qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

vax_helper.c (8431B)


      1 /*
      2  *  Helpers for vax floating point instructions.
      3  *
      4  *  Copyright (c) 2007 Jocelyn Mayer
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2.1 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 
     20 #include "qemu/osdep.h"
     21 #include "cpu.h"
     22 #include "exec/exec-all.h"
     23 #include "exec/helper-proto.h"
     24 #include "fpu/softfloat.h"
     25 
     26 #define FP_STATUS (env->fp_status)
     27 
     28 
     29 /* F floating (VAX) */
     30 static uint64_t float32_to_f(float32 fa)
     31 {
     32     uint64_t r, exp, mant, sig;
     33     CPU_FloatU a;
     34 
     35     a.f = fa;
     36     sig = ((uint64_t)a.l & 0x80000000) << 32;
     37     exp = (a.l >> 23) & 0xff;
     38     mant = ((uint64_t)a.l & 0x007fffff) << 29;
     39 
     40     if (exp == 255) {
     41         /* NaN or infinity */
     42         r = 1; /* VAX dirty zero */
     43     } else if (exp == 0) {
     44         if (mant == 0) {
     45             /* Zero */
     46             r = 0;
     47         } else {
     48             /* Denormalized */
     49             r = sig | ((exp + 1) << 52) | mant;
     50         }
     51     } else {
     52         if (exp >= 253) {
     53             /* Overflow */
     54             r = 1; /* VAX dirty zero */
     55         } else {
     56             r = sig | ((exp + 2) << 52);
     57         }
     58     }
     59 
     60     return r;
     61 }
     62 
     63 static float32 f_to_float32(CPUAlphaState *env, uintptr_t retaddr, uint64_t a)
     64 {
     65     uint32_t exp, mant_sig;
     66     CPU_FloatU r;
     67 
     68     exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
     69     mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
     70 
     71     if (unlikely(!exp && mant_sig)) {
     72         /* Reserved operands / Dirty zero */
     73         dynamic_excp(env, retaddr, EXCP_OPCDEC, 0);
     74     }
     75 
     76     if (exp < 3) {
     77         /* Underflow */
     78         r.l = 0;
     79     } else {
     80         r.l = ((exp - 2) << 23) | mant_sig;
     81     }
     82 
     83     return r.f;
     84 }
     85 
     86 uint32_t helper_f_to_memory(uint64_t a)
     87 {
     88     uint32_t r;
     89     r =  (a & 0x00001fffe0000000ull) >> 13;
     90     r |= (a & 0x07ffe00000000000ull) >> 45;
     91     r |= (a & 0xc000000000000000ull) >> 48;
     92     return r;
     93 }
     94 
     95 uint64_t helper_memory_to_f(uint32_t a)
     96 {
     97     uint64_t r;
     98     r =  ((uint64_t)(a & 0x0000c000)) << 48;
     99     r |= ((uint64_t)(a & 0x003fffff)) << 45;
    100     r |= ((uint64_t)(a & 0xffff0000)) << 13;
    101     if (!(a & 0x00004000)) {
    102         r |= 0x7ll << 59;
    103     }
    104     return r;
    105 }
    106 
    107 /* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong.  We should
    108    either implement VAX arithmetic properly or just signal invalid opcode.  */
    109 
    110 uint64_t helper_addf(CPUAlphaState *env, uint64_t a, uint64_t b)
    111 {
    112     float32 fa, fb, fr;
    113 
    114     fa = f_to_float32(env, GETPC(), a);
    115     fb = f_to_float32(env, GETPC(), b);
    116     fr = float32_add(fa, fb, &FP_STATUS);
    117     return float32_to_f(fr);
    118 }
    119 
    120 uint64_t helper_subf(CPUAlphaState *env, uint64_t a, uint64_t b)
    121 {
    122     float32 fa, fb, fr;
    123 
