migration.json (73778B)
1 # -*- Mode: Python -*- 2 # vim: filetype=python 3 # 4 5 ## 6 # = Migration 7 ## 8 9 { 'include': 'common.json' } 10 { 'include': 'sockets.json' } 11 12 ## 13 # @MigrationStats: 14 # 15 # Detailed migration status. 16 # 17 # @transferred: amount of bytes already transferred to the target VM 18 # 19 # @remaining: amount of bytes remaining to be transferred to the target VM 20 # 21 # @total: total amount of bytes involved in the migration process 22 # 23 # @duplicate: number of duplicate (zero) pages (since 1.2) 24 # 25 # @skipped: number of skipped zero pages (since 1.5) 26 # 27 # @normal: number of normal pages (since 1.2) 28 # 29 # @normal-bytes: number of normal bytes sent (since 1.2) 30 # 31 # @dirty-pages-rate: number of pages dirtied by second by the 32 # guest (since 1.3) 33 # 34 # @mbps: throughput in megabits/sec. (since 1.6) 35 # 36 # @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1) 37 # 38 # @postcopy-requests: The number of page requests received from the destination 39 # (since 2.7) 40 # 41 # @page-size: The number of bytes per page for the various page-based 42 # statistics (since 2.10) 43 # 44 # @multifd-bytes: The number of bytes sent through multifd (since 3.0) 45 # 46 # @pages-per-second: the number of memory pages transferred per second 47 # (Since 4.0) 48 # 49 # @precopy-bytes: The number of bytes sent in the pre-copy phase 50 # (since 7.0). 51 # 52 # @downtime-bytes: The number of bytes sent while the guest is paused 53 # (since 7.0). 54 # 55 # @postcopy-bytes: The number of bytes sent during the post-copy phase 56 # (since 7.0). 57 # 58 # @dirty-sync-missed-zero-copy: Number of times dirty RAM synchronization could 59 # not avoid copying dirty pages. This is between 60 # 0 and @dirty-sync-count * @multifd-channels. 61 # (since 7.1) 62 # Since: 0.14 63 ## 64 { 'struct': 'MigrationStats', 65 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 66 'duplicate': 'int', 'skipped': 'int', 'normal': 'int', 67 'normal-bytes': 'int', 'dirty-pages-rate' : 'int', 68 'mbps' : 'number', 'dirty-sync-count' : 'int', 69 'postcopy-requests' : 'int', 'page-size' : 'int', 70 'multifd-bytes' : 'uint64', 'pages-per-second' : 'uint64', 71 'precopy-bytes' : 'uint64', 'downtime-bytes' : 'uint64', 72 'postcopy-bytes' : 'uint64', 73 'dirty-sync-missed-zero-copy' : 'uint64' } } 74 75 ## 76 # @XBZRLECacheStats: 77 # 78 # Detailed XBZRLE migration cache statistics 79 # 80 # @cache-size: XBZRLE cache size 81 # 82 # @bytes: amount of bytes already transferred to the target VM 83 # 84 # @pages: amount of pages transferred to the target VM 85 # 86 # @cache-miss: number of cache miss 87 # 88 # @cache-miss-rate: rate of cache miss (since 2.1) 89 # 90 # @encoding-rate: rate of encoded bytes (since 5.1) 91 # 92 # @overflow: number of overflows 93 # 94 # Since: 1.2 95 ## 96 { 'struct': 'XBZRLECacheStats', 97 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 98 'cache-miss': 'int', 'cache-miss-rate': 'number', 99 'encoding-rate': 'number', 'overflow': 'int' } } 100 101 ## 102 # @CompressionStats: 103 # 104 # Detailed migration compression statistics 105 # 106 # @pages: amount of pages compressed and transferred to the target VM 107 # 108 # @busy: count of times that no free thread was available to compress data 109 # 110 # @busy-rate: rate of thread busy 111 # 112 # @compressed-size: amount of bytes after compression 113 # 114 # @compression-rate: rate of compressed size 115 # 116 # Since: 3.1 117 ## 118 { 'struct': 'CompressionStats', 119 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 120 'compressed-size': 'int', 'compression-rate': 'number' } } 121 122 ## 123 # @MigrationStatus: 124 # 125 # An enumeration of migration status. 126 # 127 # @none: no migration has ever happened. 128 # 129 # @setup: migration process has been initiated. 130 # 131 # @cancelling: in the process of cancelling migration. 132 # 133 # @cancelled: cancelling migration is finished. 134 # 135 # @active: in the process of doing migration. 136 # 137 # @postcopy-active: like active, but now in postcopy mode. (since 2.5) 138 # 139 # @postcopy-paused: during postcopy but paused. (since 3.0) 140 # 141 # @postcopy-recover: trying to recover from a paused postcopy. (since 3.0) 142 # 143 # @completed: migration is finished. 144 # 145 # @failed: some error occurred during migration process. 146 # 147 # @colo: VM is in the process of fault tolerance, VM can not get into this 148 # state unless colo capability is enabled for migration. (since 2.8) 149 # 150 # @pre-switchover: Paused before device serialisation. (since 2.11) 151 # 152 # @device: During device serialisation when pause-before-switchover is enabled 153 # (since 2.11) 154 # 155 # @wait-unplug: wait for device unplug request by guest OS to be completed. 156 # (since 4.2) 157 # 158 # Since: 2.3 159 ## 160 { 'enum': 'MigrationStatus', 161 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 162 'active', 'postcopy-active', 'postcopy-paused', 163 'postcopy-recover', 'completed', 'failed', 'colo', 164 'pre-switchover', 'device', 'wait-unplug' ] } 165 ## 166 # @VfioStats: 167 # 168 # Detailed VFIO devices migration statistics 169 # 170 # @transferred: amount of bytes transferred to the target VM by VFIO devices 171 # 172 # Since: 5.2 173 ## 174 { 'struct': 'VfioStats', 175 'data': {'transferred': 'int' } } 176 177 ## 178 # @MigrationInfo: 179 # 180 # Information about current migration process. 181 # 182 # @status: @MigrationStatus describing the current migration status. 183 # If this field is not returned, no migration process 184 # has been initiated 185 # 186 # @ram: @MigrationStats containing detailed migration 187 # status, only returned if status is 'active' or 188 # 'completed'(since 1.2) 189 # 190 # @disk: @MigrationStats containing detailed disk migration 191 # status, only returned if status is 'active' and it is a block 192 # migration 193 # 194 # @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 195 # migration statistics, only returned if XBZRLE feature is on and 196 # status is 'active' or 'completed' (since 1.2) 197 # 198 # @total-time: total amount of milliseconds since migration started. 199 # If migration has ended, it returns the total migration 200 # time. (since 1.2) 201 # 202 # @downtime: only present when migration finishes correctly 203 # total downtime in milliseconds for the guest. 204 # (since 1.3) 205 # 206 # @expected-downtime: only present while migration is active 207 # expected downtime in milliseconds for the guest in last walk 208 # of the dirty bitmap. (since 1.3) 209 # 210 # @setup-time: amount of setup time in milliseconds *before* the 211 # iterations begin but *after* the QMP command is issued. This is designed 212 # to provide an accounting of any activities (such as RDMA pinning) which 213 # may be expensive, but do not actually occur during the iterative 214 # migration rounds themselves. (since 1.6) 215 # 216 # @cpu-throttle-percentage: percentage of time guest cpus are being 217 # throttled during auto-converge. This is only present when auto-converge 218 # has started throttling guest cpus. (Since 2.7) 219 # 220 # @error-desc: the human readable error description string, when 221 # @status is 'failed'. Clients should not attempt to parse the 222 # error strings. (Since 2.7) 223 # 224 # @postcopy-blocktime: total time when all vCPU were blocked during postcopy 225 # live migration. This is only present when the postcopy-blocktime 226 # migration capability is enabled. (Since 3.0) 227 # 228 # @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. This is 229 # only present when the postcopy-blocktime migration capability 230 # is enabled. (Since 3.0) 231 # 232 # @compression: migration compression statistics, only returned if compression 233 # feature is on and status is 'active' or 'completed' (Since 3.1) 234 # 235 # @socket-address: Only used for tcp, to know what the real port is (Since 4.0) 236 # 237 # @vfio: @VfioStats containing detailed VFIO devices migration statistics, 238 # only returned if VFIO device is present, migration is supported by all 239 # VFIO devices and status is 'active' or 'completed' (since 5.2) 240 # 241 # @blocked-reasons: A list of reasons an outgoing migration is blocked. 