write mean we have only four cases:
    912          *  0b0000  => no breakpoint
    913          *  0b0011  => breakpoint on addr
    914          *  0b1100  => breakpoint on addr + 2
    915          *  0b1111  => breakpoint on addr
    916          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
    917          */
    918         int bas = extract64(bcr, 5, 4);
    919         addr = bvr & ~3ULL;
    920         if (bas == 0) {
    921             return;
    922         }
    923         if (bas == 0xc) {
    924             addr += 2;
    925         }
    926         break;
    927     }
    928     case 2: /* unlinked context ID match */
    929     case 8: /* unlinked VMID match (reserved if no EL2) */
    930     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
    931         qemu_log_mask(LOG_UNIMP,
    932                       "arm: unlinked context breakpoint types not implemented\n");
    933         return;
    934     case 9: /* linked VMID match (reserved if no EL2) */
    935     case 11: /* linked context ID and VMID match (reserved if no EL2) */
    936     case 3: /* linked context ID match */
    937     default:
    938         /*
    939          * We must generate no events for Linked context matches (unless
    940          * they are linked to by some other bp/wp, which is handled in
    941          * updates for the linking bp/wp). We choose to also generate no events
    942          * for reserved values.
    943          */
    944         return;
    945     }
    946 
    947     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
    948 }
    949 
    950 void hw_breakpoint_update_all(ARMCPU *cpu)
    951 {
    952     int i;
    953     CPUARMState *env = &cpu->env;
    954 
    955     /*
    956      * Completely clear out existing QEMU breakpoints and our array, to
    957      * avoid possible stale entries following migration load.
    958      */
    959     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
    960     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
    961 
    962     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
    963         hw_breakpoint_update(cpu, i);
    964     }
    965 }
    966 
    967 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
    968                          uint64_t value)
    969 {
    970     ARMCPU *cpu = env_archcpu(env);
    971     int i = ri->crm;
    972 
    973     raw_write(env, ri, value);
    974     hw_breakpoint_update(cpu, i);
    975 }
    976 
    977 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
    978                          uint64_t value)
    979 {
    980     ARMCPU *cpu = env_archcpu(env);
    981     int i = ri->crm;
    982 
    983     /*
    984      * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
    985      * copy of BAS[0].
    986      */
    987     value = deposit64(value, 6, 1, extract64(value, 5, 1));
    988     value = deposit64(value, 8, 1, extract64(value, 7, 1));
    989 
    990     raw_write(env, ri, value);
    991     hw_breakpoint_update(cpu, i);
    992 }
    993 
    994 void define_debug_regs(ARMCPU *cpu)
    995 {
    996     /*
    997      * Define v7 and v8 architectural debug registers.
    998      * These are just dummy implementations for now.
    999      */
   1000     int i;
   1001     int wrps, brps, ctx_cmps;
   1002 
   1003     /*
   1004      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
   1005      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
   1006      * the register must not exist for this cpu.
   1007      */
   1008     if (cpu->isar.dbgdidr != 0) {
   1009         ARMCPRegInfo dbgdidr = {
   1010             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
   1011             .opc1 = 0, .opc2 = 0,
   1012             .access = PL0_R, .accessfn = access_tda,
   1013             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
   1014         };
   1015         define_one_arm_cp_reg(cpu, &dbgdidr);
   1016     }
   1017 
   1018     /*
   1019      * DBGDEVID is present in the v7 debug architecture if
   1020      * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
   1021      * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
   1022      * from v7.1 of the debug architecture. Because no fields have yet
   1023      * been defined in DBGDEVID2 (and quite possibly none will ever
   1024      * be) we don't define an ARMISARegisters field for it.
   1025      * These registers exist only if EL1 can use AArch32, but that
   1026      * happens naturally because they are only PL1 accessible anyway.
