qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

cpu.c (76703B)


      1 /*
      2  * QEMU ARM CPU
      3  *
      4  * Copyright (c) 2012 SUSE LINUX Products GmbH
      5  *
      6  * This program is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU General Public License
      8  * as published by the Free Software Foundation; either version 2
      9  * of the License, or (at your option) any later version.
     10  *
     11  * This program is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14  * GNU General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU General Public License
     17  * along with this program; if not, see
     18  * <http://www.gnu.org/licenses/gpl-2.0.html>
     19  */
     20 
     21 #include "qemu/osdep.h"
     22 #include "qemu/qemu-print.h"
     23 #include "qemu/timer.h"
     24 #include "qemu/log.h"
     25 #include "exec/page-vary.h"
     26 #include "target/arm/idau.h"
     27 #include "qemu/module.h"
     28 #include "qapi/error.h"
     29 #include "qapi/visitor.h"
     30 #include "cpu.h"
     31 #ifdef CONFIG_TCG
     32 #include "hw/core/tcg-cpu-ops.h"
     33 #endif /* CONFIG_TCG */
     34 #include "internals.h"
     35 #include "exec/exec-all.h"
     36 #include "hw/qdev-properties.h"
     37 #if !defined(CONFIG_USER_ONLY)
     38 #include "hw/loader.h"
     39 #include "hw/boards.h"
     40 #endif
     41 #include "sysemu/tcg.h"
     42 #include "sysemu/qtest.h"
     43 #include "sysemu/hw_accel.h"
     44 #include "kvm_arm.h"
     45 #include "disas/capstone.h"
     46 #include "fpu/softfloat.h"
     47 #include "cpregs.h"
     48 
     49 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
     50 {
     51     ARMCPU *cpu = ARM_CPU(cs);
     52     CPUARMState *env = &cpu->env;
     53 
     54     if (is_a64(env)) {
     55         env->pc = value;
     56         env->thumb = false;
     57     } else {
     58         env->regs[15] = value & ~1;
     59         env->thumb = value & 1;
     60     }
     61 }
     62 
     63 static vaddr arm_cpu_get_pc(CPUState *cs)
     64 {
     65     ARMCPU *cpu = ARM_CPU(cs);
     66     CPUARMState *env = &cpu->env;
     67 
     68     if (is_a64(env)) {
     69         return env->pc;
     70     } else {
     71         return env->regs[15];
     72     }
     73 }
     74 
     75 #ifdef CONFIG_TCG
     76 void arm_cpu_synchronize_from_tb(CPUState *cs,
     77                                  const TranslationBlock *tb)
     78 {
     79     /* The program counter is always up to date with TARGET_TB_PCREL. */
     80     if (!TARGET_TB_PCREL) {
     81         CPUARMState *env = cs->env_ptr;
     82         /*
     83          * It's OK to look at env for the current mode here, because it's
     84          * never possible for an AArch64 TB to chain to an AArch32 TB.
     85          */
     86         if (is_a64(env)) {
     87             env->pc = tb_pc(tb);
     88         } else {
     89             env->regs[15] = tb_pc(tb);
     90         }
     91     }
     92 }
     93 
     94 void arm_restore_state_to_opc(CPUState *cs,
     95                               const TranslationBlock *tb,
     96                               const uint64_t *data)
     97 {
     98     CPUARMState *env = cs->env_ptr;
     99 
    100     if (is_a64(env)) {
    101         if (TARGET_TB_PCREL) {
    102             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
    103         } else {
    104             env->pc = data[0];
    105         }
    106         env->condexec_bits = 0;
    107         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
    108     } else {
    109         if (TARGET_TB_PCREL) {
    110             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
    111         } else {
    112             env->regs[15] = data[0];
    113         }
    114         env->condexec_bits = data[1];
    115         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
    116     }
    117 }
    118 #endif /* CONFIG_TCG */
    119 
    120 static bool arm_cpu_has_work(CPUState *cs)
    121 {
    122     ARMCPU *cpu = ARM_CPU(cs);
    123 
    124     return (cpu->power_state != PSCI_OFF)
    125         && cs->interrupt_request &
    126         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
    127          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
    128          | CPU_INTERRUPT_EXITTB);
    129 }
    130 
    131 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
    132                                  void *opaque)
    133 {
    134     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
    135 
    136     entry->hook = hook;
    137     entry->opaque = opaque;
    138 
    139     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
    140 }
    141 
    142 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
    143                                  void *opaque)
    144 {
    145     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
    146 
    147     entry->hook = hook;
    148     entry->opaque = opaque;
    149 
    150     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
    151 }
    152 
    153 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
    154 {
    155     /* Reset a single ARMCPRegInfo register */
    156     ARMCPRegInfo *ri = value;
    157     ARMCPU *cpu = opaque;
    158 
    159     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
    160         return;
    161     }
    162 
    163     if (ri->resetfn) {
    164         ri->resetfn(&cpu->env, ri);
    165         return;
    166     }
    167 
    168     /* A zero offset is never possible as it would be regs[0]
    169      * so we use it to indicate that reset is being handled elsewhere.
    170      * This is basically only used for fields in non-core coprocessors
    171      * (like the pxa2xx ones).
    172      */
    173     if (!ri->fieldoffset) {
    174         return;
    175     }
    176 
    177     if (cpreg_field_is_64bit(ri)) {
    178         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
    179     } else {
    180         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
    181     }
    182 }
    183 
    184 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
    185 {
    186     /* Purely an assertion check: we've already done reset once,
    187      * so now check that running the reset for the cpreg doesn't
    188      * change its value. This traps bugs where two different cpregs
    189      * both try to reset the same state field but to different values.
    190      */
    191     ARMCPRegInfo *ri = value;
    192     ARMCPU *cpu = opaque;
    193     uint64_t oldvalue, newvalue;
    194 
    195     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
    196         return;
    197     }
    198 
    199     oldvalue = read_raw_cp_reg(&cpu->env, ri);
    200     cp_reg_reset(key, value, opaque);
    201     newvalue = read_raw_cp_reg(&cpu->env, ri);
    202     assert(oldvalue == newvalue);
    203 }
    204 
    205 static void arm_cpu_reset(DeviceState *dev)
    206 {
    207     CPUState *s = CPU(dev);
    208     ARMCPU *cpu = ARM_CPU(s);
    209     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
    210     CPUARMState *env = &cpu->env;
    211 
    212     acc->parent_reset(dev);
    213 
    214     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
    215 
    216     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
    217     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
    218 
    219     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
    220     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
    221     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
    222     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
    223 
    224     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
    225 
    226     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
    227         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
    228     }
    229 
    230     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
    231         /* 64 bit CPUs always start in 64 bit mode */
    232         env->aarch64 = true;
    233 #if defined(CONFIG_USER_ONLY)
    234         env->pstate = PSTATE_MODE_EL0t;
    235         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
    236         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
    237         /* Enable all PAC keys.  */
    238         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
    239                                   SCTLR_EnDA | SCTLR_EnDB);
    240         /* Trap on btype=3 for PACIxSP. */
    241         env->cp15.sctlr_el[1] |= SCTLR_BT0;
    242         /* and to the FP/Neon instructions */
    243         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
    244                                          CPACR_EL1, FPEN, 3);
    245         /* and to the SVE instructions, with default vector length */
    246         if (cpu_isar_feature(aa64_sve, cpu)) {
    247             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
    248                                              CPACR_EL1, ZEN, 3);
    249             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
    250         }
    251         /* and for SME instructions, with default vector length, and TPIDR2 */
    252         if (cpu_isar_feature(aa64_sme, cpu)) {
    253             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
    254             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
    255                                              CPACR_EL1, SMEN, 3);
    256             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
    257             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
    258                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
    259                                                  SMCR, FA64, 1);
    260             }
    261         }
    262         /*
    263          * Enable 48-bit address space (TODO: take reserved_va into account).
    264          * Enable TBI0 but not TBI1.
    265          * Note that this must match useronly_clean_ptr.
    266          */
    267         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
    268 
    269         /* Enable MTE */
    270         if (cpu_isar_feature(aa64_mte, cpu)) {
    271             /* Enable tag access, but leave TCF0 as No Effect (0). */
    272             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
    273             /*
    274              * Exclude all tags, so that tag 0 is always used.
    275              * This corresponds to Linux current->thread.gcr_incl = 0.
    276              *
    277              * Set RRND, so that helper_irg() will generate a seed later.
    278              * Here in cpu_reset(), the crypto subsystem has not yet been
    279              * initialized.
    280              */
    281             env->cp15.gcr_el1 = 0x1ffff;
    282         }
    283         /*
    284          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
    285          * This is not yet exposed from the Linux kernel in any way.
    286          */
    287         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
    288 #else
    289         /* Reset into the highest available EL */
    290         if (arm_feature(env, ARM_FEATURE_EL3)) {
    291             env->pstate = PSTATE_MODE_EL3h;
    292         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
    293             env->pstate = PSTATE_MODE_EL2h;
    294         } else {
    295             env->pstate = PSTATE_MODE_EL1h;
    296         }
    297 
    298         /* Sample rvbar at reset.  */
    299         env->cp15.rvbar = cpu->rvbar_prop;
    300         env->pc = env->cp15.rvbar;
    301 #endif
    302     } else {
    303 #if defined(CONFIG_USER_ONLY)
    304         /* Userspace expects access to cp10 and cp11 for FP/Neon */
    305         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
    306                                          CPACR, CP10, 3);
    307         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
    308                                          CPACR, CP11, 3);
    309 #endif
    310     }
    311 
    312 #if defined(CONFIG_USER_ONLY)
    313     env->uncached_cpsr = ARM_CPU_MODE_USR;
    314     /* For user mode we must enable access to coprocessors */
    315     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
    316     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
    317         env->cp15.c15_cpar = 3;
    318     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
    319         env->cp15.c15_cpar = 1;
    320     }
    321 #else
    322 
    323     /*
    324      * If the highest available EL is EL2, AArch32 will start in Hyp
    325      * mode; otherwise it starts in SVC. Note that if we start in
    326      * AArch64 then these values in the uncached_cpsr will be ignored.