242 # Present and non-empty when migration is blocked. 243 # (since 6.0) 244 # 245 # Since: 0.14 246 ## 247 { 'struct': 'MigrationInfo', 248 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 249 '*disk': 'MigrationStats', 250 '*vfio': 'VfioStats', 251 '*xbzrle-cache': 'XBZRLECacheStats', 252 '*total-time': 'int', 253 '*expected-downtime': 'int', 254 '*downtime': 'int', 255 '*setup-time': 'int', 256 '*cpu-throttle-percentage': 'int', 257 '*error-desc': 'str', 258 '*blocked-reasons': ['str'], 259 '*postcopy-blocktime' : 'uint32', 260 '*postcopy-vcpu-blocktime': ['uint32'], 261 '*compression': 'CompressionStats', 262 '*socket-address': ['SocketAddress'] } } 263 264 ## 265 # @query-migrate: 266 # 267 # Returns information about current migration process. If migration 268 # is active there will be another json-object with RAM migration 269 # status and if block migration is active another one with block 270 # migration status. 271 # 272 # Returns: @MigrationInfo 273 # 274 # Since: 0.14 275 # 276 # Example: 277 # 278 # 1. Before the first migration 279 # 280 # -> { "execute": "query-migrate" } 281 # <- { "return": {} } 282 # 283 # 2. Migration is done and has succeeded 284 # 285 # -> { "execute": "query-migrate" } 286 # <- { "return": { 287 # "status": "completed", 288 # "total-time":12345, 289 # "setup-time":12345, 290 # "downtime":12345, 291 # "ram":{ 292 # "transferred":123, 293 # "remaining":123, 294 # "total":246, 295 # "duplicate":123, 296 # "normal":123, 297 # "normal-bytes":123456, 298 # "dirty-sync-count":15 299 # } 300 # } 301 # } 302 # 303 # 3. Migration is done and has failed 304 # 305 # -> { "execute": "query-migrate" } 306 # <- { "return": { "status": "failed" } } 307 # 308 # 4. Migration is being performed and is not a block migration: 309 # 310 # -> { "execute": "query-migrate" } 311 # <- { 312 # "return":{ 313 # "status":"active", 314 # "total-time":12345, 315 # "setup-time":12345, 316 # "expected-downtime":12345, 317 # "ram":{ 318 # "transferred":123, 319 # "remaining":123, 320 # "total":246, 321 # "duplicate":123, 322 # "normal":123, 323 # "normal-bytes":123456, 324 # "dirty-sync-count":15 325 # } 326 # } 327 # } 328 # 329 # 5. Migration is being performed and is a block migration: 330 # 331 # -> { "execute": "query-migrate" } 332 # <- { 333 # "return":{ 334 # "status":"active", 335 # "total-time":12345, 336 # "setup-time":12345, 337 # "expected-downtime":12345, 338 # "ram":{ 339 # "total":1057024, 340 # "remaining":1053304, 341 # "transferred":3720, 342 # "duplicate":123, 343 # "normal":123, 344 # "normal-bytes":123456, 345 # "dirty-sync-count":15 346 # }, 347 # "disk":{ 348 # "total":20971520, 349 # "remaining":20880384, 350 # "transferred":91136 351 # } 352 # } 353 # } 354 # 355 # 6. Migration is being performed and XBZRLE is active: 356 # 357 # -> { "execute": "query-migrate" } 358 # <- { 359 # "return":{ 360 # "status":"active", 361 # "total-time":12345, 362 # "setup-time":12345, 363 # "expected-downtime":12345, 364 # "ram":{ 365 # "total":1057024, 366 # "remaining":1053304, 367 # "transferred":3720, 368 # "duplicate":10, 369 # "normal":3333, 370 # "normal-bytes":3412992, 371 # "dirty-sync-count":15 372 # }, 373 # "xbzrle-cache":{ 374 # "cache-size":67108864, 375 # "bytes":20971520, 376 # "pages":2444343, 377 # "cache-miss":2244, 378 # "cache-miss-rate":0.123, 379 # "encoding-rate":80.1, 380 # "overflow":34434 381 # } 382 # } 383 # } 384 # 385 ## 386 { 'command': 'query-migrate', 'returns': 'MigrationInfo' } 387 388 ## 389 # @MigrationCapability: 390 # 391 # Migration capabilities enumeration 392 # 393 # @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding). 394 # This feature allows us to minimize migration traffic for certain work 395 # loads, by sending compressed difference of the pages 396 # 397 # @rdma-pin-all: Controls whether or not the entire VM memory footprint is 398 # mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage. 399 # Disabled by default. (since 2.0) 400 # 401 # @zero-blocks: During storage migration encode blocks of zeroes efficiently. This 402 # essentially saves 1MB of zeroes per block on the wire. Enabling requires 403 # source and target VM to support this feature. To enable it is sufficient 404 # to enable the capability on the source VM. The feature is disabled by 405 # default. (since 1.6) 406 # 407 # @compress: Use multiple compression threads to accelerate live migration. 408 # This feature can help to reduce the migration traffic, by sending 409 # compressed pages. Please note that if compress and xbzrle are both 410 # on, compress only takes effect in the ram bulk stage, after that, 411 # it will be disabled and only xbzrle takes effect, this can help to 412 # minimize migration traffic. The feature is disabled by default. 413 # (since 2.4 ) 414 # 415 # @events: generate events for each migration state change 416 # (since 2.4 ) 417 # 418 # @auto-converge: If enabled, QEMU will automatically throttle down the guest 419 # to speed up convergence of RAM migration. (since 1.6) 420 # 421 # @postcopy-ram: Start executing on the migration target before all of RAM has 422 # been migrated, pulling the remaining pages along as needed. The 423 # capacity must have the same setting on both source and target 424 # or migration will not even start. NOTE: If the migration fails during 425 # postcopy the VM will fail. (since 2.6) 426 # 427 # @x-colo: If enabled, migration will never end, and the state of the VM on the 428 # primary side will be migrated continuously to the VM on secondary 429 # side, this process is called COarse-Grain LOck Stepping (COLO) for 430 # Non-stop Service. (since 2.8) 431 # 432 # @release-ram: if enabled, qemu will free the migrated ram pages on the source 433 # during postcopy-ram migration. (since 2.9) 434 # 435 # @block: If enabled, QEMU will also migrate the contents of all block 436 # devices. Default is disabled. A possible alternative uses 437 # mirror jobs to a builtin NBD server on the destination, which 438 # offers more flexibility. 439 # (Since 2.10) 440 # 441 # @return-path: If enabled, migration will use the return path even 442 # for precopy. (since 2.10) 443 # 444 # @pause-before-switchover: Pause outgoing migration before serialising device 445 # state and before disabling block IO (since 2.11) 446 # 447 # @multifd: Use more than one fd for migration (since 4.0) 448 # 449 # @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 450 # (since 2.12) 451 # 452 # @postcopy-blocktime: Calculate downtime for postcopy live migration 453 # (since 3.0) 454 # 455 # @late-block-activate: If enabled, the destination will not activate block 456 # devices (and thus take locks) immediately at the end of migration. 457 # (since 3.0) 458 # 459 # @x-ignore-shared: If enabled, QEMU will not migrate shared memory (since 4.0) 460 # 461 # @validate-uuid: Send the UUID of the source to allow the destination 462 # to ensure it is the same. (since 4.2) 463 # 464 # @background-snapshot: If enabled, the migration stream will be a snapshot 465 # of the VM exactly at the point when the migration 466 # procedure starts. The VM RAM is saved with running VM. 467 # (since 6.0) 468 # 469 # @zero-copy-send: Controls behavior on sending memory pages on migration. 470 # When true, enables a zero-copy mechanism for sending 471 # memory pages, if host supports it. 472 # Requires that QEMU be permitted to use locked memory 473 # for guest RAM pages. 474 # (since 7.1) 475 # @postcopy-preempt: If enabled, the migration process will allow postcopy 476 # requests to preempt precopy stream, so postcopy requests 477 # will be handled faster. This is a performance feature and 478 # should not affect the correctness of postcopy migration. 