qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

dma-helpers.c (10135B)


      1 /*
      2  * DMA helper functions
      3  *
      4  * Copyright (c) 2009,2020 Red Hat
      5  *
      6  * This work is licensed under the terms of the GNU General Public License
      7  * (GNU GPL), version 2 or later.
      8  */
      9 
     10 #include "qemu/osdep.h"
     11 #include "sysemu/block-backend.h"
     12 #include "sysemu/dma.h"
     13 #include "trace/trace-root.h"
     14 #include "qemu/thread.h"
     15 #include "qemu/main-loop.h"
     16 #include "sysemu/cpu-timers.h"
     17 #include "qemu/range.h"
     18 
     19 /* #define DEBUG_IOMMU */
     20 
     21 MemTxResult dma_memory_set(AddressSpace *as, dma_addr_t addr,
     22                            uint8_t c, dma_addr_t len, MemTxAttrs attrs)
     23 {
     24     dma_barrier(as, DMA_DIRECTION_FROM_DEVICE);
     25 
     26     return address_space_set(as, addr, c, len, attrs);
     27 }
     28 
     29 void qemu_sglist_init(QEMUSGList *qsg, DeviceState *dev, int alloc_hint,
     30                       AddressSpace *as)
     31 {
     32     qsg->sg = g_new(ScatterGatherEntry, alloc_hint);
     33     qsg->nsg = 0;
     34     qsg->nalloc = alloc_hint;
     35     qsg->size = 0;
     36     qsg->as = as;
     37     qsg->dev = dev;
     38     object_ref(OBJECT(dev));
     39 }
     40 
     41 void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len)
     42 {
     43     if (qsg->nsg == qsg->nalloc) {
     44         qsg->nalloc = 2 * qsg->nalloc + 1;
     45         qsg->sg = g_renew(ScatterGatherEntry, qsg->sg, qsg->nalloc);
     46     }
     47     qsg->sg[qsg->nsg].base = base;
     48     qsg->sg[qsg->nsg].len = len;
     49     qsg->size += len;
     50     ++qsg->nsg;
     51 }
     52 
     53 void qemu_sglist_destroy(QEMUSGList *qsg)
     54 {
     55     object_unref(OBJECT(qsg->dev));
     56     g_free(qsg->sg);
     57     memset(qsg, 0, sizeof(*qsg));
     58 }
     59 
     60 typedef struct {
     61     BlockAIOCB common;
     62     AioContext *ctx;
     63     BlockAIOCB *acb;
     64     QEMUSGList *sg;
     65     uint32_t align;
     66     uint64_t offset;
     67     DMADirection dir;
     68     int sg_cur_index;
     69     dma_addr_t sg_cur_byte;
     70     QEMUIOVector iov;
     71     QEMUBH *bh;
     72     DMAIOFunc *io_func;
     73     void *io_func_opaque;
     74 } DMAAIOCB;
     75 
     76 static void dma_blk_cb(void *opaque, int ret);
     77 
     78 static void reschedule_dma(void *opaque)
     79 {
     80     DMAAIOCB *dbs = (DMAAIOCB *)opaque;
     81 
     82     assert(!dbs->acb && dbs->bh);
     83     qemu_bh_delete(dbs->bh);
     84     dbs->bh = NULL;
     85     dma_blk_cb(dbs, 0);
     86 }
     87 
     88 static void dma_blk_unmap(DMAAIOCB *dbs)
     89 {
     90     int i;
     91 
     92     for (i = 0; i < dbs->iov.niov; ++i) {
     93         dma_memory_unmap(dbs->sg->as, dbs->iov.iov[i].iov_base,
     94                          dbs->iov.iov[i].iov_len, dbs->dir,
     95                          dbs->iov.iov[i].iov_len);
     96     }
     97     qemu_iovec_reset(&dbs->iov);
     98 }
     99 
    100 static void dma_complete(DMAAIOCB *dbs, int ret)
    101 {
    102     trace_dma_complete(dbs, ret, dbs->common.cb);
    103 
    104     assert(!dbs->acb && !dbs->bh);
    105     dma_blk_unmap(dbs);
    106     if (dbs->common.cb) {
    107         dbs->common.cb(dbs->common.opaque, ret);
    108     }
    109     qemu_iovec_destroy(&dbs->iov);
    110     qemu_aio_unref(dbs);
    111 }
    112 
    113 static void dma_blk_cb(void *opaque, int ret)
    114 {
    115     DMAAIOCB *dbs = (DMAAIOCB *)opaque;
    116     dma_addr_t cur_addr, cur_len;
    117     void *mem;
    118 
    119     trace_dma_blk_cb(dbs, ret);
    120 
    121     dbs->acb = NULL;
    122     dbs->offset += dbs->iov.size;
    123 
    124     if (dbs->sg_cur_index == dbs->sg->nsg || ret < 0) {
    125         dma_complete(dbs, ret);
    126         return;
    127     }
    128     dma_blk_unmap(dbs);
    129 
    130     while (dbs->sg_cur_index < dbs->sg->nsg) {
    131         cur_addr = dbs->sg->sg[dbs->sg_cur_index].base + dbs->sg_cur_byte;
    132         cur_len = dbs->sg->sg[dbs->sg_cur_index].len - dbs->sg_cur_byte;
    133         mem = dma_memory_map(dbs->sg->as, cur_addr, &cur_len, dbs->dir,
    134                              MEMTXATTRS_UNSPECIFIED);
    135         /*
    136          * Make reads deterministic in icount mode. Windows sometimes issues
    137          * disk read requests with overlapping SGs. It leads
    138          * to non-determinism, because resulting buffer contents may be mixed
    139          * from several sectors. This code splits all SGs into several
    140          * groups. SGs in every group do not overlap.