    327      */
    328     if (arm_feature(env, ARM_FEATURE_EL2) &&
    329         !arm_feature(env, ARM_FEATURE_EL3)) {
    330         env->uncached_cpsr = ARM_CPU_MODE_HYP;
    331     } else {
    332         env->uncached_cpsr = ARM_CPU_MODE_SVC;
    333     }
    334     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
    335 
    336     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
    337      * executing as AArch32 then check if highvecs are enabled and
    338      * adjust the PC accordingly.
    339      */
    340     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
    341         env->regs[15] = 0xFFFF0000;
    342     }
    343 
    344     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
    345 #endif
    346 
    347     if (arm_feature(env, ARM_FEATURE_M)) {
    348 #ifndef CONFIG_USER_ONLY
    349         uint32_t initial_msp; /* Loaded from 0x0 */
    350         uint32_t initial_pc; /* Loaded from 0x4 */
    351         uint8_t *rom;
    352         uint32_t vecbase;
    353 #endif
    354 
    355         if (cpu_isar_feature(aa32_lob, cpu)) {
    356             /*
    357              * LTPSIZE is constant 4 if MVE not implemented, and resets
    358              * to an UNKNOWN value if MVE is implemented. We choose to
    359              * always reset to 4.
    360              */
    361             env->v7m.ltpsize = 4;
    362             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
    363             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
    364             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
    365         }
    366 
    367         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
    368             env->v7m.secure = true;
    369         } else {
    370             /* This bit resets to 0 if security is supported, but 1 if
    371              * it is not. The bit is not present in v7M, but we set it
    372              * here so we can avoid having to make checks on it conditional
    373              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
    374              */
    375             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
    376             /*
    377              * Set NSACR to indicate "NS access permitted to everything";
    378              * this avoids having to have all the tests of it being
    379              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
    380              * v8.1M the guest-visible value of NSACR in a CPU without the
    381              * Security Extension is 0xcff.
    382              */
    383             env->v7m.nsacr = 0xcff;
    384         }
    385 
    386         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
    387          * that it resets to 1, so QEMU always does that rather than making
    388          * it dependent on CPU model. In v8M it is RES1.
    389          */
    390         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
    391         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
    392         if (arm_feature(env, ARM_FEATURE_V8)) {
    393             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
    394             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
    395             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
    396         }
    397         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
    398             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
    399             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
    400         }
    401 
    402         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
    403             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
    404             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
    405                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
    406         }
    407 
    408 #ifndef CONFIG_USER_ONLY
    409         /* Unlike A/R profile, M profile defines the reset LR value */
    410         env->regs[14] = 0xffffffff;
    411 
    412         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
    413         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
    414 
    415         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
    416         vecbase = env->v7m.vecbase[env->v7m.secure];
    417         rom = rom_ptr_for_as(s->as, vecbase, 8);
    418         if (rom) {
    419             /* Address zero is covered by ROM which hasn't yet been
    420              * copied into physical memory.
    421              */
    422             initial_msp = ldl_p(rom);
    423             initial_pc = ldl_p(rom + 4);
    424         } else {
    425             /* Address zero not covered by a ROM blob, or the ROM blob
    426              * is in non-modifiable memory and this is a second reset after
    427              * it got copied into memory. In the latter case, rom_ptr
    428              * will return a NULL pointer and we should use ldl_phys instead.
    429              */
    430             initial_msp = ldl_phys(s->as, vecbase);
    431             initial_pc = ldl_phys(s->as, vecbase + 4);
    432         }
    433 
    434         qemu_log_mask(CPU_LOG_INT,
    435                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
    436                       initial_msp, initial_pc);
    437 
    438         env->regs[13] = initial_msp & 0xFFFFFFFC;
    439         env->regs[15] = initial_pc & ~1;
    440         env->thumb = initial_pc & 1;
    441 #else
    442         /*
    443          * For user mode we run non-secure and with access to the FPU.
    444          * The FPU context is active (ie does not need further setup)
    445          * and is owned by non-secure.
    446          */
    447         env->v7m.secure = false;
    448         env->v7m.nsacr = 0xcff;
    449         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
    450         env->v7m.fpccr[M_REG_S] &=
    451             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
    452         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
    453 #endif
    454     }
    455 
    456     /* M profile requires that reset clears the exclusive monitor;
    457      * A profile does not, but clearing it makes more sense than having it
    458      * set with an exclusive access on address zero.
    459      */
    460     arm_clear_exclusive(env);
    461 
    462     if (arm_feature(env, ARM_FEATURE_PMSA)) {
    463         if (cpu->pmsav7_dregion > 0) {
    464             if (arm_feature(env, ARM_FEATURE_V8)) {
    465                 memset(env->pmsav8.rbar[M_REG_NS], 0,
    466                        sizeof(*env->pmsav8.rbar[M_REG_NS])
    467                        * cpu->pmsav7_dregion);
    468                 memset(env->pmsav8.rlar[M_REG_NS], 0,
    469                        sizeof(*env->pmsav8.rlar[M_REG_NS])
    470                        * cpu->pmsav7_dregion);
    471                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
    472                     memset(env->pmsav8.rbar[M_REG_S], 0,
    473                            sizeof(*env->pmsav8.rbar[M_REG_S])
    474                            * cpu->pmsav7_dregion);
    475                     memset(env->pmsav8.rlar[M_REG_S], 0,
    476                            sizeof(*env->pmsav8.rlar[M_REG_S])
    477                            * cpu->pmsav7_dregion);
    478                 }
    479             } else if (arm_feature(env, ARM_FEATURE_V7)) {
    480                 memset(env->pmsav7.drbar, 0,
    481                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
    482                 memset(env->pmsav7.drsr, 0,
    483                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
    484                 memset(env->pmsav7.dracr, 0,
    485                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
    486             }
    487         }
    488         env->pmsav7.rnr[M_REG_NS] = 0;
    489         env->pmsav7.rnr[M_REG_S] = 0;
    490         env->pmsav8.mair0[M_REG_NS] = 0;
    491         env->pmsav8.mair0[M_REG_S] = 0;
    492         env->pmsav8.mair1[M_REG_NS] = 0;
    493         env->pmsav8.mair1[M_REG_S] = 0;
    494     }
    495 
    496     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
    497         if (cpu->sau_sregion > 0) {
    498             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
    499             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
    500         }
    501         env->sau.rnr = 0;
    502         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
    503          * the Cortex-M33 does.
    504          */
    505         env->sau.ctrl = 0;
    506     }
    507 
    508     set_flush_to_zero(1, &env->vfp.standard_fp_status);
    509     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
    510     set_default_nan_mode(1, &env->vfp.standard_fp_status);
    511     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
    512     set_float_detect_tininess(float_tininess_before_rounding,
    513                               &env->vfp.fp_status);
    514     set_float_detect_tininess(float_tininess_before_rounding,
    515                               &env->vfp.standard_fp_status);
    516     set_float_detect_tininess(float_tininess_before_rounding,
    517                               &env->vfp.fp_status_f16);
    518     set_float_detect_tininess(float_tininess_before_rounding,
    519                               &env->vfp.standard_fp_status_f16);
    520 #ifndef CONFIG_USER_ONLY
    521     if (kvm_enabled()) {
    522         kvm_arm_reset_vcpu(cpu);
    523     }
    524 #endif
    525 
    526     hw_breakpoint_update_all(cpu);
    527     hw_watchpoint_update_all(cpu);
    528     arm_rebuild_hflags(env);
    529 }
    530 
    531 #ifndef CONFIG_USER_ONLY
    532 
    533 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
    534                                      unsigned int target_el,
    535                                      unsigned int cur_el, bool secure,
    536                                      uint64_t hcr_el2)
    537 {
    538     CPUARMState *env = cs->env_ptr;
    539     bool pstate_unmasked;
    540     bool unmasked = false;
    541 
    542     /*
    543      * Don't take exceptions if they target a lower EL.
    544      * This check should catch any exceptions that would not be taken
    545      * but left pending.
    546      */
    547     if (cur_el > target_el) {
    548         return false;
    549     }
    550 
    551     switch (excp_idx) {
    552     case EXCP_FIQ:
    553         pstate_unmasked = !(env->daif & PSTATE_F);
    554         break;
    555 
    556     case EXCP_IRQ:
    557         pstate_unmasked = !(env->daif & PSTATE_I);
    558         break;
    559 
    560     case EXCP_VFIQ:
    561         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
    562             /* VFIQs are only taken when hypervized.  */
    563             return false;
    564         }
    565         return !(env->daif & PSTATE_F);
    566     case EXCP_VIRQ:
    567         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
    568             /* VIRQs are only taken when hypervized.  */
    569             return false;
    570         }
    571         return !(env->daif & PSTATE_I);
    572     case EXCP_VSERR:
    573         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
    574             /* VIRQs are only taken when hypervized.  */
    575             return false;
    576         }
    577         return !(env->daif & PSTATE_A);
    578     default:
    579         g_assert_not_reached();
    580     }
    581 
    582     /*
    583      * Use the target EL, current execution state and SCR/HCR settings to
    584      * determine whether the corresponding CPSR bit is used to mask the
    585      * interrupt.