479 # (since 7.1) 480 # 481 # Features: 482 # @unstable: Members @x-colo and @x-ignore-shared are experimental. 483 # 484 # Since: 1.2 485 ## 486 { 'enum': 'MigrationCapability', 487 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 488 'compress', 'events', 'postcopy-ram', 489 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 490 'release-ram', 491 'block', 'return-path', 'pause-before-switchover', 'multifd', 492 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 493 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 494 'validate-uuid', 'background-snapshot', 495 'zero-copy-send', 'postcopy-preempt'] } 496 497 ## 498 # @MigrationCapabilityStatus: 499 # 500 # Migration capability information 501 # 502 # @capability: capability enum 503 # 504 # @state: capability state bool 505 # 506 # Since: 1.2 507 ## 508 { 'struct': 'MigrationCapabilityStatus', 509 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } } 510 511 ## 512 # @migrate-set-capabilities: 513 # 514 # Enable/Disable the following migration capabilities (like xbzrle) 515 # 516 # @capabilities: json array of capability modifications to make 517 # 518 # Since: 1.2 519 # 520 # Example: 521 # 522 # -> { "execute": "migrate-set-capabilities" , "arguments": 523 # { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 524 # 525 ## 526 { 'command': 'migrate-set-capabilities', 527 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 528 529 ## 530 # @query-migrate-capabilities: 531 # 532 # Returns information about the current migration capabilities status 533 # 534 # Returns: @MigrationCapabilitiesStatus 535 # 536 # Since: 1.2 537 # 538 # Example: 539 # 540 # -> { "execute": "query-migrate-capabilities" } 541 # <- { "return": [ 542 # {"state": false, "capability": "xbzrle"}, 543 # {"state": false, "capability": "rdma-pin-all"}, 544 # {"state": false, "capability": "auto-converge"}, 545 # {"state": false, "capability": "zero-blocks"}, 546 # {"state": false, "capability": "compress"}, 547 # {"state": true, "capability": "events"}, 548 # {"state": false, "capability": "postcopy-ram"}, 549 # {"state": false, "capability": "x-colo"} 550 # ]} 551 # 552 ## 553 { 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 554 555 ## 556 # @MultiFDCompression: 557 # 558 # An enumeration of multifd compression methods. 559 # 560 # @none: no compression. 561 # @zlib: use zlib compression method. 562 # @zstd: use zstd compression method. 563 # 564 # Since: 5.0 565 ## 566 { 'enum': 'MultiFDCompression', 567 'data': [ 'none', 'zlib', 568 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] } 569 570 ## 571 # @BitmapMigrationBitmapAliasTransform: 572 # 573 # @persistent: If present, the bitmap will be made persistent 574 # or transient depending on this parameter. 575 # 576 # Since: 6.0 577 ## 578 { 'struct': 'BitmapMigrationBitmapAliasTransform', 579 'data': { 580 '*persistent': 'bool' 581 } } 582 583 ## 584 # @BitmapMigrationBitmapAlias: 585 # 586 # @name: The name of the bitmap. 587 # 588 # @alias: An alias name for migration (for example the bitmap name on 589 # the opposite site). 590 # 591 # @transform: Allows the modification of the migrated bitmap. 592 # (since 6.0) 593 # 594 # Since: 5.2 595 ## 596 { 'struct': 'BitmapMigrationBitmapAlias', 597 'data': { 598 'name': 'str', 599 'alias': 'str', 600 '*transform': 'BitmapMigrationBitmapAliasTransform' 601 } } 602 603 ## 604 # @BitmapMigrationNodeAlias: 605 # 606 # Maps a block node name and the bitmaps it has to aliases for dirty 607 # bitmap migration. 608 # 609 # @node-name: A block node name. 610 # 611 # @alias: An alias block node name for migration (for example the 612 # node name on the opposite site). 613 # 614 # @bitmaps: Mappings for the bitmaps on this node. 615 # 616 # Since: 5.2 617 ## 618 { 'struct': 'BitmapMigrationNodeAlias', 619 'data': { 620 'node-name': 'str', 621 'alias': 'str', 622 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 623 } } 624 625 ## 626 # @MigrationParameter: 627 # 628 # Migration parameters enumeration 629 # 630 # @announce-initial: Initial delay (in milliseconds) before sending the first 631 # announce (Since 4.0) 632 # 633 # @announce-max: Maximum delay (in milliseconds) between packets in the 634 # announcement (Since 4.0) 635 # 636 # @announce-rounds: Number of self-announce packets sent after migration 637 # (Since 4.0) 638 # 639 # @announce-step: Increase in delay (in milliseconds) between subsequent 640 # packets in the announcement (Since 4.0) 641 # 642 # @compress-level: Set the compression level to be used in live migration, 643 # the compression level is an integer between 0 and 9, where 0 means 644 # no compression, 1 means the best compression speed, and 9 means best 645 # compression ratio which will consume more CPU. 646 # 647 # @compress-threads: Set compression thread count to be used in live migration, 648 # the compression thread count is an integer between 1 and 255. 649 # 650 # @compress-wait-thread: Controls behavior when all compression threads are 651 # currently busy. If true (default), wait for a free 652 # compression thread to become available; otherwise, 653 # send the page uncompressed. (Since 3.1) 654 # 655 # @decompress-threads: Set decompression thread count to be used in live 656 # migration, the decompression thread count is an integer between 1 657 # and 255. Usually, decompression is at least 4 times as fast as 658 # compression, so set the decompress-threads to the number about 1/4 659 # of compress-threads is adequate. 660 # 661 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 662 # to trigger throttling. It is expressed as percentage. 663 # The default value is 50. (Since 5.0) 664 # 665 # @cpu-throttle-initial: Initial percentage of time guest cpus are throttled 666 # when migration auto-converge is activated. The 667 # default value is 20. (Since 2.7) 668 # 669 # @cpu-throttle-increment: throttle percentage increase each time 670 # auto-converge detects that migration is not making 671 # progress. The default value is 10. (Since 2.7) 672 # 673 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 674 # At the tail stage of throttling, the Guest is very 675 # sensitive to CPU percentage while the @cpu-throttle 676 # -increment is excessive usually at tail stage. 677 # If this parameter is true, we will compute the ideal 678 # CPU percentage used by the Guest, which may exactly make 679 # the dirty rate match the dirty rate threshold. Then we 680 # will choose a smaller throttle increment between the 681 # one specified by @cpu-throttle-increment and the one 682 # generated by ideal CPU percentage. 683 # Therefore, it is compatible to traditional throttling, 684 # meanwhile the throttle increment won't be excessive 685 # at tail stage. 686 # The default value is false. (Since 5.1) 687 # 688 # @tls-creds: ID of the 'tls-creds' object that provides credentials for 689 # establishing a TLS connection over the migration data channel. 690 # On the outgoing side of the migration, the credentials must 691 # be for a 'client' endpoint, while for the incoming side the 692 # credentials must be for a 'server' endpoint. Setting this 693 # will enable TLS for all migrations. The default is unset, 694 # resulting in unsecured migration at the QEMU level. (Since 2.7) 695 # 696 # @tls-hostname: hostname of the target host for the migration. This is 697 # required when using x509 based TLS credentials and the 698 # migration URI does not already include a hostname. For 699 # example if using fd: or exec: based migration, the 700 # hostname must be provided so that the server's x509 701 # certificate identity can be validated. (Since 2.7) 702 # 703 # @tls-authz: ID of the 'authz' object subclass that provides access control 704 # checking of the TLS x509 certificate distinguished name. 705 # This object is only resolved at time of use, so can be deleted 706 # and recreated on the fly while the migration server is active. 