   1027      */
   1028     if (extract32(cpu->isar.dbgdidr, 15, 1)) {
   1029         ARMCPRegInfo dbgdevid = {
   1030             .name = "DBGDEVID",
   1031             .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 2, .crn = 7,
   1032             .access = PL1_R, .accessfn = access_tda,
   1033             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid,
   1034         };
   1035         define_one_arm_cp_reg(cpu, &dbgdevid);
   1036     }
   1037     if (cpu_isar_feature(aa32_debugv7p1, cpu)) {
   1038         ARMCPRegInfo dbgdevid12[] = {
   1039             {
   1040                 .name = "DBGDEVID1",
   1041                 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 1, .crn = 7,
   1042                 .access = PL1_R, .accessfn = access_tda,
   1043                 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid1,
   1044             }, {
   1045                 .name = "DBGDEVID2",
   1046                 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 0, .crn = 7,
   1047                 .access = PL1_R, .accessfn = access_tda,
   1048                 .type = ARM_CP_CONST, .resetvalue = 0,
   1049             },
   1050         };
   1051         define_arm_cp_regs(cpu, dbgdevid12);
   1052     }
   1053 
   1054     brps = arm_num_brps(cpu);
   1055     wrps = arm_num_wrps(cpu);
   1056     ctx_cmps = arm_num_ctx_cmps(cpu);
   1057 
   1058     assert(ctx_cmps <= brps);
   1059 
   1060     define_arm_cp_regs(cpu, debug_cp_reginfo);
   1061 
   1062     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
   1063         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
   1064     }
   1065 
   1066     for (i = 0; i < brps; i++) {
   1067         char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
   1068         char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
   1069         ARMCPRegInfo dbgregs[] = {
   1070             { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
   1071               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
   1072               .access = PL1_RW, .accessfn = access_tda,
   1073               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
   1074               .writefn = dbgbvr_write, .raw_writefn = raw_write
   1075             },
   1076             { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
   1077               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
   1078               .access = PL1_RW, .accessfn = access_tda,
   1079               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
   1080               .writefn = dbgbcr_write, .raw_writefn = raw_write
   1081             },
   1082         };
   1083         define_arm_cp_regs(cpu, dbgregs);
   1084         g_free(dbgbvr_el1_name);
   1085         g_free(dbgbcr_el1_name);
   1086     }
   1087 
   1088     for (i = 0; i < wrps; i++) {
   1089         char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
   1090         char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
   1091         ARMCPRegInfo dbgregs[] = {
   1092             { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
   1093               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
   1094               .access = PL1_RW, .accessfn = access_tda,
   1095               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
   1096               .writefn = dbgwvr_write, .raw_writefn = raw_write
   1097             },
   1098             { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
   1099               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
   1100               .access = PL1_RW, .accessfn = access_tda,
   1101               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
   1102               .writefn = dbgwcr_write, .raw_writefn = raw_write
   1103             },
   1104         };
   1105         define_arm_cp_regs(cpu, dbgregs);
   1106         g_free(dbgwvr_el1_name);
   1107         g_free(dbgwcr_el1_name);
   1108     }
   1109 }
   1110 
   1111 #if !defined(CONFIG_USER_ONLY)
   1112 
   1113 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
   1114 {
   1115     ARMCPU *cpu = ARM_CPU(cs);
   1116     CPUARMState *env = &cpu->env;
   1117 
   1118     /*
   1119      * In BE32 system mode, target memory is stored byteswapped (on a
   1120      * little-endian host system), and by the time we reach here (via an
   1121      * opcode helper) the addresses of subword accesses have been adjusted
   1122      * to account for that, which means that watchpoints will not match.
   1123      * Undo the adjustment here.
   1124      */
   1125     if (arm_sctlr_b(env)) {
   1126         if (len == 1) {
   1127             addr ^= 3;
   1128         } else if (len == 2) {
   1129             addr ^= 2;
   1130         }
   1131     }
   1132 
   1133     return addr;
   1134 }
   1135 
   1136 #endif