    586      */
    587     if ((target_el > cur_el) && (target_el != 1)) {
    588         /* Exceptions targeting a higher EL may not be maskable */
    589         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
    590             switch (target_el) {
    591             case 2:
    592                 /*
    593                  * According to ARM DDI 0487H.a, an interrupt can be masked
    594                  * when HCR_E2H and HCR_TGE are both set regardless of the
    595                  * current Security state. Note that we need to revisit this
    596                  * part again once we need to support NMI.
    597                  */
    598                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
    599                         unmasked = true;
    600                 }
    601                 break;
    602             case 3:
    603                 /* Interrupt cannot be masked when the target EL is 3 */
    604                 unmasked = true;
    605                 break;
    606             default:
    607                 g_assert_not_reached();
    608             }
    609         } else {
    610             /*
    611              * The old 32-bit-only environment has a more complicated
    612              * masking setup. HCR and SCR bits not only affect interrupt
    613              * routing but also change the behaviour of masking.
    614              */
    615             bool hcr, scr;
    616 
    617             switch (excp_idx) {
    618             case EXCP_FIQ:
    619                 /*
    620                  * If FIQs are routed to EL3 or EL2 then there are cases where
    621                  * we override the CPSR.F in determining if the exception is
    622                  * masked or not. If neither of these are set then we fall back
    623                  * to the CPSR.F setting otherwise we further assess the state
    624                  * below.
    625                  */
    626                 hcr = hcr_el2 & HCR_FMO;
    627                 scr = (env->cp15.scr_el3 & SCR_FIQ);
    628 
    629                 /*
    630                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
    631                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
    632                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
    633                  * when non-secure but only when FIQs are only routed to EL3.
    634                  */
    635                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
    636                 break;
    637             case EXCP_IRQ:
    638                 /*
    639                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
    640                  * we may override the CPSR.I masking when in non-secure state.
    641                  * The SCR.IRQ setting has already been taken into consideration
    642                  * when setting the target EL, so it does not have a further
    643                  * affect here.
    644                  */
    645                 hcr = hcr_el2 & HCR_IMO;
    646                 scr = false;
    647                 break;
    648             default:
    649                 g_assert_not_reached();
    650             }
    651 
    652             if ((scr || hcr) && !secure) {
    653                 unmasked = true;
    654             }
    655         }
    656     }
    657 
    658     /*
    659      * The PSTATE bits only mask the interrupt if we have not overriden the
    660      * ability above.
    661      */
    662     return unmasked || pstate_unmasked;
    663 }
    664 
    665 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
    666 {
    667     CPUClass *cc = CPU_GET_CLASS(cs);
    668     CPUARMState *env = cs->env_ptr;
    669     uint32_t cur_el = arm_current_el(env);
    670     bool secure = arm_is_secure(env);
    671     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
    672     uint32_t target_el;
    673     uint32_t excp_idx;
    674 
    675     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
    676 
    677     if (interrupt_request & CPU_INTERRUPT_FIQ) {
    678         excp_idx = EXCP_FIQ;
    679         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
    680         if (arm_excp_unmasked(cs, excp_idx, target_el,
    681                               cur_el, secure, hcr_el2)) {
    682             goto found;
    683         }
    684     }
    685     if (interrupt_request & CPU_INTERRUPT_HARD) {
    686         excp_idx = EXCP_IRQ;
    687         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
    688         if (arm_excp_unmasked(cs, excp_idx, target_el,
    689                               cur_el, secure, hcr_el2)) {
    690             goto found;
    691         }
    692     }
    693     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
    694         excp_idx = EXCP_VIRQ;
    695         target_el = 1;
    696         if (arm_excp_unmasked(cs, excp_idx, target_el,
    697                               cur_el, secure, hcr_el2)) {
    698             goto found;
    699         }
    700     }
    701     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
    702         excp_idx = EXCP_VFIQ;
    703         target_el = 1;
    704         if (arm_excp_unmasked(cs, excp_idx, target_el,
    705                               cur_el, secure, hcr_el2)) {
    706             goto found;
    707         }
    708     }
    709     if (interrupt_request & CPU_INTERRUPT_VSERR) {
    710         excp_idx = EXCP_VSERR;
    711         target_el = 1;
    712         if (arm_excp_unmasked(cs, excp_idx, target_el,
    713                               cur_el, secure, hcr_el2)) {
    714             /* Taking a virtual abort clears HCR_EL2.VSE */
    715             env->cp15.hcr_el2 &= ~HCR_VSE;
    716             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
    717             goto found;
    718         }
    719     }
    720     return false;
    721 
    722  found:
    723     cs->exception_index = excp_idx;
    724     env->exception.target_el = target_el;
    725     cc->tcg_ops->do_interrupt(cs);
    726     return true;
    727 }
    728 #endif /* !CONFIG_USER_ONLY */
    729 
    730 void arm_cpu_update_virq(ARMCPU *cpu)
    731 {
    732     /*
    733      * Update the interrupt level for VIRQ, which is the logical OR of
    734      * the HCR_EL2.VI bit and the input line level from the GIC.
    735      */
    736     CPUARMState *env = &cpu->env;
    737     CPUState *cs = CPU(cpu);
    738 
    739     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
    740         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
    741 
    742     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
    743         if (new_state) {
    744             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
    745         } else {
    746             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
    747         }
    748     }
    749 }
    750 
    751 void arm_cpu_update_vfiq(ARMCPU *cpu)
    752 {
    753     /*
    754      * Update the interrupt level for VFIQ, which is the logical OR of
    755      * the HCR_EL2.VF bit and the input line level from the GIC.
    756      */
    757     CPUARMState *env = &cpu->env;
    758     CPUState *cs = CPU(cpu);
    759 
    760     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
    761         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
    762 
    763     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
    764         if (new_state) {
    765             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
    766         } else {
    767             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
    768         }
    769     }
    770 }
    771 
    772 void arm_cpu_update_vserr(ARMCPU *cpu)
    773 {
    774     /*
    775      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
    776      */
    777     CPUARMState *env = &cpu->env;
    778     CPUState *cs = CPU(cpu);
    779 
    780     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
    781 
    782     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
    783         if (new_state) {
    784             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
    785         } else {
    786             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
    787         }
    788     }
    789 }
    790 
    791 #ifndef CONFIG_USER_ONLY
    792 static void arm_cpu_set_irq(void *opaque, int irq, int level)
    793 {
    794     ARMCPU *cpu = opaque;
    795     CPUARMState *env = &cpu->env;
    796     CPUState *cs = CPU(cpu);
    797     static const int mask[] = {
    798         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
    799         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
    800         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
    801         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
    802     };
    803 
    804     if (!arm_feature(env, ARM_FEATURE_EL2) &&
    805         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
    806         /*
    807          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
    808          * have EL2 support we don't care. (Unless the guest is doing something
    809          * silly this will only be calls saying "level is still 0".)