707 # If missing, it will default to denying access (Since 4.0) 708 # 709 # @max-bandwidth: to set maximum speed for migration. maximum speed in 710 # bytes per second. (Since 2.8) 711 # 712 # @downtime-limit: set maximum tolerated downtime for migration. maximum 713 # downtime in milliseconds (Since 2.8) 714 # 715 # @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in 716 # periodic mode. (Since 2.8) 717 # 718 # @block-incremental: Affects how much storage is migrated when the 719 # block migration capability is enabled. When false, the entire 720 # storage backing chain is migrated into a flattened image at 721 # the destination; when true, only the active qcow2 layer is 722 # migrated and the destination must already have access to the 723 # same backing chain as was used on the source. (since 2.10) 724 # 725 # @multifd-channels: Number of channels used to migrate data in 726 # parallel. This is the same number that the 727 # number of sockets used for migration. The 728 # default value is 2 (since 4.0) 729 # 730 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 731 # needs to be a multiple of the target page size 732 # and a power of 2 733 # (Since 2.11) 734 # 735 # @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 736 # Defaults to 0 (unlimited). In bytes per second. 737 # (Since 3.0) 738 # 739 # @max-cpu-throttle: maximum cpu throttle percentage. 740 # Defaults to 99. (Since 3.1) 741 # 742 # @multifd-compression: Which compression method to use. 743 # Defaults to none. (Since 5.0) 744 # 745 # @multifd-zlib-level: Set the compression level to be used in live 746 # migration, the compression level is an integer between 0 747 # and 9, where 0 means no compression, 1 means the best 748 # compression speed, and 9 means best compression ratio which 749 # will consume more CPU. 750 # Defaults to 1. (Since 5.0) 751 # 752 # @multifd-zstd-level: Set the compression level to be used in live 753 # migration, the compression level is an integer between 0 754 # and 20, where 0 means no compression, 1 means the best 755 # compression speed, and 20 means best compression ratio which 756 # will consume more CPU. 757 # Defaults to 1. (Since 5.0) 758 # 759 # 760 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to 761 # aliases for the purpose of dirty bitmap migration. Such 762 # aliases may for example be the corresponding names on the 763 # opposite site. 764 # The mapping must be one-to-one, but not necessarily 765 # complete: On the source, unmapped bitmaps and all bitmaps 766 # on unmapped nodes will be ignored. On the destination, 767 # encountering an unmapped alias in the incoming migration 768 # stream will result in a report, and all further bitmap 769 # migration data will then be discarded. 770 # Note that the destination does not know about bitmaps it 771 # does not receive, so there is no limitation or requirement 772 # regarding the number of bitmaps received, or how they are 773 # named, or on which nodes they are placed. 774 # By default (when this parameter has never been set), bitmap 775 # names are mapped to themselves. Nodes are mapped to their 776 # block device name if there is one, and to their node name 777 # otherwise. (Since 5.2) 778 # 779 # Features: 780 # @unstable: Member @x-checkpoint-delay is experimental. 781 # 782 # Since: 2.4 783 ## 784 { 'enum': 'MigrationParameter', 785 'data': ['announce-initial', 'announce-max', 786 'announce-rounds', 'announce-step', 787 'compress-level', 'compress-threads', 'decompress-threads', 788 'compress-wait-thread', 'throttle-trigger-threshold', 789 'cpu-throttle-initial', 'cpu-throttle-increment', 790 'cpu-throttle-tailslow', 791 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 792 'downtime-limit', 793 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 794 'block-incremental', 795 'multifd-channels', 796 'xbzrle-cache-size', 'max-postcopy-bandwidth', 797 'max-cpu-throttle', 'multifd-compression', 798 'multifd-zlib-level' ,'multifd-zstd-level', 799 'block-bitmap-mapping' ] } 800 801 ## 802 # @MigrateSetParameters: 803 # 804 # @announce-initial: Initial delay (in milliseconds) before sending the first 805 # announce (Since 4.0) 806 # 807 # @announce-max: Maximum delay (in milliseconds) between packets in the 808 # announcement (Since 4.0) 809 # 810 # @announce-rounds: Number of self-announce packets sent after migration 811 # (Since 4.0) 812 # 813 # @announce-step: Increase in delay (in milliseconds) between subsequent 814 # packets in the announcement (Since 4.0) 815 # 816 # @compress-level: compression level 817 # 818 # @compress-threads: compression thread count 819 # 820 # @compress-wait-thread: Controls behavior when all compression threads are 821 # currently busy. If true (default), wait for a free 822 # compression thread to become available; otherwise, 823 # send the page uncompressed. (Since 3.1) 824 # 825 # @decompress-threads: decompression thread count 826 # 827 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 828 # to trigger throttling. It is expressed as percentage. 829 # The default value is 50. (Since 5.0) 830 # 831 # @cpu-throttle-initial: Initial percentage of time guest cpus are 832 # throttled when migration auto-converge is activated. 833 # The default value is 20. (Since 2.7) 834 # 835 # @cpu-throttle-increment: throttle percentage increase each time 836 # auto-converge detects that migration is not making 837 # progress. The default value is 10. (Since 2.7) 838 # 839 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 840 # At the tail stage of throttling, the Guest is very 841 # sensitive to CPU percentage while the @cpu-throttle 842 # -increment is excessive usually at tail stage. 843 # If this parameter is true, we will compute the ideal 844 # CPU percentage used by the Guest, which may exactly make 845 # the dirty rate match the dirty rate threshold. Then we 846 # will choose a smaller throttle increment between the 847 # one specified by @cpu-throttle-increment and the one 848 # generated by ideal CPU percentage. 849 # Therefore, it is compatible to traditional throttling, 850 # meanwhile the throttle increment won't be excessive 851 # at tail stage. 852 # The default value is false. (Since 5.1) 853 # 854 # @tls-creds: ID of the 'tls-creds' object that provides credentials 855 # for establishing a TLS connection over the migration data 856 # channel. On the outgoing side of the migration, the credentials 857 # must be for a 'client' endpoint, while for the incoming side the 858 # credentials must be for a 'server' endpoint. Setting this 859 # to a non-empty string enables TLS for all migrations. 860 # An empty string means that QEMU will use plain text mode for 861 # migration, rather than TLS (Since 2.9) 862 # Previously (since 2.7), this was reported by omitting 863 # tls-creds instead. 864 # 865 # @tls-hostname: hostname of the target host for the migration. This 866 # is required when using x509 based TLS credentials and the 867 # migration URI does not already include a hostname. For 868 # example if using fd: or exec: based migration, the 869 # hostname must be provided so that the server's x509 870 # certificate identity can be validated. (Since 2.7) 871 # An empty string means that QEMU will use the hostname 872 # associated with the migration URI, if any. (Since 2.9) 873 # Previously (since 2.7), this was reported by omitting 874 # tls-hostname instead. 