    124     fa = f_to_float32(env, GETPC(), a);
    125     fb = f_to_float32(env, GETPC(), b);
    126     fr = float32_sub(fa, fb, &FP_STATUS);
    127     return float32_to_f(fr);
    128 }
    129 
    130 uint64_t helper_mulf(CPUAlphaState *env, uint64_t a, uint64_t b)
    131 {
    132     float32 fa, fb, fr;
    133 
    134     fa = f_to_float32(env, GETPC(), a);
    135     fb = f_to_float32(env, GETPC(), b);
    136     fr = float32_mul(fa, fb, &FP_STATUS);
    137     return float32_to_f(fr);
    138 }
    139 
    140 uint64_t helper_divf(CPUAlphaState *env, uint64_t a, uint64_t b)
    141 {
    142     float32 fa, fb, fr;
    143 
    144     fa = f_to_float32(env, GETPC(), a);
    145     fb = f_to_float32(env, GETPC(), b);
    146     fr = float32_div(fa, fb, &FP_STATUS);
    147     return float32_to_f(fr);
    148 }
    149 
    150 uint64_t helper_sqrtf(CPUAlphaState *env, uint64_t t)
    151 {
    152     float32 ft, fr;
    153 
    154     ft = f_to_float32(env, GETPC(), t);
    155     fr = float32_sqrt(ft, &FP_STATUS);
    156     return float32_to_f(fr);
    157 }
    158 
    159 
    160 /* G floating (VAX) */
    161 static uint64_t float64_to_g(float64 fa)
    162 {
    163     uint64_t r, exp, mant, sig;
    164     CPU_DoubleU a;
    165 
    166     a.d = fa;
    167     sig = a.ll & 0x8000000000000000ull;
    168     exp = (a.ll >> 52) & 0x7ff;
    169     mant = a.ll & 0x000fffffffffffffull;
    170 
    171     if (exp == 2047) {
    172         /* NaN or infinity */
    173         r = 1; /* VAX dirty zero */
    174     } else if (exp == 0) {
    175         if (mant == 0) {
    176             /* Zero */
    177             r = 0;
    178         } else {
    179             /* Denormalized */
    180             r = sig | ((exp + 1) << 52) | mant;
    181         }
    182     } else {
    183         if (exp >= 2045) {
    184             /* Overflow */
    185             r = 1; /* VAX dirty zero */
    186         } else {
    187             r = sig | ((exp + 2) << 52);
    188         }
    189     }
    190 
    191     return r;
    192 }
    193 
    194 static float64 g_to_float64(CPUAlphaState *env, uintptr_t retaddr, uint64_t a)
    195 {
    196     uint64_t exp, mant_sig;
    197     CPU_DoubleU r;
    198 
    199     exp = (a >> 52) & 0x7ff;
    200     mant_sig = a & 0x800fffffffffffffull;
    201 
    202     if (!exp && mant_sig) {
    203         /* Reserved operands / Dirty zero */
    204         dynamic_excp(env, retaddr, EXCP_OPCDEC, 0);
    205     }
    206 
    207     if (exp < 3) {
    208         /* Underflow */
    209         r.ll = 0;
    210     } else {
    211         r.ll = ((exp - 2) << 52) | mant_sig;
    212     }
    213 
    214     return r.d;
    215 }
    216 
    217 uint64_t helper_g_to_memory(uint64_t a)
    218 {
    219     uint64_t r;
    220     r =  (a & 0x000000000000ffffull) << 48;
    221     r |= (a & 0x00000000ffff0000ull) << 16;
    222     r |= (a & 0x0000ffff00000000ull) >> 16;
    223     r |= (a & 0xffff000000000000ull) >> 48;
    224     return r;
    225 }
    226 
    227 uint64_t helper_memory_to_g(uint64_t a)
    228 {
    229     uint64_t r;
    230     r =  (a & 0x000000000000ffffull) << 48;
    231     r |= (a & 0x00000000ffff0000ull) << 16;
    232     r |= (a & 0x0000ffff00000000ull) >> 16;
    233     r |= (a & 0xffff000000000000ull) >> 48;
    234     return r;
    235 }
    236 
    237 uint64_t helper_addg(CPUAlphaState *env, uint64_t a, uint64_t b)
    238 {
    239     float64 fa, fb, fr;