    810          */
    811         return;
    812     }
    813 
    814     if (level) {
    815         env->irq_line_state |= mask[irq];
    816     } else {
    817         env->irq_line_state &= ~mask[irq];
    818     }
    819 
    820     switch (irq) {
    821     case ARM_CPU_VIRQ:
    822         arm_cpu_update_virq(cpu);
    823         break;
    824     case ARM_CPU_VFIQ:
    825         arm_cpu_update_vfiq(cpu);
    826         break;
    827     case ARM_CPU_IRQ:
    828     case ARM_CPU_FIQ:
    829         if (level) {
    830             cpu_interrupt(cs, mask[irq]);
    831         } else {
    832             cpu_reset_interrupt(cs, mask[irq]);
    833         }
    834         break;
    835     default:
    836         g_assert_not_reached();
    837     }
    838 }
    839 
    840 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
    841 {
    842 #ifdef CONFIG_KVM
    843     ARMCPU *cpu = opaque;
    844     CPUARMState *env = &cpu->env;
    845     CPUState *cs = CPU(cpu);
    846     uint32_t linestate_bit;
    847     int irq_id;
    848 
    849     switch (irq) {
    850     case ARM_CPU_IRQ:
    851         irq_id = KVM_ARM_IRQ_CPU_IRQ;
    852         linestate_bit = CPU_INTERRUPT_HARD;
    853         break;
    854     case ARM_CPU_FIQ:
    855         irq_id = KVM_ARM_IRQ_CPU_FIQ;
    856         linestate_bit = CPU_INTERRUPT_FIQ;
    857         break;
    858     default:
    859         g_assert_not_reached();
    860     }
    861 
    862     if (level) {
    863         env->irq_line_state |= linestate_bit;
    864     } else {
    865         env->irq_line_state &= ~linestate_bit;
    866     }
    867     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
    868 #endif
    869 }
    870 
    871 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
    872 {
    873     ARMCPU *cpu = ARM_CPU(cs);
    874     CPUARMState *env = &cpu->env;
    875 
    876     cpu_synchronize_state(cs);
    877     return arm_cpu_data_is_big_endian(env);
    878 }
    879 
    880 #endif
    881 
    882 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
    883 {
    884     ARMCPU *ac = ARM_CPU(cpu);
    885     CPUARMState *env = &ac->env;
    886     bool sctlr_b;
    887 
    888     if (is_a64(env)) {
    889         info->cap_arch = CS_ARCH_ARM64;
    890         info->cap_insn_unit = 4;
    891         info->cap_insn_split = 4;
    892     } else {
    893         int cap_mode;
    894         if (env->thumb) {
    895             info->cap_insn_unit = 2;
    896             info->cap_insn_split = 4;
    897             cap_mode = CS_MODE_THUMB;
    898         } else {
    899             info->cap_insn_unit = 4;
    900             info->cap_insn_split = 4;
    901             cap_mode = CS_MODE_ARM;
    902         }
    903         if (arm_feature(env, ARM_FEATURE_V8)) {
    904             cap_mode |= CS_MODE_V8;
    905         }
    906         if (arm_feature(env, ARM_FEATURE_M)) {
    907             cap_mode |= CS_MODE_MCLASS;
    908         }
    909         info->cap_arch = CS_ARCH_ARM;
    910         info->cap_mode = cap_mode;
    911     }
    912 
    913     sctlr_b = arm_sctlr_b(env);
    914     if (bswap_code(sctlr_b)) {
    915 #if TARGET_BIG_ENDIAN
    916         info->endian = BFD_ENDIAN_LITTLE;
    917 #else
    918         info->endian = BFD_ENDIAN_BIG;
    919 #endif
    920     }
    921     info->flags &= ~INSN_ARM_BE32;
    922 #ifndef CONFIG_USER_ONLY
    923     if (sctlr_b) {
    924         info->flags |= INSN_ARM_BE32;
    925     }
    926 #endif
    927 }
    928 
    929 #ifdef TARGET_AARCH64
    930 
    931 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
    932 {
    933     ARMCPU *cpu = ARM_CPU(cs);
    934     CPUARMState *env = &cpu->env;
    935     uint32_t psr = pstate_read(env);
    936     int i;
    937     int el = arm_current_el(env);
    938     const char *ns_status;
    939     bool sve;
    940 
    941     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
    942     for (i = 0; i < 32; i++) {
    943         if (i == 31) {
    944             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
    945         } else {
    946             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
    947                          (i + 2) % 3 ? " " : "\n");
    948         }
    949     }
    950 
    951     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
    952         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
    953     } else {
    954         ns_status = "";
    955     }
    956     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
    957                  psr,
    958                  psr & PSTATE_N ? 'N' : '-',
    959                  psr & PSTATE_Z ? 'Z' : '-',
    960                  psr & PSTATE_C ? 'C' : '-',
    961                  psr & PSTATE_V ? 'V' : '-',
    962                  ns_status,
    963                  el,
    964                  psr & PSTATE_SP ? 'h' : 't');
    965 
    966     if (cpu_isar_feature(aa64_sme, cpu)) {
    967         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
    968                      env->svcr,
    969                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
    970                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
    971     }
    972     if (cpu_isar_feature(aa64_bti, cpu)) {
    973         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
    974     }
    975     if (!(flags & CPU_DUMP_FPU)) {
    976         qemu_fprintf(f, "\n");
    977         return;
    978     }
    979     if (fp_exception_el(env, el) != 0) {
    980         qemu_fprintf(f, "    FPU disabled\n");
    981         return;
    982     }
    983     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
    984                  vfp_get_fpcr(env), vfp_get_fpsr(env));
    985 
    986     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
    987         sve = sme_exception_el(env, el) == 0;
    988     } else if (cpu_isar_feature(aa64_sve, cpu)) {
    989         sve = sve_exception_el(env, el) == 0;
    990     } else {
    991         sve = false;
    992     }
    993 
    994     if (sve) {
    995         int j, zcr_len = sve_vqm1_for_el(env, el);
    996 
    997         for (i = 0; i <= FFR_PRED_NUM; i++) {
    998             bool eol;
    999             if (i == FFR_PRED_NUM) {
   1000                 qemu_fprintf(f, "FFR=");
   1001                 /* It's last, so end the line.  */
   1002                 eol = true;
   1003             } else {
   1004                 qemu_fprintf(f, "P%02d=", i);
   1005                 switch (zcr_len) {
   1006                 case 0:
   1007                     eol = i % 8 == 7;
   1008                     break;
   1009                 case 1:
   1010                     eol = i % 6 == 5;
   1011                     break;
   1012                 case 2:
   1013                 case 3:
   1014                     eol = i % 3 == 2;
   1015                     break;
   1016                 default:
   1017                     /* More than one quadword per predicate.  */
   1018                     eol = true;
   1019                     break;
   1020                 }
   1021             }
   1022             for (j = zcr_len / 4; j >= 0; j--) {
   1023                 int digits;
   1024                 if (j * 4 + 4 <= zcr_len + 1) {
   1025                     digits = 16;
   1026                 } else {
   1027                     digits = (zcr_len % 4 + 1) * 4;
   1028                 }
   1029                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
   1030                              env->vfp.pregs[i].p[j],
   1031                              j ? ":" : eol ? "\n" : " ");
   1032             }
   1033         }
   1034 
   1035         for (i = 0; i < 32; i++) {
   1036             if (zcr_len == 0) {
   1037                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
   1038                              i, env->vfp.zregs[i].d[1],
   1039                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
   1040             } else if (zcr_len == 1) {
   1041                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
   1042                              ":%016" PRIx64 ":%016" PRIx64 "\n",
   1043                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
   1044                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
   1045             } else {
   1046                 for (j = zcr_len; j >= 0; j--) {
   1047                     bool odd = (zcr_len - j) % 2 != 0;
   1048                     if (j == zcr_len) {
   1049                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
   1050                     } else if (!odd) {
   1051                         if (j > 0) {
   1052                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
   1053                         } else {
   1054                             qemu_fprintf(f, "     [%x]=", j);
   1055                         }
   1056                     }
   1057                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
   1058                                  env->vfp.zregs[i].d[j * 2 + 1],
   1059                                  env->vfp.zregs[i].d[j * 2],
   1060                                  odd || j == 0 ? "\n" : ":");
   1061                 }
   1062             }
   1063         }
   1064     } else {
   1065         for (i = 0; i < 32; i++) {
   1066             uint64_t *q = aa64_vfp_qreg(env, i);
   1067             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
   1068                          i, q[1], q[0], (i & 1 ? "\n" : " "));
   1069         }
   1070     }
   1071 }
   1072 
   1073 #else
   1074 
   1075 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
   1076 {
   1077     g_assert_not_reached();
   1078 }
   1079 
   1080 #endif
   1081 
   1082 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
   1083 {
   1084     ARMCPU *cpu = ARM_CPU(cs);
   1085     CPUARMState *env = &cpu->env;
   1086     int i;
   1087 
   1088     if (is_a64(env)) {
   1089         aarch64_cpu_dump_state(cs, f, flags);
   1090         return;
   1091     }
   1092 
   1093     for (i = 0; i < 16; i++) {
   1094         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
   1095         if ((i % 4) == 3) {
   1096             qemu_fprintf(f, "\n");
   1097         } else {
   1098             qemu_fprintf(f, " ");
   1099         }
   1100     }
   1101 
   1102     if (arm_feature(env, ARM_FEATURE_M)) {
   1103         uint32_t xpsr = xpsr_read(env);
   1104         const char *mode;
   1105         const char *ns_status = "";
   1106 
   1107         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
   1108             ns_status = env->v7m.secure ? "S " : "NS ";
   1109         }
   1110 
   1111         if (xpsr & XPSR_EXCP) {
   1112             mode = "handler";
   1113         } else {
   1114             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
   1115                 mode = "unpriv-thread";
   1116             } else {
   1117                 mode = "priv-thread";
   1118             }
   1119         }
   1120 
   1121         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
   1122                      xpsr,
   1123                      xpsr & XPSR_N ? 'N' : '-',
   1124                      xpsr & XPSR_Z ? 'Z' : '-',
   1125                      xpsr & XPSR_C ? 'C' : '-',
   1126                      xpsr & XPSR_V ? 'V' : '-',
   1127                      xpsr & XPSR_T ? 'T' : 'A',
   1128                      ns_status,
   1129                      mode);
   1130     } else {
   1131         uint32_t psr = cpsr_read(env);
   1132         const char *ns_status = "";
   1133 
   1134         if (arm_feature(env, ARM_FEATURE_EL3) &&
   1135             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
   1136             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
   1137         }
   1138 
   1139         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
   1140                      psr,
   1141                      psr & CPSR_N ? 'N' : '-',
   1142                      psr & CPSR_Z ? 'Z' : '-',
   1143                      psr & CPSR_C ? 'C' : '-',
   1144                      psr & CPSR_V ? 'V' : '-',
   1145                      psr & CPSR_T ? 'T' : 'A',
   1146                      ns_status,
   1147                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
   1148     }
   1149 
   1150     if (flags & CPU_DUMP_FPU) {
   1151         int numvfpregs = 0;
   1152         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
   1153             numvfpregs = 32;
   1154         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
   1155             numvfpregs = 16;
   1156         }
   1157         for (i = 0; i < numvfpregs; i++) {
   1158             uint64_t v = *aa32_vfp_dreg(env, i);
   1159             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
   1160                          i * 2, (uint32_t)v,
   1161                          i * 2 + 1, (uint32_t)(v >> 32),
   1162                          i, v);
   1163         }
   1164         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
   1165         if (cpu_isar_feature(aa32_mve, cpu)) {
   1166             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
   1167         }
   1168     }
   1169 }
   1170 
   1171 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
   1172 {
   1173     uint32_t Aff1 = idx / clustersz;
   1174     uint32_t Aff0 = idx % clustersz;
   1175     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
   1176 }
   1177 
   1178 static void arm_cpu_initfn(Object *obj)
   1179 {
   1180     ARMCPU *cpu = ARM_CPU(obj);
   1181 
   1182     cpu_set_cpustate_pointers(cpu);
   1183     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
   1184                                          NULL, g_free);
   1185 
   1186     QLIST_INIT(&cpu->pre_el_change_hooks);
   1187     QLIST_INIT(&cpu->el_change_hooks);
   1188 
   1189 #ifdef CONFIG_USER_ONLY
   1190 # ifdef TARGET_AARCH64
   1191     /*
   1192      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
   1193      * These values were chosen to fit within the default signal frame.