875 # 876 # @max-bandwidth: to set maximum speed for migration. maximum speed in 877 # bytes per second. (Since 2.8) 878 # 879 # @downtime-limit: set maximum tolerated downtime for migration. maximum 880 # downtime in milliseconds (Since 2.8) 881 # 882 # @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8) 883 # 884 # @block-incremental: Affects how much storage is migrated when the 885 # block migration capability is enabled. When false, the entire 886 # storage backing chain is migrated into a flattened image at 887 # the destination; when true, only the active qcow2 layer is 888 # migrated and the destination must already have access to the 889 # same backing chain as was used on the source. (since 2.10) 890 # 891 # @multifd-channels: Number of channels used to migrate data in 892 # parallel. This is the same number that the 893 # number of sockets used for migration. The 894 # default value is 2 (since 4.0) 895 # 896 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 897 # needs to be a multiple of the target page size 898 # and a power of 2 899 # (Since 2.11) 900 # 901 # @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 902 # Defaults to 0 (unlimited). In bytes per second. 903 # (Since 3.0) 904 # 905 # @max-cpu-throttle: maximum cpu throttle percentage. 906 # The default value is 99. (Since 3.1) 907 # 908 # @multifd-compression: Which compression method to use. 909 # Defaults to none. (Since 5.0) 910 # 911 # @multifd-zlib-level: Set the compression level to be used in live 912 # migration, the compression level is an integer between 0 913 # and 9, where 0 means no compression, 1 means the best 914 # compression speed, and 9 means best compression ratio which 915 # will consume more CPU. 916 # Defaults to 1. (Since 5.0) 917 # 918 # @multifd-zstd-level: Set the compression level to be used in live 919 # migration, the compression level is an integer between 0 920 # and 20, where 0 means no compression, 1 means the best 921 # compression speed, and 20 means best compression ratio which 922 # will consume more CPU. 923 # Defaults to 1. (Since 5.0) 924 # 925 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to 926 # aliases for the purpose of dirty bitmap migration. Such 927 # aliases may for example be the corresponding names on the 928 # opposite site. 929 # The mapping must be one-to-one, but not necessarily 930 # complete: On the source, unmapped bitmaps and all bitmaps 931 # on unmapped nodes will be ignored. On the destination, 932 # encountering an unmapped alias in the incoming migration 933 # stream will result in a report, and all further bitmap 934 # migration data will then be discarded. 935 # Note that the destination does not know about bitmaps it 936 # does not receive, so there is no limitation or requirement 937 # regarding the number of bitmaps received, or how they are 938 # named, or on which nodes they are placed. 939 # By default (when this parameter has never been set), bitmap 940 # names are mapped to themselves. Nodes are mapped to their 941 # block device name if there is one, and to their node name 942 # otherwise. (Since 5.2) 943 # 944 # Features: 945 # @unstable: Member @x-checkpoint-delay is experimental. 946 # 947 # Since: 2.4 948 ## 949 # TODO either fuse back into MigrationParameters, or make 950 # MigrationParameters members mandatory 951 { 'struct': 'MigrateSetParameters', 952 'data': { '*announce-initial': 'size', 953 '*announce-max': 'size', 954 '*announce-rounds': 'size', 955 '*announce-step': 'size', 956 '*compress-level': 'uint8', 957 '*compress-threads': 'uint8', 958 '*compress-wait-thread': 'bool', 959 '*decompress-threads': 'uint8', 960 '*throttle-trigger-threshold': 'uint8', 961 '*cpu-throttle-initial': 'uint8', 962 '*cpu-throttle-increment': 'uint8', 963 '*cpu-throttle-tailslow': 'bool', 964 '*tls-creds': 'StrOrNull', 965 '*tls-hostname': 'StrOrNull', 966 '*tls-authz': 'StrOrNull', 967 '*max-bandwidth': 'size', 968 '*downtime-limit': 'uint64', 969 '*x-checkpoint-delay': { 'type': 'uint32', 970 'features': [ 'unstable' ] }, 971 '*block-incremental': 'bool', 972 '*multifd-channels': 'uint8', 973 '*xbzrle-cache-size': 'size', 974 '*max-postcopy-bandwidth': 'size', 975 '*max-cpu-throttle': 'uint8', 976 '*multifd-compression': 'MultiFDCompression', 977 '*multifd-zlib-level': 'uint8', 978 '*multifd-zstd-level': 'uint8', 979 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } } 980 981 ## 982 # @migrate-set-parameters: 983 # 984 # Set various migration parameters. 985 # 986 # Since: 2.4 987 # 988 # Example: 989 # 990 # -> { "execute": "migrate-set-parameters" , 991 # "arguments": { "compress-level": 1 } } 992 # 993 ## 994 { 'command': 'migrate-set-parameters', 'boxed': true, 995 'data': 'MigrateSetParameters' } 996 997 ## 998 # @MigrationParameters: 999 # 1000 # The optional members aren't actually optional. 1001 # 1002 # @announce-initial: Initial delay (in milliseconds) before sending the 1003 # first announce (Since 4.0) 1004 # 1005 # @announce-max: Maximum delay (in milliseconds) between packets in the 1006 # announcement (Since 4.0) 1007 # 1008 # @announce-rounds: Number of self-announce packets sent after migration 1009 # (Since 4.0) 1010 # 1011 # @announce-step: Increase in delay (in milliseconds) between subsequent 1012 # packets in the announcement (Since 4.0) 1013 # 1014 # @compress-level: compression level 1015 # 1016 # @compress-threads: compression thread count 1017 # 1018 # @compress-wait-thread: Controls behavior when all compression threads are 1019 # currently busy. If true (default), wait for a free 1020 # compression thread to become available; otherwise, 1021 # send the page uncompressed. (Since 3.1) 1022 # 1023 # @decompress-threads: decompression thread count 1024 # 1025 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 1026 # to trigger throttling. It is expressed as percentage. 1027 # The default value is 50. (Since 5.0) 1028 # 1029 # @cpu-throttle-initial: Initial percentage of time guest cpus are 1030 # throttled when migration auto-converge is activated. 1031 # (Since 2.7) 1032 # 1033 # @cpu-throttle-increment: throttle percentage increase each time 1034 # auto-converge detects that migration is not making 1035 # progress. (Since 2.7) 1036 # 1037 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 1038 # At the tail stage of throttling, the Guest is very 1039 # sensitive to CPU percentage while the @cpu-throttle 1040 # -increment is excessive usually at tail stage. 1041 # If this parameter is true, we will compute the ideal 1042 # CPU percentage used by the Guest, which may exactly make 1043 # the dirty rate match the dirty rate threshold. Then we 1044 # will choose a smaller throttle increment between the 1045 # one specified by @cpu-throttle-increment and the one 1046 # generated by ideal CPU percentage. 1047 # Therefore, it is compatible to traditional throttling, 1048 # meanwhile the throttle increment won't be excessive 1049 # at tail stage. 1050 # The default value is false. (Since 5.1) 1051 # 1052 # @tls-creds: ID of the 'tls-creds' object that provides credentials 1053 # for establishing a TLS connection over the migration data 1054 # channel. On the outgoing side of the migration, the credentials 1055 # must be for a 'client' endpoint, while for the incoming side the 1056 # credentials must be for a 'server' endpoint. 1057 # An empty string means that QEMU will use plain text mode for 1058 # migration, rather than TLS (Since 2.7) 1059 # Note: 2.8 reports this by omitting tls-creds instead. 1060 # 1061 # @tls-hostname: hostname of the target host for the migration. This 1062 # is required when using x509 based TLS credentials and the 1063 # migration URI does not already include a hostname. For 1064 # example if using fd: or exec: based migration, the 1065 # hostname must be provided so that the server's x509 1066 # certificate identity can be validated. (Since 2.7) 1067 # An empty string means that QEMU will use the hostname 1068 # associated with the migration URI, if any. (Since 2.9) 1069 # Note: 2.8 reports this by omitting tls-hostname instead. 