    240 
    241     fa = g_to_float64(env, GETPC(), a);
    242     fb = g_to_float64(env, GETPC(), b);
    243     fr = float64_add(fa, fb, &FP_STATUS);
    244     return float64_to_g(fr);
    245 }
    246 
    247 uint64_t helper_subg(CPUAlphaState *env, uint64_t a, uint64_t b)
    248 {
    249     float64 fa, fb, fr;
    250 
    251     fa = g_to_float64(env, GETPC(), a);
    252     fb = g_to_float64(env, GETPC(), b);
    253     fr = float64_sub(fa, fb, &FP_STATUS);
    254     return float64_to_g(fr);
    255 }
    256 
    257 uint64_t helper_mulg(CPUAlphaState *env, uint64_t a, uint64_t b)
    258 {
    259     float64 fa, fb, fr;
    260 
    261     fa = g_to_float64(env, GETPC(), a);
    262     fb = g_to_float64(env, GETPC(), b);
    263     fr = float64_mul(fa, fb, &FP_STATUS);
    264     return float64_to_g(fr);
    265 }
    266 
    267 uint64_t helper_divg(CPUAlphaState *env, uint64_t a, uint64_t b)
    268 {
    269     float64 fa, fb, fr;
    270 
    271     fa = g_to_float64(env, GETPC(), a);
    272     fb = g_to_float64(env, GETPC(), b);
    273     fr = float64_div(fa, fb, &FP_STATUS);
    274     return float64_to_g(fr);
    275 }
    276 
    277 uint64_t helper_sqrtg(CPUAlphaState *env, uint64_t a)
    278 {
    279     float64 fa, fr;
    280 
    281     fa = g_to_float64(env, GETPC(), a);
    282     fr = float64_sqrt(fa, &FP_STATUS);
    283     return float64_to_g(fr);
    284 }
    285 
    286 uint64_t helper_cmpgeq(CPUAlphaState *env, uint64_t a, uint64_t b)
    287 {
    288     float64 fa, fb;
    289 
    290     fa = g_to_float64(env, GETPC(), a);
    291     fb = g_to_float64(env, GETPC(), b);
    292 
    293     if (float64_eq_quiet(fa, fb, &FP_STATUS)) {
    294         return 0x4000000000000000ULL;
    295     } else {
    296         return 0;
    297     }
    298 }
    299 
    300 uint64_t helper_cmpgle(CPUAlphaState *env, uint64_t a, uint64_t b)
    301 {
    302     float64 fa, fb;
    303 
    304     fa = g_to_float64(env, GETPC(), a);
    305     fb = g_to_float64(env, GETPC(), b);
    306 
    307     if (float64_le(fa, fb, &FP_STATUS)) {
    308         return 0x4000000000000000ULL;
    309     } else {
    310         return 0;
    311     }
    312 }
    313 
    314 uint64_t helper_cmpglt(CPUAlphaState *env, uint64_t a, uint64_t b)
    315 {
    316     float64 fa, fb;
    317 
    318     fa = g_to_float64(env, GETPC(), a);
    319     fb = g_to_float64(env, GETPC(), b);
    320 
    321     if (float64_lt(fa, fb, &FP_STATUS)) {
    322         return 0x4000000000000000ULL;
    323     } else {
    324         return 0;
    325     }
    326 }
    327 
    328 uint64_t helper_cvtqf(CPUAlphaState *env, uint64_t a)
    329 {
    330     float32 fr = int64_to_float32(a, &FP_STATUS);
    331     return float32_to_f(fr);
    332 }
    333 
    334 uint64_t helper_cvtgf(CPUAlphaState *env, uint64_t a)
    335 {
    336     float64 fa;
    337     float32 fr;
    338 
    339     fa = g_to_float64(env, GETPC(), a);
    340     fr = float64_to_float32(fa, &FP_STATUS);
    341     return float32_to_f(fr);
    342 }
    343 
    344 uint64_t helper_cvtgq(CPUAlphaState *env, uint64_t a)
    345 {
    346     float64 fa = g_to_float64(env, GETPC(), a);
    347     return float64_to_int64_round_to_zero(fa, &FP_STATUS);
    348 }
    349 
    350 uint64_t helper_cvtqg(CPUAlphaState *env, uint64_t a)
    351 {
    352     float64 fr;
    353     fr = int64_to_float64(a, &FP_STATUS);
    354     return float64_to_g(fr);
    355 }