   1194      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
   1195      * and our corresponding cpu property.
   1196      */
   1197     cpu->sve_default_vq = 4;
   1198     cpu->sme_default_vq = 2;
   1199 # endif
   1200 #else
   1201     /* Our inbound IRQ and FIQ lines */
   1202     if (kvm_enabled()) {
   1203         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
   1204          * the same interface as non-KVM CPUs.
   1205          */
   1206         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
   1207     } else {
   1208         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
   1209     }
   1210 
   1211     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
   1212                        ARRAY_SIZE(cpu->gt_timer_outputs));
   1213 
   1214     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
   1215                              "gicv3-maintenance-interrupt", 1);
   1216     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
   1217                              "pmu-interrupt", 1);
   1218 #endif
   1219 
   1220     /* DTB consumers generally don't in fact care what the 'compatible'
   1221      * string is, so always provide some string and trust that a hypothetical
   1222      * picky DTB consumer will also provide a helpful error message.
   1223      */
   1224     cpu->dtb_compatible = "qemu,unknown";
   1225     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
   1226     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
   1227 
   1228     if (tcg_enabled() || hvf_enabled()) {
   1229         /* TCG and HVF implement PSCI 1.1 */
   1230         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
   1231     }
   1232 }
   1233 
   1234 static Property arm_cpu_gt_cntfrq_property =
   1235             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
   1236                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
   1237 
   1238 static Property arm_cpu_reset_cbar_property =
   1239             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
   1240 
   1241 static Property arm_cpu_reset_hivecs_property =
   1242             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
   1243 
   1244 #ifndef CONFIG_USER_ONLY
   1245 static Property arm_cpu_has_el2_property =
   1246             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
   1247 
   1248 static Property arm_cpu_has_el3_property =
   1249             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
   1250 #endif
   1251 
   1252 static Property arm_cpu_cfgend_property =
   1253             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
   1254 
   1255 static Property arm_cpu_has_vfp_property =
   1256             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
   1257 
   1258 static Property arm_cpu_has_neon_property =
   1259             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
   1260 
   1261 static Property arm_cpu_has_dsp_property =
   1262             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
   1263 
   1264 static Property arm_cpu_has_mpu_property =
   1265             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
   1266 
   1267 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
   1268  * because the CPU initfn will have already set cpu->pmsav7_dregion to
   1269  * the right value for that particular CPU type, and we don't want
   1270  * to override that with an incorrect constant value.
   1271  */
   1272 static Property arm_cpu_pmsav7_dregion_property =
   1273             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
   1274                                            pmsav7_dregion,
   1275                                            qdev_prop_uint32, uint32_t);
   1276 
   1277 static bool arm_get_pmu(Object *obj, Error **errp)
   1278 {
   1279     ARMCPU *cpu = ARM_CPU(obj);
   1280 
   1281     return cpu->has_pmu;
   1282 }
   1283 
   1284 static void arm_set_pmu(Object *obj, bool value, Error **errp)
   1285 {
   1286     ARMCPU *cpu = ARM_CPU(obj);
   1287 
   1288     if (value) {
   1289         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
   1290             error_setg(errp, "'pmu' feature not supported by KVM on this host");
   1291             return;
   1292         }
   1293         set_feature(&cpu->env, ARM_FEATURE_PMU);
   1294     } else {
   1295         unset_feature(&cpu->env, ARM_FEATURE_PMU);
   1296     }
   1297     cpu->has_pmu = value;
   1298 }
   1299 
   1300 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
   1301 {
   1302     /*
   1303      * The exact approach to calculating guest ticks is:
   1304      *
   1305      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
   1306      *              NANOSECONDS_PER_SECOND);
   1307      *
   1308      * We don't do that. Rather we intentionally use integer division
   1309      * truncation below and in the caller for the conversion of host monotonic
   1310      * time to guest ticks to provide the exact inverse for the semantics of
   1311      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
   1312      * it loses precision when representing frequencies where
   1313      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
   1314      * provide an exact inverse leads to scheduling timers with negative
   1315      * periods, which in turn leads to sticky behaviour in the guest.
   1316      *
   1317      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
   1318      * cannot become zero.
   1319      */
   1320     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
   1321       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
   1322 }
   1323 
   1324 void arm_cpu_post_init(Object *obj)
   1325 {
   1326     ARMCPU *cpu = ARM_CPU(obj);
   1327 
   1328     /* M profile implies PMSA. We have to do this here rather than
   1329      * in realize with the other feature-implication checks because
   1330      * we look at the PMSA bit to see if we should add some properties.
   1331      */
   1332     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
   1333         set_feature(&cpu->env, ARM_FEATURE_PMSA);
   1334     }
   1335 
   1336     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
   1337         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
   1338         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
   1339     }
   1340 
   1341     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
   1342         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
   1343     }
   1344 
   1345     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
   1346         object_property_add_uint64_ptr(obj, "rvbar",
   1347                                        &cpu->rvbar_prop,
   1348                                        OBJ_PROP_FLAG_READWRITE);
   1349     }
   1350 
   1351 #ifndef CONFIG_USER_ONLY
   1352     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
   1353         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
   1354          * prevent "has_el3" from existing on CPUs which cannot support EL3.
   1355          */
   1356         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
   1357 
   1358         object_property_add_link(obj, "secure-memory",
   1359                                  TYPE_MEMORY_REGION,
   1360                                  (Object **)&cpu->secure_memory,
   1361                                  qdev_prop_allow_set_link_before_realize,
   1362                                  OBJ_PROP_LINK_STRONG);
   1363     }
   1364 
   1365     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
   1366         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
   1367     }
   1368 #endif
   1369 
   1370     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
   1371         cpu->has_pmu = true;
   1372         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
   1373     }
   1374 
   1375     /*
   1376      * Allow user to turn off VFP and Neon support, but only for TCG --
   1377      * KVM does not currently allow us to lie to the guest about its
   1378      * ID/feature registers, so the guest always sees what the host has.
   1379      */
   1380     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
   1381         ? cpu_isar_feature(aa64_fp_simd, cpu)
   1382         : cpu_isar_feature(aa32_vfp, cpu)) {
   1383         cpu->has_vfp = true;
   1384         if (!kvm_enabled()) {
   1385             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
   1386         }
   1387     }
   1388 
   1389     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
   1390         cpu->has_neon = true;
   1391         if (!kvm_enabled()) {
   1392             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
   1393         }
   1394     }
   1395 
   1396     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
   1397         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
   1398         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
   1399     }
   1400 
   1401     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
   1402         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
   1403         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
   1404             qdev_property_add_static(DEVICE(obj),
   1405                                      &arm_cpu_pmsav7_dregion_property);
   1406         }
   1407     }
   1408 
   1409     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
   1410         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
   1411                                  qdev_prop_allow_set_link_before_realize,
   1412                                  OBJ_PROP_LINK_STRONG);
   1413         /*
   1414          * M profile: initial value of the Secure VTOR. We can't just use
   1415          * a simple DEFINE_PROP_UINT32 for this because we want to permit
   1416          * the property to be set after realize.
   1417          */
   1418         object_property_add_uint32_ptr(obj, "init-svtor",
   1419                                        &cpu->init_svtor,
   1420                                        OBJ_PROP_FLAG_READWRITE);
   1421     }
   1422     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
   1423         /*
   1424          * Initial value of the NS VTOR (for cores without the Security
   1425          * extension, this is the only VTOR)
   1426          */
   1427         object_property_add_uint32_ptr(obj, "init-nsvtor",
   1428                                        &cpu->init_nsvtor,
   1429                                        OBJ_PROP_FLAG_READWRITE);
   1430     }
   1431 
   1432     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
   1433     object_property_add_uint32_ptr(obj, "psci-conduit",
   1434                                    &cpu->psci_conduit,
   1435                                    OBJ_PROP_FLAG_READWRITE);
   1436 
   1437     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
   1438 
   1439     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
   1440         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
   1441     }
   1442 
   1443     if (kvm_enabled()) {
   1444         kvm_arm_add_vcpu_properties(obj);
   1445     }
   1446 
   1447 #ifndef CONFIG_USER_ONLY
   1448     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
   1449         cpu_isar_feature(aa64_mte, cpu)) {
   1450         object_property_add_link(obj, "tag-memory",
   1451                                  TYPE_MEMORY_REGION,
   1452                                  (Object **)&cpu->tag_memory,
   1453                                  qdev_prop_allow_set_link_before_realize,
   1454                                  OBJ_PROP_LINK_STRONG);
   1455 
   1456         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
   1457             object_property_add_link(obj, "secure-tag-memory",
   1458                                      TYPE_MEMORY_REGION,
   1459                                      (Object **)&cpu->secure_tag_memory,
   1460                                      qdev_prop_allow_set_link_before_realize,
   1461                                      OBJ_PROP_LINK_STRONG);
   1462         }
   1463     }
   1464 #endif
   1465 }
   1466 
   1467 static void arm_cpu_finalizefn(Object *obj)
   1468 {
   1469     ARMCPU *cpu = ARM_CPU(obj);
   1470     ARMELChangeHook *hook, *next;
   1471 
   1472     g_hash_table_destroy(cpu->cp_regs);
   1473 
   1474     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
   1475         QLIST_REMOVE(hook, node);
   1476         g_free(hook);
   1477     }
   1478     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
   1479         QLIST_REMOVE(hook, node);
   1480         g_free(hook);
   1481     }
   1482 #ifndef CONFIG_USER_ONLY
   1483     if (cpu->pmu_timer) {
   1484         timer_free(cpu->pmu_timer);
   1485     }
   1486 #endif
   1487 }
   1488 
   1489 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
   1490 {
   1491     Error *local_err = NULL;
   1492 
   1493 #ifdef TARGET_AARCH64
   1494     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
   1495         arm_cpu_sve_finalize(cpu, &local_err);
   1496         if (local_err != NULL) {
   1497             error_propagate(errp, local_err);
   1498             return;
   1499         }
   1500 
   1501         arm_cpu_sme_finalize(cpu, &local_err);
   1502         if (local_err != NULL) {
   1503             error_propagate(errp, local_err);
   1504             return;
   1505         }
   1506 
   1507         arm_cpu_pauth_finalize(cpu, &local_err);
   1508         if (local_err != NULL) {
   1509             error_propagate(errp, local_err);
   1510             return;
   1511         }
   1512 
   1513         arm_cpu_lpa2_finalize(cpu, &local_err);
   1514         if (local_err != NULL) {
   1515             error_propagate(errp, local_err);
   1516             return;
   1517         }
   1518     }
   1519 #endif
   1520 
   1521     if (kvm_enabled()) {
   1522         kvm_arm_steal_time_finalize(cpu, &local_err);
   1523         if (local_err != NULL) {
   1524             error_propagate(errp, local_err);
   1525             return;
   1526         }
   1527     }
   1528 }
   1529 
   1530 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
   1531 {
   1532     CPUState *cs = CPU(dev);
   1533     ARMCPU *cpu = ARM_CPU(dev);
   1534     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
   1535     CPUARMState *env = &cpu->env;
   1536     int pagebits;
   1537     Error *local_err = NULL;
   1538     bool no_aa32 = false;
   1539 
   1540     /* If we needed to query the host kernel for the CPU features
   1541      * then it's possible that might have failed in the initfn, but
   1542      * this is the first point where we can report it.