1070 # 1071 # @tls-authz: ID of the 'authz' object subclass that provides access control 1072 # checking of the TLS x509 certificate distinguished name. (Since 1073 # 4.0) 1074 # 1075 # @max-bandwidth: to set maximum speed for migration. maximum speed in 1076 # bytes per second. (Since 2.8) 1077 # 1078 # @downtime-limit: set maximum tolerated downtime for migration. maximum 1079 # downtime in milliseconds (Since 2.8) 1080 # 1081 # @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8) 1082 # 1083 # @block-incremental: Affects how much storage is migrated when the 1084 # block migration capability is enabled. When false, the entire 1085 # storage backing chain is migrated into a flattened image at 1086 # the destination; when true, only the active qcow2 layer is 1087 # migrated and the destination must already have access to the 1088 # same backing chain as was used on the source. (since 2.10) 1089 # 1090 # @multifd-channels: Number of channels used to migrate data in 1091 # parallel. This is the same number that the 1092 # number of sockets used for migration. 1093 # The default value is 2 (since 4.0) 1094 # 1095 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1096 # needs to be a multiple of the target page size 1097 # and a power of 2 1098 # (Since 2.11) 1099 # 1100 # @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 1101 # Defaults to 0 (unlimited). In bytes per second. 1102 # (Since 3.0) 1103 # 1104 # @max-cpu-throttle: maximum cpu throttle percentage. 1105 # Defaults to 99. 1106 # (Since 3.1) 1107 # 1108 # @multifd-compression: Which compression method to use. 1109 # Defaults to none. (Since 5.0) 1110 # 1111 # @multifd-zlib-level: Set the compression level to be used in live 1112 # migration, the compression level is an integer between 0 1113 # and 9, where 0 means no compression, 1 means the best 1114 # compression speed, and 9 means best compression ratio which 1115 # will consume more CPU. 1116 # Defaults to 1. (Since 5.0) 1117 # 1118 # @multifd-zstd-level: Set the compression level to be used in live 1119 # migration, the compression level is an integer between 0 1120 # and 20, where 0 means no compression, 1 means the best 1121 # compression speed, and 20 means best compression ratio which 1122 # will consume more CPU. 1123 # Defaults to 1. (Since 5.0) 1124 # 1125 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1126 # aliases for the purpose of dirty bitmap migration. Such 1127 # aliases may for example be the corresponding names on the 1128 # opposite site. 1129 # The mapping must be one-to-one, but not necessarily 1130 # complete: On the source, unmapped bitmaps and all bitmaps 1131 # on unmapped nodes will be ignored. On the destination, 1132 # encountering an unmapped alias in the incoming migration 1133 # stream will result in a report, and all further bitmap 1134 # migration data will then be discarded. 1135 # Note that the destination does not know about bitmaps it 1136 # does not receive, so there is no limitation or requirement 1137 # regarding the number of bitmaps received, or how they are 1138 # named, or on which nodes they are placed. 1139 # By default (when this parameter has never been set), bitmap 1140 # names are mapped to themselves. Nodes are mapped to their 1141 # block device name if there is one, and to their node name 1142 # otherwise. (Since 5.2) 1143 # 1144 # Features: 1145 # @unstable: Member @x-checkpoint-delay is experimental. 1146 # 1147 # Since: 2.4 1148 ## 1149 { 'struct': 'MigrationParameters', 1150 'data': { '*announce-initial': 'size', 1151 '*announce-max': 'size', 1152 '*announce-rounds': 'size', 1153 '*announce-step': 'size', 1154 '*compress-level': 'uint8', 1155 '*compress-threads': 'uint8', 1156 '*compress-wait-thread': 'bool', 1157 '*decompress-threads': 'uint8', 1158 '*throttle-trigger-threshold': 'uint8', 1159 '*cpu-throttle-initial': 'uint8', 1160 '*cpu-throttle-increment': 'uint8', 1161 '*cpu-throttle-tailslow': 'bool', 1162 '*tls-creds': 'str', 1163 '*tls-hostname': 'str', 1164 '*tls-authz': 'str', 1165 '*max-bandwidth': 'size', 1166 '*downtime-limit': 'uint64', 1167 '*x-checkpoint-delay': { 'type': 'uint32', 1168 'features': [ 'unstable' ] }, 1169 '*block-incremental': 'bool', 1170 '*multifd-channels': 'uint8', 1171 '*xbzrle-cache-size': 'size', 1172 '*max-postcopy-bandwidth': 'size', 1173 '*max-cpu-throttle': 'uint8', 1174 '*multifd-compression': 'MultiFDCompression', 1175 '*multifd-zlib-level': 'uint8', 1176 '*multifd-zstd-level': 'uint8', 1177 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } } 1178 1179 ## 1180 # @query-migrate-parameters: 1181 # 1182 # Returns information about the current migration parameters 1183 # 1184 # Returns: @MigrationParameters 1185 # 1186 # Since: 2.4 1187 # 1188 # Example: 1189 # 1190 # -> { "execute": "query-migrate-parameters" } 1191 # <- { "return": { 1192 # "decompress-threads": 2, 1193 # "cpu-throttle-increment": 10, 1194 # "compress-threads": 8, 1195 # "compress-level": 1, 1196 # "cpu-throttle-initial": 20, 1197 # "max-bandwidth": 33554432, 1198 # "downtime-limit": 300 1199 # } 1200 # } 1201 # 1202 ## 1203 { 'command': 'query-migrate-parameters', 1204 'returns': 'MigrationParameters' } 1205 1206 ## 1207 # @client_migrate_info: 1208 # 1209 # Set migration information for remote display. This makes the server 1210 # ask the client to automatically reconnect using the new parameters 1211 # once migration finished successfully. Only implemented for SPICE. 1212 # 1213 # @protocol: must be "spice" 1214 # @hostname: migration target hostname 1215 # @port: spice tcp port for plaintext channels 1216 # @tls-port: spice tcp port for tls-secured channels 1217 # @cert-subject: server certificate subject 1218 # 1219 # Since: 0.14 1220 # 1221 # Example: 1222 # 1223 # -> { "execute": "client_migrate_info", 1224 # "arguments": { "protocol": "spice", 1225 # "hostname": "virt42.lab.kraxel.org", 1226 # "port": 1234 } } 1227 # <- { "return": {} } 1228 # 1229 ## 1230 { 'command': 'client_migrate_info', 1231 'data': { 'protocol': 'str', 'hostname': 'str', '*port': 'int', 1232 '*tls-port': 'int', '*cert-subject': 'str' } } 1233 1234 ## 1235 # @migrate-start-postcopy: 1236 # 1237 # Followup to a migration command to switch the migration to postcopy mode. 1238 # The postcopy-ram capability must be set on both source and destination 1239 # before the original migration command. 1240 # 1241 # Since: 2.5 1242 # 1243 # Example: 1244 # 1245 # -> { "execute": "migrate-start-postcopy" } 1246 # <- { "return": {} } 1247 # 1248 ## 1249 { 'command': 'migrate-start-postcopy' } 1250 1251 ## 1252 # @MIGRATION: 1253 # 1254 # Emitted when a migration event happens 1255 # 1256 # @status: @MigrationStatus describing the current migration status. 1257 # 1258 # Since: 2.4 1259 # 1260 # Example: 1261 # 1262 # <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1263 # "event": "MIGRATION", 1264 # "data": {"status": "completed"} } 1265 # 1266 ## 1267 { 'event': 'MIGRATION', 1268 'data': {'status': 'MigrationStatus'}} 1269 1270 ## 1271 # @MIGRATION_PASS: 1272 # 1273 # Emitted from the source side of a migration at the start of each pass 1274 # (when it syncs the dirty bitmap) 1275 # 1276 # @pass: An incrementing count (starting at 1 on the first pass) 1277 # 1278 # Since: 2.6 1279 # 1280 # Example: 1281 # 1282 # { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1283 # "event": "MIGRATION_PASS", "data": {"pass": 2} } 1284 # 1285 ## 1286 { 'event': 'MIGRATION_PASS', 1287 'data': { 'pass': 'int' } } 1288 1289 ## 1290 # @COLOMessage: 1291 # 1292 # The message transmission between Primary side and Secondary side. 1293 # 1294 # @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1295 # 1296 # @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing 1297 # 1298 # @checkpoint-reply: SVM gets PVM's checkpoint request 1299 # 1300 # @vmstate-send: VM's state will be sent by PVM. 1301 # 1302 # @vmstate-size: The total size of VMstate. 