    141          */
    142         if (mem && icount_enabled() && dbs->dir == DMA_DIRECTION_FROM_DEVICE) {
    143             int i;
    144             for (i = 0 ; i < dbs->iov.niov ; ++i) {
    145                 if (ranges_overlap((intptr_t)dbs->iov.iov[i].iov_base,
    146                                    dbs->iov.iov[i].iov_len, (intptr_t)mem,
    147                                    cur_len)) {
    148                     dma_memory_unmap(dbs->sg->as, mem, cur_len,
    149                                      dbs->dir, cur_len);
    150                     mem = NULL;
    151                     break;
    152                 }
    153             }
    154         }
    155         if (!mem)
    156             break;
    157         qemu_iovec_add(&dbs->iov, mem, cur_len);
    158         dbs->sg_cur_byte += cur_len;
    159         if (dbs->sg_cur_byte == dbs->sg->sg[dbs->sg_cur_index].len) {
    160             dbs->sg_cur_byte = 0;
    161             ++dbs->sg_cur_index;
    162         }
    163     }
    164 
    165     if (dbs->iov.size == 0) {
    166         trace_dma_map_wait(dbs);
    167         dbs->bh = aio_bh_new(dbs->ctx, reschedule_dma, dbs);
    168         cpu_register_map_client(dbs->bh);
    169         return;
    170     }
    171 
    172     if (!QEMU_IS_ALIGNED(dbs->iov.size, dbs->align)) {
    173         qemu_iovec_discard_back(&dbs->iov,
    174                                 QEMU_ALIGN_DOWN(dbs->iov.size, dbs->align));
    175     }
    176 
    177     aio_context_acquire(dbs->ctx);
    178     dbs->acb = dbs->io_func(dbs->offset, &dbs->iov,
    179                             dma_blk_cb, dbs, dbs->io_func_opaque);
    180     aio_context_release(dbs->ctx);
    181     assert(dbs->acb);
    182 }
    183 
    184 static void dma_aio_cancel(BlockAIOCB *acb)
    185 {
    186     DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common);
    187 
    188     trace_dma_aio_cancel(dbs);
    189 
    190     assert(!(dbs->acb && dbs->bh));
    191     if (dbs->acb) {
    192         /* This will invoke dma_blk_cb.  */
    193         blk_aio_cancel_async(dbs->acb);
    194         return;
    195     }
    196 
    197     if (dbs->bh) {
    198         cpu_unregister_map_client(dbs->bh);
    199         qemu_bh_delete(dbs->bh);
    200         dbs->bh = NULL;
    201     }
    202     if (dbs->common.cb) {
    203         dbs->common.cb(dbs->common.opaque, -ECANCELED);
    204     }
    205 }
    206 
    207 static AioContext *dma_get_aio_context(BlockAIOCB *acb)
    208 {
    209     DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common);
    210 
    211     return dbs->ctx;
    212 }
    213 
    214 static const AIOCBInfo dma_aiocb_info = {
    215     .aiocb_size         = sizeof(DMAAIOCB),
    216     .cancel_async       = dma_aio_cancel,
    217     .get_aio_context    = dma_get_aio_context,
    218 };
    219 
    220 BlockAIOCB *dma_blk_io(AioContext *ctx,
    221     QEMUSGList *sg, uint64_t offset, uint32_t align,
    222     DMAIOFunc *io_func, void *io_func_opaque,
    223     BlockCompletionFunc *cb,
    224     void *opaque, DMADirection dir)
    225 {
    226     DMAAIOCB *dbs = qemu_aio_get(&dma_aiocb_info, NULL, cb, opaque);
    227 
    228     trace_dma_blk_io(dbs, io_func_opaque, offset, (dir == DMA_DIRECTION_TO_DEVICE));
    229 
    230     dbs->acb = NULL;
    231     dbs->sg = sg;
    232     dbs->ctx = ctx;
    233     dbs->offset = offset;
    234     dbs->align = align;
    235     dbs->sg_cur_index = 0;
    236     dbs->sg_cur_byte = 0;
    237     dbs->dir = dir;
    238     dbs->io_func = io_func;
    239     dbs->io_func_opaque = io_func_opaque;
    240     dbs->bh = NULL;
    241     qemu_iovec_init(&dbs->iov, sg->nsg);
    242     dma_blk_cb(dbs, 0);
    243     return &dbs->common;
    244 }
    245 
    246 
    247 static
    248 BlockAIOCB *dma_blk_read_io_func(int64_t offset, QEMUIOVector *iov,
    249                                  BlockCompletionFunc *cb, void *cb_opaque,
    250                                  void *opaque)