   1543      */
   1544     if (cpu->host_cpu_probe_failed) {
   1545         if (!kvm_enabled() && !hvf_enabled()) {
   1546             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
   1547         } else {
   1548             error_setg(errp, "Failed to retrieve host CPU features");
   1549         }
   1550         return;
   1551     }
   1552 
   1553 #ifndef CONFIG_USER_ONLY
   1554     /* The NVIC and M-profile CPU are two halves of a single piece of
   1555      * hardware; trying to use one without the other is a command line
   1556      * error and will result in segfaults if not caught here.
   1557      */
   1558     if (arm_feature(env, ARM_FEATURE_M)) {
   1559         if (!env->nvic) {
   1560             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
   1561             return;
   1562         }
   1563     } else {
   1564         if (env->nvic) {
   1565             error_setg(errp, "This board can only be used with Cortex-M CPUs");
   1566             return;
   1567         }
   1568     }
   1569 
   1570     if (!tcg_enabled() && !qtest_enabled()) {
   1571         /*
   1572          * We assume that no accelerator except TCG (and the "not really an
   1573          * accelerator" qtest) can handle these features, because Arm hardware
   1574          * virtualization can't virtualize them.
   1575          *
   1576          * Catch all the cases which might cause us to create more than one
   1577          * address space for the CPU (otherwise we will assert() later in
   1578          * cpu_address_space_init()).
   1579          */
   1580         if (arm_feature(env, ARM_FEATURE_M)) {
   1581             error_setg(errp,
   1582                        "Cannot enable %s when using an M-profile guest CPU",
   1583                        current_accel_name());
   1584             return;
   1585         }
   1586         if (cpu->has_el3) {
   1587             error_setg(errp,
   1588                        "Cannot enable %s when guest CPU has EL3 enabled",
   1589                        current_accel_name());
   1590             return;
   1591         }
   1592         if (cpu->tag_memory) {
   1593             error_setg(errp,
   1594                        "Cannot enable %s when guest CPUs has MTE enabled",
   1595                        current_accel_name());
   1596             return;
   1597         }
   1598     }
   1599 
   1600     {
   1601         uint64_t scale;
   1602 
   1603         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
   1604             if (!cpu->gt_cntfrq_hz) {
   1605                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
   1606                            cpu->gt_cntfrq_hz);
   1607                 return;
   1608             }
   1609             scale = gt_cntfrq_period_ns(cpu);
   1610         } else {
   1611             scale = GTIMER_SCALE;
   1612         }
   1613 
   1614         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
   1615                                                arm_gt_ptimer_cb, cpu);
   1616         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
   1617                                                arm_gt_vtimer_cb, cpu);
   1618         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
   1619                                               arm_gt_htimer_cb, cpu);
   1620         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
   1621                                               arm_gt_stimer_cb, cpu);
   1622         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
   1623                                                   arm_gt_hvtimer_cb, cpu);
   1624     }
   1625 #endif
   1626 
   1627     cpu_exec_realizefn(cs, &local_err);
   1628     if (local_err != NULL) {
   1629         error_propagate(errp, local_err);
   1630         return;
   1631     }
   1632 
   1633     arm_cpu_finalize_features(cpu, &local_err);
   1634     if (local_err != NULL) {
   1635         error_propagate(errp, local_err);
   1636         return;
   1637     }
   1638 
   1639     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
   1640         cpu->has_vfp != cpu->has_neon) {
   1641         /*
   1642          * This is an architectural requirement for AArch64; AArch32 is
   1643          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
   1644          */
   1645         error_setg(errp,
   1646                    "AArch64 CPUs must have both VFP and Neon or neither");
   1647         return;
   1648     }
   1649 
   1650     if (!cpu->has_vfp) {
   1651         uint64_t t;
   1652         uint32_t u;
   1653 
   1654         t = cpu->isar.id_aa64isar1;
   1655         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
   1656         cpu->isar.id_aa64isar1 = t;
   1657 
   1658         t = cpu->isar.id_aa64pfr0;
   1659         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
   1660         cpu->isar.id_aa64pfr0 = t;
   1661 
   1662         u = cpu->isar.id_isar6;
   1663         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
   1664         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
   1665         cpu->isar.id_isar6 = u;
   1666 
   1667         u = cpu->isar.mvfr0;
   1668         u = FIELD_DP32(u, MVFR0, FPSP, 0);
   1669         u = FIELD_DP32(u, MVFR0, FPDP, 0);
   1670         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
   1671         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
   1672         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
   1673         if (!arm_feature(env, ARM_FEATURE_M)) {
   1674             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
   1675             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
   1676         }
   1677         cpu->isar.mvfr0 = u;
   1678 
   1679         u = cpu->isar.mvfr1;
   1680         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
   1681         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
   1682         u = FIELD_DP32(u, MVFR1, FPHP, 0);
   1683         if (arm_feature(env, ARM_FEATURE_M)) {
   1684             u = FIELD_DP32(u, MVFR1, FP16, 0);
   1685         }
   1686         cpu->isar.mvfr1 = u;
   1687 
   1688         u = cpu->isar.mvfr2;
   1689         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
   1690         cpu->isar.mvfr2 = u;
   1691     }
   1692 
   1693     if (!cpu->has_neon) {
   1694         uint64_t t;
   1695         uint32_t u;
   1696 
   1697         unset_feature(env, ARM_FEATURE_NEON);
   1698 
   1699         t = cpu->isar.id_aa64isar0;
   1700         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
   1701         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
   1702         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
   1703         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
   1704         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
   1705         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
   1706         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
   1707         cpu->isar.id_aa64isar0 = t;
   1708 
   1709         t = cpu->isar.id_aa64isar1;
   1710         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
   1711         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
   1712         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
   1713         cpu->isar.id_aa64isar1 = t;
   1714 
   1715         t = cpu->isar.id_aa64pfr0;
   1716         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
   1717         cpu->isar.id_aa64pfr0 = t;
   1718 
   1719         u = cpu->isar.id_isar5;
   1720         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
   1721         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
   1722         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
   1723         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
   1724         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
   1725         cpu->isar.id_isar5 = u;
   1726 
   1727         u = cpu->isar.id_isar6;
   1728         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
   1729         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
   1730         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
   1731         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
   1732         cpu->isar.id_isar6 = u;
   1733 
   1734         if (!arm_feature(env, ARM_FEATURE_M)) {
   1735             u = cpu->isar.mvfr1;
   1736             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
   1737             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
   1738             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
   1739             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
   1740             cpu->isar.mvfr1 = u;
   1741 
   1742             u = cpu->isar.mvfr2;
   1743             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
   1744             cpu->isar.mvfr2 = u;
   1745         }
   1746     }
   1747 
   1748     if (!cpu->has_neon && !cpu->has_vfp) {
   1749         uint64_t t;
   1750         uint32_t u;
   1751 
   1752         t = cpu->isar.id_aa64isar0;
   1753         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
   1754         cpu->isar.id_aa64isar0 = t;
   1755 
   1756         t = cpu->isar.id_aa64isar1;
   1757         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
   1758         cpu->isar.id_aa64isar1 = t;
   1759 
   1760         u = cpu->isar.mvfr0;
   1761         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
   1762         cpu->isar.mvfr0 = u;
   1763 
   1764         /* Despite the name, this field covers both VFP and Neon */
   1765         u = cpu->isar.mvfr1;
   1766         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
   1767         cpu->isar.mvfr1 = u;
   1768     }
   1769 
   1770     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
   1771         uint32_t u;
   1772 
   1773         unset_feature(env, ARM_FEATURE_THUMB_DSP);
   1774 
   1775         u = cpu->isar.id_isar1;
   1776         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
   1777         cpu->isar.id_isar1 = u;
   1778 
   1779         u = cpu->isar.id_isar2;
   1780         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
   1781         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
   1782         cpu->isar.id_isar2 = u;
   1783 
   1784         u = cpu->isar.id_isar3;
   1785         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
   1786         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
   1787         cpu->isar.id_isar3 = u;
   1788     }
   1789 
   1790     /* Some features automatically imply others: */
   1791     if (arm_feature(env, ARM_FEATURE_V8)) {
   1792         if (arm_feature(env, ARM_FEATURE_M)) {
   1793             set_feature(env, ARM_FEATURE_V7);
   1794         } else {
   1795             set_feature(env, ARM_FEATURE_V7VE);
   1796         }
   1797     }
   1798 
   1799     /*
   1800      * There exist AArch64 cpus without AArch32 support.  When KVM
   1801      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
   1802      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
   1803      * As a general principle, we also do not make ID register
   1804      * consistency checks anywhere unless using TCG, because only
   1805      * for TCG would a consistency-check failure be a QEMU bug.