1303 # 1304 # @vmstate-received: VM's state has been received by SVM. 1305 # 1306 # @vmstate-loaded: VM's state has been loaded by SVM. 1307 # 1308 # Since: 2.8 1309 ## 1310 { 'enum': 'COLOMessage', 1311 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1312 'vmstate-send', 'vmstate-size', 'vmstate-received', 1313 'vmstate-loaded' ] } 1314 1315 ## 1316 # @COLOMode: 1317 # 1318 # The COLO current mode. 1319 # 1320 # @none: COLO is disabled. 1321 # 1322 # @primary: COLO node in primary side. 1323 # 1324 # @secondary: COLO node in slave side. 1325 # 1326 # Since: 2.8 1327 ## 1328 { 'enum': 'COLOMode', 1329 'data': [ 'none', 'primary', 'secondary'] } 1330 1331 ## 1332 # @FailoverStatus: 1333 # 1334 # An enumeration of COLO failover status 1335 # 1336 # @none: no failover has ever happened 1337 # 1338 # @require: got failover requirement but not handled 1339 # 1340 # @active: in the process of doing failover 1341 # 1342 # @completed: finish the process of failover 1343 # 1344 # @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9) 1345 # 1346 # Since: 2.8 1347 ## 1348 { 'enum': 'FailoverStatus', 1349 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1350 1351 ## 1352 # @COLO_EXIT: 1353 # 1354 # Emitted when VM finishes COLO mode due to some errors happening or 1355 # at the request of users. 1356 # 1357 # @mode: report COLO mode when COLO exited. 1358 # 1359 # @reason: describes the reason for the COLO exit. 1360 # 1361 # Since: 3.1 1362 # 1363 # Example: 1364 # 1365 # <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1366 # "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1367 # 1368 ## 1369 { 'event': 'COLO_EXIT', 1370 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1371 1372 ## 1373 # @COLOExitReason: 1374 # 1375 # The reason for a COLO exit. 1376 # 1377 # @none: failover has never happened. This state does not occur 1378 # in the COLO_EXIT event, and is only visible in the result of 1379 # query-colo-status. 1380 # 1381 # @request: COLO exit is due to an external request. 1382 # 1383 # @error: COLO exit is due to an internal error. 1384 # 1385 # @processing: COLO is currently handling a failover (since 4.0). 1386 # 1387 # Since: 3.1 1388 ## 1389 { 'enum': 'COLOExitReason', 1390 'data': [ 'none', 'request', 'error' , 'processing' ] } 1391 1392 ## 1393 # @x-colo-lost-heartbeat: 1394 # 1395 # Tell qemu that heartbeat is lost, request it to do takeover procedures. 1396 # If this command is sent to the PVM, the Primary side will exit COLO mode. 1397 # If sent to the Secondary, the Secondary side will run failover work, 1398 # then takes over server operation to become the service VM. 1399 # 1400 # Features: 1401 # @unstable: This command is experimental. 1402 # 1403 # Since: 2.8 1404 # 1405 # Example: 1406 # 1407 # -> { "execute": "x-colo-lost-heartbeat" } 1408 # <- { "return": {} } 1409 # 1410 ## 1411 { 'command': 'x-colo-lost-heartbeat', 1412 'features': [ 'unstable' ] } 1413 1414 ## 1415 # @migrate_cancel: 1416 # 1417 # Cancel the current executing migration process. 1418 # 1419 # Returns: nothing on success 1420 # 1421 # Notes: This command succeeds even if there is no migration process running. 1422 # 1423 # Since: 0.14 1424 # 1425 # Example: 1426 # 1427 # -> { "execute": "migrate_cancel" } 1428 # <- { "return": {} } 1429 # 1430 ## 1431 { 'command': 'migrate_cancel' } 1432 1433 ## 1434 # @migrate-continue: 1435 # 1436 # Continue migration when it's in a paused state. 1437 # 1438 # @state: The state the migration is currently expected to be in 1439 # 1440 # Returns: nothing on success 1441 # 1442 # Since: 2.11 1443 # 1444 # Example: 1445 # 1446 # -> { "execute": "migrate-continue" , "arguments": 1447 # { "state": "pre-switchover" } } 1448 # <- { "return": {} } 1449 ## 1450 { 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1451 1452 ## 1453 # @migrate: 1454 # 1455 # Migrates the current running guest to another Virtual Machine. 1456 # 1457 # @uri: the Uniform Resource Identifier of the destination VM 1458 # 1459 # @blk: do block migration (full disk copy) 1460 # 1461 # @inc: incremental disk copy migration 1462 # 1463 # @detach: this argument exists only for compatibility reasons and 1464 # is ignored by QEMU 1465 # 1466 # @resume: resume one paused migration, default "off". (since 3.0) 1467 # 1468 # Returns: nothing on success 1469 # 1470 # Since: 0.14 1471 # 1472 # Notes: 1473 # 1474 # 1. The 'query-migrate' command should be used to check migration's progress 1475 # and final result (this information is provided by the 'status' member) 1476 # 1477 # 2. All boolean arguments default to false 1478 # 1479 # 3. The user Monitor's "detach" argument is invalid in QMP and should not 1480 # be used 1481 # 1482 # Example: 1483 # 1484 # -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1485 # <- { "return": {} } 1486 # 1487 ## 1488 { 'command': 'migrate', 1489 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool', 1490 '*detach': 'bool', '*resume': 'bool' } } 1491 1492 ## 1493 # @migrate-incoming: 1494 # 1495 # Start an incoming migration, the qemu must have been started 1496 # with -incoming defer 1497 # 1498 # @uri: The Uniform Resource Identifier identifying the source or 1499 # address to listen on 1500 # 1501 # Returns: nothing on success 1502 # 1503 # Since: 2.3 1504 # 1505 # Notes: 1506 # 1507 # 1. It's a bad idea to use a string for the uri, but it needs to stay 1508 # compatible with -incoming and the format of the uri is already exposed 1509 # above libvirt. 1510 # 1511 # 2. QEMU must be started with -incoming defer to allow migrate-incoming to 1512 # be used. 1513 # 1514 # 3. The uri format is the same as for -incoming 1515 # 1516 # Example: 1517 # 1518 # -> { "execute": "migrate-incoming", 1519 # "arguments": { "uri": "tcp::4446" } } 1520 # <- { "return": {} } 1521 # 1522 ## 1523 { 'command': 'migrate-incoming', 'data': {'uri': 'str' } } 1524 1525 ## 1526 # @xen-save-devices-state: 1527 # 1528 # Save the state of all devices to file. The RAM and the block devices 1529 # of the VM are not saved by this command. 1530 # 1531 # @filename: the file to save the state of the devices to as binary 1532 # data. See xen-save-devices-state.txt for a description of the binary 1533 # format. 1534 # 1535 # @live: Optional argument to ask QEMU to treat this command as part of a live 1536 # migration. Default to true. (since 2.11) 1537 # 1538 # Returns: Nothing on success 1539 # 1540 # Since: 1.1 1541 # 1542 # Example: 1543 # 1544 # -> { "execute": "xen-save-devices-state", 1545 # "arguments": { "filename": "/tmp/save" } } 1546 # <- { "return": {} } 1547 # 1548 ## 1549 { 'command': 'xen-save-devices-state', 1550 'data': {'filename': 'str', '*live':'bool' } } 1551 1552 ## 1553 # @xen-set-global-dirty-log: 1554 # 1555 # Enable or disable the global dirty log mode. 1556 # 1557 # @enable: true to enable, false to disable. 1558 # 1559 # Returns: nothing 1560 # 1561 # Since: 1.3 1562 # 1563 # Example: 1564 # 1565 # -> { "execute": "xen-set-global-dirty-log", 1566 # "arguments": { "enable": true } } 1567 # <- { "return": {} } 1568 # 1569 ## 1570 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1571 1572 ## 1573 # @xen-load-devices-state: 1574 # 1575 # Load the state of all devices from file. The RAM and the block devices 1576 # of the VM are not loaded by this command. 1577 # 1578 # @filename: the file to load the state of the devices from as binary 1579 # data. See xen-save-devices-state.txt for a description of the binary 1580 # format. 1581 # 1582 # Since: 2.7 1583 # 1584 # Example: 1585 # 1586 # -> { "execute": "xen-load-devices-state", 1587 # "arguments": { "filename": "/tmp/resume" } } 1588 # <- { "return": {} } 1589 # 1590 ## 1591 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1592 1593 ## 1594 # @xen-set-replication: 1595 # 1596 # Enable or disable replication. 1597 # 1598 # @enable: true to enable, false to disable. 1599 # 1600 # @primary: true for primary or false for secondary. 1601 # 1602 # @failover: true to do failover, false to stop. but cannot be 1603 # specified if 'enable' is true. default value is false. 1604 # 1605 # Returns: nothing. 