    251 {
    252     BlockBackend *blk = opaque;
    253     return blk_aio_preadv(blk, offset, iov, 0, cb, cb_opaque);
    254 }
    255 
    256 BlockAIOCB *dma_blk_read(BlockBackend *blk,
    257                          QEMUSGList *sg, uint64_t offset, uint32_t align,
    258                          void (*cb)(void *opaque, int ret), void *opaque)
    259 {
    260     return dma_blk_io(blk_get_aio_context(blk), sg, offset, align,
    261                       dma_blk_read_io_func, blk, cb, opaque,
    262                       DMA_DIRECTION_FROM_DEVICE);
    263 }
    264 
    265 static
    266 BlockAIOCB *dma_blk_write_io_func(int64_t offset, QEMUIOVector *iov,
    267                                   BlockCompletionFunc *cb, void *cb_opaque,
    268                                   void *opaque)
    269 {
    270     BlockBackend *blk = opaque;
    271     return blk_aio_pwritev(blk, offset, iov, 0, cb, cb_opaque);
    272 }
    273 
    274 BlockAIOCB *dma_blk_write(BlockBackend *blk,
    275                           QEMUSGList *sg, uint64_t offset, uint32_t align,
    276                           void (*cb)(void *opaque, int ret), void *opaque)
    277 {
    278     return dma_blk_io(blk_get_aio_context(blk), sg, offset, align,
    279                       dma_blk_write_io_func, blk, cb, opaque,
    280                       DMA_DIRECTION_TO_DEVICE);
    281 }
    282 
    283 
    284 static MemTxResult dma_buf_rw(void *buf, dma_addr_t len, dma_addr_t *residual,
    285                               QEMUSGList *sg, DMADirection dir,
    286                               MemTxAttrs attrs)
    287 {
    288     uint8_t *ptr = buf;
    289     dma_addr_t xresidual;
    290     int sg_cur_index;
    291     MemTxResult res = MEMTX_OK;
    292 
    293     xresidual = sg->size;
    294     sg_cur_index = 0;
    295     len = MIN(len, xresidual);
    296     while (len > 0) {
    297         ScatterGatherEntry entry = sg->sg[sg_cur_index++];
    298         dma_addr_t xfer = MIN(len, entry.len);
    299         res |= dma_memory_rw(sg->as, entry.base, ptr, xfer, dir, attrs);
    300         ptr += xfer;
    301         len -= xfer;
    302         xresidual -= xfer;
    303     }
    304 
    305     if (residual) {
    306         *residual = xresidual;
    307     }
    308     return res;
    309 }
    310 
    311 MemTxResult dma_buf_read(void *ptr, dma_addr_t len, dma_addr_t *residual,
    312                          QEMUSGList *sg, MemTxAttrs attrs)
    313 {
    314     return dma_buf_rw(ptr, len, residual, sg, DMA_DIRECTION_FROM_DEVICE, attrs);
    315 }
    316 
    317 MemTxResult dma_buf_write(void *ptr, dma_addr_t len, dma_addr_t *residual,
    318                           QEMUSGList *sg, MemTxAttrs attrs)
    319 {
    320     return dma_buf_rw(ptr, len, residual, sg, DMA_DIRECTION_TO_DEVICE, attrs);
    321 }
    322 
    323 void dma_acct_start(BlockBackend *blk, BlockAcctCookie *cookie,
    324                     QEMUSGList *sg, enum BlockAcctType type)
    325 {
    326     block_acct_start(blk_get_stats(blk), cookie, sg->size, type);
    327 }
    328 
    329 uint64_t dma_aligned_pow2_mask(uint64_t start, uint64_t end, int max_addr_bits)
    330 {
    331     uint64_t max_mask = UINT64_MAX, addr_mask = end - start;
    332     uint64_t alignment_mask, size_mask;
    333 
    334     if (max_addr_bits != 64) {
    335         max_mask = (1ULL << max_addr_bits) - 1;
    336     }
    337 
    338     alignment_mask = start ? (start & -start) - 1 : max_mask;
    339     alignment_mask = MIN(alignment_mask, max_mask);
    340     size_mask = MIN(addr_mask, max_mask);
    341 
    342     if (alignment_mask <= size_mask) {
    343         /* Increase the alignment of start */
    344         return alignment_mask;
    345     } else {
    346         /* Find the largest page mask from size */
    347         if (addr_mask == UINT64_MAX) {
    348             return UINT64_MAX;
    349         }
    350         return (1ULL << (63 - clz64(addr_mask + 1))) - 1;
    351     }
    352 }
    353