   1806      */
   1807     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
   1808         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
   1809     }
   1810 
   1811     if (arm_feature(env, ARM_FEATURE_V7VE)) {
   1812         /* v7 Virtualization Extensions. In real hardware this implies
   1813          * EL2 and also the presence of the Security Extensions.
   1814          * For QEMU, for backwards-compatibility we implement some
   1815          * CPUs or CPU configs which have no actual EL2 or EL3 but do
   1816          * include the various other features that V7VE implies.
   1817          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
   1818          * Security Extensions is ARM_FEATURE_EL3.
   1819          */
   1820         assert(!tcg_enabled() || no_aa32 ||
   1821                cpu_isar_feature(aa32_arm_div, cpu));
   1822         set_feature(env, ARM_FEATURE_LPAE);
   1823         set_feature(env, ARM_FEATURE_V7);
   1824     }
   1825     if (arm_feature(env, ARM_FEATURE_V7)) {
   1826         set_feature(env, ARM_FEATURE_VAPA);
   1827         set_feature(env, ARM_FEATURE_THUMB2);
   1828         set_feature(env, ARM_FEATURE_MPIDR);
   1829         if (!arm_feature(env, ARM_FEATURE_M)) {
   1830             set_feature(env, ARM_FEATURE_V6K);
   1831         } else {
   1832             set_feature(env, ARM_FEATURE_V6);
   1833         }
   1834 
   1835         /* Always define VBAR for V7 CPUs even if it doesn't exist in
   1836          * non-EL3 configs. This is needed by some legacy boards.
   1837          */
   1838         set_feature(env, ARM_FEATURE_VBAR);
   1839     }
   1840     if (arm_feature(env, ARM_FEATURE_V6K)) {
   1841         set_feature(env, ARM_FEATURE_V6);
   1842         set_feature(env, ARM_FEATURE_MVFR);
   1843     }
   1844     if (arm_feature(env, ARM_FEATURE_V6)) {
   1845         set_feature(env, ARM_FEATURE_V5);
   1846         if (!arm_feature(env, ARM_FEATURE_M)) {
   1847             assert(!tcg_enabled() || no_aa32 ||
   1848                    cpu_isar_feature(aa32_jazelle, cpu));
   1849             set_feature(env, ARM_FEATURE_AUXCR);
   1850         }
   1851     }
   1852     if (arm_feature(env, ARM_FEATURE_V5)) {
   1853         set_feature(env, ARM_FEATURE_V4T);
   1854     }
   1855     if (arm_feature(env, ARM_FEATURE_LPAE)) {
   1856         set_feature(env, ARM_FEATURE_V7MP);
   1857     }
   1858     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
   1859         set_feature(env, ARM_FEATURE_CBAR);
   1860     }
   1861     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
   1862         !arm_feature(env, ARM_FEATURE_M)) {
   1863         set_feature(env, ARM_FEATURE_THUMB_DSP);
   1864     }
   1865 
   1866     /*
   1867      * We rely on no XScale CPU having VFP so we can use the same bits in the
   1868      * TB flags field for VECSTRIDE and XSCALE_CPAR.
   1869      */
   1870     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
   1871            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
   1872            !arm_feature(env, ARM_FEATURE_XSCALE));
   1873 
   1874     if (arm_feature(env, ARM_FEATURE_V7) &&
   1875         !arm_feature(env, ARM_FEATURE_M) &&
   1876         !arm_feature(env, ARM_FEATURE_PMSA)) {
   1877         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
   1878          * can use 4K pages.
   1879          */
   1880         pagebits = 12;
   1881     } else {
   1882         /* For CPUs which might have tiny 1K pages, or which have an
   1883          * MPU and might have small region sizes, stick with 1K pages.
   1884          */
   1885         pagebits = 10;
   1886     }
   1887     if (!set_preferred_target_page_bits(pagebits)) {
   1888         /* This can only ever happen for hotplugging a CPU, or if
   1889          * the board code incorrectly creates a CPU which it has
   1890          * promised via minimum_page_size that it will not.
   1891          */
   1892         error_setg(errp, "This CPU requires a smaller page size than the "
   1893                    "system is using");
   1894         return;
   1895     }
   1896 
   1897     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
   1898      * We don't support setting cluster ID ([16..23]) (known as Aff2
   1899      * in later ARM ARM versions), or any of the higher affinity level fields,
   1900      * so these bits always RAZ.
   1901      */
   1902     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
   1903         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
   1904                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
   1905     }
   1906 
   1907     if (cpu->reset_hivecs) {
   1908             cpu->reset_sctlr |= (1 << 13);
   1909     }
   1910 
   1911     if (cpu->cfgend) {
   1912         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
   1913             cpu->reset_sctlr |= SCTLR_EE;
   1914         } else {
   1915             cpu->reset_sctlr |= SCTLR_B;
   1916         }
   1917     }
   1918 
   1919     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
   1920         /* If the has_el3 CPU property is disabled then we need to disable the
   1921          * feature.
   1922          */
   1923         unset_feature(env, ARM_FEATURE_EL3);
   1924 
   1925         /*
   1926          * Disable the security extension feature bits in the processor
   1927          * feature registers as well.
   1928          */
   1929         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
   1930         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
   1931         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
   1932                                            ID_AA64PFR0, EL3, 0);
   1933     }
   1934 
   1935     if (!cpu->has_el2) {
   1936         unset_feature(env, ARM_FEATURE_EL2);
   1937     }
   1938 
   1939     if (!cpu->has_pmu) {
   1940         unset_feature(env, ARM_FEATURE_PMU);
   1941     }
   1942     if (arm_feature(env, ARM_FEATURE_PMU)) {
   1943         pmu_init(cpu);
   1944 
   1945         if (!kvm_enabled()) {
   1946             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
   1947             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
   1948         }
   1949 
   1950 #ifndef CONFIG_USER_ONLY
   1951         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
   1952                 cpu);
   1953 #endif
   1954     } else {
   1955         cpu->isar.id_aa64dfr0 =
   1956             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
   1957         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
   1958         cpu->pmceid0 = 0;
   1959         cpu->pmceid1 = 0;
   1960     }
   1961 
   1962     if (!arm_feature(env, ARM_FEATURE_EL2)) {
   1963         /*
   1964          * Disable the hypervisor feature bits in the processor feature
   1965          * registers if we don't have EL2.
   1966          */
   1967         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
   1968                                            ID_AA64PFR0, EL2, 0);
   1969         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
   1970                                        ID_PFR1, VIRTUALIZATION, 0);
   1971     }
   1972 
   1973 #ifndef CONFIG_USER_ONLY
   1974     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
   1975         /*
   1976          * Disable the MTE feature bits if we do not have tag-memory
   1977          * provided by the machine.
   1978          */
   1979         cpu->isar.id_aa64pfr1 =
   1980             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
   1981     }
   1982 #endif
   1983 
   1984     if (tcg_enabled()) {
   1985         /*
   1986          * Don't report the Statistical Profiling Extension in the ID
   1987          * registers, because TCG doesn't implement it yet (not even a
   1988          * minimal stub version) and guests will fall over when they
   1989          * try to access the non-existent system registers for it.
   1990          */
   1991         cpu->isar.id_aa64dfr0 =
   1992             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
   1993     }
   1994 
   1995     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
   1996      * to false or by setting pmsav7-dregion to 0.
   1997      */
   1998     if (!cpu->has_mpu) {
   1999         cpu->pmsav7_dregion = 0;
   2000     }
   2001     if (cpu->pmsav7_dregion == 0) {
   2002         cpu->has_mpu = false;
   2003     }
   2004 
   2005     if (arm_feature(env, ARM_FEATURE_PMSA) &&
   2006         arm_feature(env, ARM_FEATURE_V7)) {
   2007         uint32_t nr = cpu->pmsav7_dregion;
   2008 
   2009         if (nr > 0xff) {
   2010             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
   2011             return;
   2012         }
   2013 
   2014         if (nr) {
   2015             if (arm_feature(env, ARM_FEATURE_V8)) {
   2016                 /* PMSAv8 */
   2017                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
   2018                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
   2019                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
   2020                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
   2021                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
   2022                 }
   2023             } else {
   2024                 env->pmsav7.drbar = g_new0(uint32_t, nr);
   2025                 env->pmsav7.drsr = g_new0(uint32_t, nr);
   2026                 env->pmsav7.dracr = g_new0(uint32_t, nr);
   2027             }
   2028         }
   2029     }
   2030 
   2031     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
   2032         uint32_t nr = cpu->sau_sregion;
   2033 
   2034         if (nr > 0xff) {
   2035             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
   2036             return;
   2037         }
   2038 
   2039         if (nr) {
   2040             env->sau.rbar = g_new0(uint32_t, nr);
   2041             env->sau.rlar = g_new0(uint32_t, nr);
   2042         }
   2043     }
   2044 
   2045     if (arm_feature(env, ARM_FEATURE_EL3)) {
   2046         set_feature(env, ARM_FEATURE_VBAR);
   2047     }
   2048 
   2049     register_cp_regs_for_features(cpu);
   2050     arm_cpu_register_gdb_regs_for_features(cpu);
   2051 
   2052     init_cpreg_list(cpu);
   2053 
   2054 #ifndef CONFIG_USER_ONLY
   2055     MachineState *ms = MACHINE(qdev_get_machine());
   2056     unsigned int smp_cpus = ms->smp.cpus;
   2057     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
   2058 
   2059     /*
   2060      * We must set cs->num_ases to the final value before
   2061      * the first call to cpu_address_space_init.
   2062      */
   2063     if (cpu->tag_memory != NULL) {
   2064         cs->num_ases = 3 + has_secure;
   2065     } else {
   2066         cs->num_ases = 1 + has_secure;
   2067     }
   2068 
   2069     if (has_secure) {
   2070         if (!cpu->secure_memory) {
   2071             cpu->secure_memory = cs->memory;
   2072         }
   2073         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
   2074                                cpu->secure_memory);
   2075     }
   2076 
   2077     if (cpu->tag_memory != NULL) {
   2078         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
   2079                                cpu->tag_memory);
   2080         if (has_secure) {
   2081             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
   2082                                    cpu->secure_tag_memory);
   2083         }
   2084     }
   2085 
   2086     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
   2087 
   2088     /* No core_count specified, default to smp_cpus. */
   2089     if (cpu->core_count == -1) {
   2090         cpu->core_count = smp_cpus;
   2091     }
   2092 #endif
   2093 
   2094     if (tcg_enabled()) {
   2095         int dcz_blocklen = 4 << cpu->dcz_blocksize;
   2096 
   2097         /*
   2098          * We only support DCZ blocklen that fits on one page.
   2099          *
   2100          * Architectually this is always true.  However TARGET_PAGE_SIZE
   2101          * is variable and, for compatibility with -machine virt-2.7,
   2102          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
   2103          * But even then, while the largest architectural DCZ blocklen
   2104          * is 2KiB, no cpu actually uses such a large blocklen.
   2105          */
   2106         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
   2107 
   2108         /*
   2109          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
   2110          * both nibbles of each byte storing tag data may be written at once.
   2111          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
   2112          */
   2113         if (cpu_isar_feature(aa64_mte, cpu)) {
   2114             assert(dcz_blocklen >= 2 * TAG_GRANULE);
   2115         }
   2116     }
   2117 
   2118     qemu_init_vcpu(cs);
   2119     cpu_reset(cs);
   2120 
   2121     acc->parent_realize(dev, errp);
   2122 }
   2123 
   2124 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
   2125 {
   2126     ObjectClass *oc;
   2127     char *typename;
   2128     char **cpuname;
   2129     const char *cpunamestr;
   2130 
   2131     cpuname = g_strsplit(cpu_model, ",", 1);
   2132     cpunamestr = cpuname[0];
   2133 #ifdef CONFIG_USER_ONLY
   2134     /* For backwards compatibility usermode emulation allows "-cpu any",
   2135      * which has the same semantics as "-cpu max".
   2136      */
   2137     if (!strcmp(cpunamestr, "any")) {
   2138         cpunamestr = "max";
   2139     }
   2140 #endif
   2141     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
   2142     oc = object_class_by_name(typename);
   2143     g_strfreev(cpuname);
   2144     g_free(typename);
   2145     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
   2146         object_class_is_abstract(oc)) {
   2147         return NULL;
   2148     }
   2149     return oc;
   2150 }
   2151 
   2152 static Property arm_cpu_properties[] = {
   2153     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
   2154     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
   2155                         mp_affinity, ARM64_AFFINITY_INVALID),
   2156     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
   2157     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
   2158     DEFINE_PROP_END_OF_LIST()
   2159 };
   2160 
   2161 static gchar *arm_gdb_arch_name(CPUState *cs)
   2162 {
   2163     ARMCPU *cpu = ARM_CPU(cs);
   2164     CPUARMState *env = &cpu->env;
   2165 
   2166     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
   2167         return g_strdup("iwmmxt");
   2168     }
   2169     return g_strdup("arm");
   2170 }
   2171 
   2172 #ifndef CONFIG_USER_ONLY
   2173 #include "hw/core/sysemu-cpu-ops.h"
   2174 
   2175 static const struct SysemuCPUOps arm_sysemu_ops = {
   2176     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
   2177     .asidx_from_attrs = arm_asidx_from_attrs,
   2178     .write_elf32_note = arm_cpu_write_elf32_note,
   2179     .write_elf64_note = arm_cpu_write_elf64_note,
   2180     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
   2181     .legacy_vmsd = &vmstate_arm_cpu,
   2182 };
   2183 #endif
   2184 
   2185 #ifdef CONFIG_TCG
   2186 static const struct TCGCPUOps arm_tcg_ops = {
   2187     .initialize = arm_translate_init,
   2188     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
   2189     .debug_excp_handler = arm_debug_excp_handler,
   2190     .restore_state_to_opc = arm_restore_state_to_opc,
   2191 
   2192 #ifdef CONFIG_USER_ONLY
   2193     .record_sigsegv = arm_cpu_record_sigsegv,
   2194     .record_sigbus = arm_cpu_record_sigbus,
   2195 #else
   2196     .tlb_fill = arm_cpu_tlb_fill,
   2197     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
   2198     .do_interrupt = arm_cpu_do_interrupt,
   2199     .do_transaction_failed = arm_cpu_do_transaction_failed,
   2200     .do_unaligned_access = arm_cpu_do_unaligned_access,
   2201     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
   2202     .debug_check_watchpoint = arm_debug_check_watchpoint,
   2203     .debug_check_breakpoint = arm_debug_check_breakpoint,
   2204 #endif /* !CONFIG_USER_ONLY */
   2205 };
   2206 #endif /* CONFIG_TCG */
   2207 
   2208 static void arm_cpu_class_init(ObjectClass *oc, void *data)
   2209 {
   2210     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
   2211     CPUClass *cc = CPU_CLASS(acc);
   2212     DeviceClass *dc = DEVICE_CLASS(oc);
   2213 
   2214     device_class_set_parent_realize(dc, arm_cpu_realizefn,
   2215                                     &acc->parent_realize);
   2216 
   2217     device_class_set_props(dc, arm_cpu_properties);
   2218     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
   2219 
   2220     cc->class_by_name = arm_cpu_class_by_name;
   2221     cc->has_work = arm_cpu_has_work;
   2222     cc->dump_state = arm_cpu_dump_state;
   2223     cc->set_pc = arm_cpu_set_pc;
   2224     cc->get_pc = arm_cpu_get_pc;
   2225     cc->gdb_read_register = arm_cpu_gdb_read_register;
   2226     cc->gdb_write_register = arm_cpu_gdb_write_register;
   2227 #ifndef CONFIG_USER_ONLY
   2228     cc->sysemu_ops = &arm_sysemu_ops;
   2229 #endif
   2230     cc->gdb_num_core_regs = 26;
   2231     cc->gdb_core_xml_file = "arm-core.xml";
   2232     cc->gdb_arch_name = arm_gdb_arch_name;
   2233     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
   2234     cc->gdb_stop_before_watchpoint = true;
   2235     cc->disas_set_info = arm_disas_set_info;
   2236 
   2237 #ifdef CONFIG_TCG
   2238     cc->tcg_ops = &arm_tcg_ops;
   2239 #endif /* CONFIG_TCG */
   2240 }
   2241 
   2242 static void arm_cpu_instance_init(Object *obj)
   2243 {
   2244     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
   2245 
   2246     acc->info->initfn(obj);
   2247     arm_cpu_post_init(obj);
   2248 }
   2249 
   2250 static void cpu_register_class_init(ObjectClass *oc, void *data)
   2251 {
   2252     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
   2253 
   2254     acc->info = data;
   2255 }
   2256 
   2257 void arm_cpu_register(const ARMCPUInfo *info)
   2258 {
   2259     TypeInfo type_info = {
   2260         .parent = TYPE_ARM_CPU,
   2261         .instance_size = sizeof(ARMCPU),
   2262         .instance_align = __alignof__(ARMCPU),
   2263         .instance_init = arm_cpu_instance_init,
   2264         .class_size = sizeof(ARMCPUClass),
   2265         .class_init = info->class_init ?: cpu_register_class_init,
   2266         .class_data = (void *)info,
   2267     };
   2268 
   2269     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
   2270     type_register(&type_info);
   2271     g_free((void *)type_info.name);
   2272 }
   2273 
   2274 static const TypeInfo arm_cpu_type_info = {
   2275     .name = TYPE_ARM_CPU,
   2276     .parent = TYPE_CPU,
   2277     .instance_size = sizeof(ARMCPU),
   2278     .instance_align = __alignof__(ARMCPU),
   2279     .instance_init = arm_cpu_initfn,
   2280     .instance_finalize = arm_cpu_finalizefn,
   2281     .abstract = true,
   2282     .class_size = sizeof(ARMCPUClass),
   2283     .class_init = arm_cpu_class_init,
   2284 };
   2285 
   2286 static void arm_cpu_register_types(void)
   2287 {
   2288     type_register_static(&arm_cpu_type_info);
   2289 }
   2290 
   2291 type_init(arm_cpu_register_types)