1606 # 1607 # Example: 1608 # 1609 # -> { "execute": "xen-set-replication", 1610 # "arguments": {"enable": true, "primary": false} } 1611 # <- { "return": {} } 1612 # 1613 # Since: 2.9 1614 ## 1615 { 'command': 'xen-set-replication', 1616 'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' }, 1617 'if': 'CONFIG_REPLICATION' } 1618 1619 ## 1620 # @ReplicationStatus: 1621 # 1622 # The result format for 'query-xen-replication-status'. 1623 # 1624 # @error: true if an error happened, false if replication is normal. 1625 # 1626 # @desc: the human readable error description string, when 1627 # @error is 'true'. 1628 # 1629 # Since: 2.9 1630 ## 1631 { 'struct': 'ReplicationStatus', 1632 'data': { 'error': 'bool', '*desc': 'str' }, 1633 'if': 'CONFIG_REPLICATION' } 1634 1635 ## 1636 # @query-xen-replication-status: 1637 # 1638 # Query replication status while the vm is running. 1639 # 1640 # Returns: A @ReplicationStatus object showing the status. 1641 # 1642 # Example: 1643 # 1644 # -> { "execute": "query-xen-replication-status" } 1645 # <- { "return": { "error": false } } 1646 # 1647 # Since: 2.9 1648 ## 1649 { 'command': 'query-xen-replication-status', 1650 'returns': 'ReplicationStatus', 1651 'if': 'CONFIG_REPLICATION' } 1652 1653 ## 1654 # @xen-colo-do-checkpoint: 1655 # 1656 # Xen uses this command to notify replication to trigger a checkpoint. 1657 # 1658 # Returns: nothing. 1659 # 1660 # Example: 1661 # 1662 # -> { "execute": "xen-colo-do-checkpoint" } 1663 # <- { "return": {} } 1664 # 1665 # Since: 2.9 1666 ## 1667 { 'command': 'xen-colo-do-checkpoint', 1668 'if': 'CONFIG_REPLICATION' } 1669 1670 ## 1671 # @COLOStatus: 1672 # 1673 # The result format for 'query-colo-status'. 1674 # 1675 # @mode: COLO running mode. If COLO is running, this field will return 1676 # 'primary' or 'secondary'. 1677 # 1678 # @last-mode: COLO last running mode. If COLO is running, this field 1679 # will return same like mode field, after failover we can 1680 # use this field to get last colo mode. (since 4.0) 1681 # 1682 # @reason: describes the reason for the COLO exit. 1683 # 1684 # Since: 3.1 1685 ## 1686 { 'struct': 'COLOStatus', 1687 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1688 'reason': 'COLOExitReason' } } 1689 1690 ## 1691 # @query-colo-status: 1692 # 1693 # Query COLO status while the vm is running. 1694 # 1695 # Returns: A @COLOStatus object showing the status. 1696 # 1697 # Example: 1698 # 1699 # -> { "execute": "query-colo-status" } 1700 # <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 1701 # 1702 # Since: 3.1 1703 ## 1704 { 'command': 'query-colo-status', 1705 'returns': 'COLOStatus' } 1706 1707 ## 1708 # @migrate-recover: 1709 # 1710 # Provide a recovery migration stream URI. 1711 # 1712 # @uri: the URI to be used for the recovery of migration stream. 1713 # 1714 # Returns: nothing. 1715 # 1716 # Example: 1717 # 1718 # -> { "execute": "migrate-recover", 1719 # "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1720 # <- { "return": {} } 1721 # 1722 # Since: 3.0 1723 ## 1724 { 'command': 'migrate-recover', 1725 'data': { 'uri': 'str' }, 1726 'allow-oob': true } 1727 1728 ## 1729 # @migrate-pause: 1730 # 1731 # Pause a migration. Currently it only supports postcopy. 1732 # 1733 # Returns: nothing. 1734 # 1735 # Example: 1736 # 1737 # -> { "execute": "migrate-pause" } 1738 # <- { "return": {} } 1739 # 1740 # Since: 3.0 1741 ## 1742 { 'command': 'migrate-pause', 'allow-oob': true } 1743 1744 ## 1745 # @UNPLUG_PRIMARY: 1746 # 1747 # Emitted from source side of a migration when migration state is 1748 # WAIT_UNPLUG. Device was unplugged by guest operating system. 1749 # Device resources in QEMU are kept on standby to be able to re-plug it in case 1750 # of migration failure. 1751 # 1752 # @device-id: QEMU device id of the unplugged device 1753 # 1754 # Since: 4.2 1755 # 1756 # Example: 1757 # 1758 # <- { "event": "UNPLUG_PRIMARY", 1759 # "data": { "device-id": "hostdev0" }, 1760 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1761 # 1762 ## 1763 { 'event': 'UNPLUG_PRIMARY', 1764 'data': { 'device-id': 'str' } } 1765 1766 ## 1767 # @DirtyRateVcpu: 1768 # 1769 # Dirty rate of vcpu. 1770 # 1771 # @id: vcpu index. 1772 # 1773 # @dirty-rate: dirty rate. 1774 # 1775 # Since: 6.2 1776 ## 1777 { 'struct': 'DirtyRateVcpu', 1778 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 1779 1780 ## 1781 # @DirtyRateStatus: 1782 # 1783 # An enumeration of dirtyrate status. 1784 # 1785 # @unstarted: the dirtyrate thread has not been started. 1786 # 1787 # @measuring: the dirtyrate thread is measuring. 1788 # 1789 # @measured: the dirtyrate thread has measured and results are available. 1790 # 1791 # Since: 5.2 1792 ## 1793 { 'enum': 'DirtyRateStatus', 1794 'data': [ 'unstarted', 'measuring', 'measured'] } 1795 1796 ## 1797 # @DirtyRateMeasureMode: 1798 # 1799 # An enumeration of mode of measuring dirtyrate. 1800 # 1801 # @page-sampling: calculate dirtyrate by sampling pages. 1802 # 1803 # @dirty-ring: calculate dirtyrate by dirty ring. 1804 # 1805 # @dirty-bitmap: calculate dirtyrate by dirty bitmap. 1806 # 1807 # Since: 6.2 1808 ## 1809 { 'enum': 'DirtyRateMeasureMode', 1810 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 1811 1812 ## 1813 # @DirtyRateInfo: 1814 # 1815 # Information about current dirty page rate of vm. 1816 # 1817 # @dirty-rate: an estimate of the dirty page rate of the VM in units of 1818 # MB/s, present only when estimating the rate has completed. 1819 # 1820 # @status: status containing dirtyrate query status includes 1821 # 'unstarted' or 'measuring' or 'measured' 1822 # 1823 # @start-time: start time in units of second for calculation 1824 # 1825 # @calc-time: time in units of second for sample dirty pages 1826 # 1827 # @sample-pages: page count per GB for sample dirty pages 1828 # the default value is 512 (since 6.1) 1829 # 1830 # @mode: mode containing method of calculate dirtyrate includes 1831 # 'page-sampling' and 'dirty-ring' (Since 6.2) 1832 # 1833 # @vcpu-dirty-rate: dirtyrate for each vcpu if dirty-ring 1834 # mode specified (Since 6.2) 1835 # 1836 # Since: 5.2 1837 ## 1838 { 'struct': 'DirtyRateInfo', 1839 'data': {'*dirty-rate': 'int64', 1840 'status': 'DirtyRateStatus', 1841 'start-time': 'int64', 1842 'calc-time': 'int64', 1843 'sample-pages': 'uint64', 1844 'mode': 'DirtyRateMeasureMode', 1845 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 1846 1847 ## 1848 # @calc-dirty-rate: 1849 # 1850 # start calculating dirty page rate for vm 1851 # 1852 # @calc-time: time in units of second for sample dirty pages 1853 # 1854 # @sample-pages: page count per GB for sample dirty pages 1855 # the default value is 512 (since 6.1) 1856 # 1857 # @mode: mechanism of calculating dirtyrate includes 1858 # 'page-sampling' and 'dirty-ring' (Since 6.1) 1859 # 1860 # Since: 5.2 1861 # 1862 # Example: 1863 # 1864 # {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 1865 # 'sample-pages': 512} } 1866 # 1867 ## 1868 { 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 1869 '*sample-pages': 'int', 1870 '*mode': 'DirtyRateMeasureMode'} } 1871 1872 ## 1873 # @query-dirty-rate: 1874 # 1875 # query dirty page rate in units of MB/s for vm 1876 # 1877 # Since: 5.2 1878 ## 1879 { 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' } 1880 1881 ## 1882 # @DirtyLimitInfo: 1883 # 1884 # Dirty page rate limit information of a virtual CPU. 1885 # 1886 # @cpu-index: index of a virtual CPU. 1887 # 1888 # @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 1889 # CPU, 0 means unlimited. 1890 # 1891 # @current-rate: current dirty page rate (MB/s) for a virtual CPU. 1892 # 1893 # Since: 7.1 1894 # 1895 ## 1896 { 'struct': 'DirtyLimitInfo', 1897 'data': { 'cpu-index': 'int', 1898 'limit-rate': 'uint64', 1899 'current-rate': 'uint64' } } 1900 1901 ## 1902 # @set-vcpu-dirty-limit: 1903 # 1904 # Set the upper limit of dirty page rate for virtual CPUs. 1905 # 1906 # Requires KVM with accelerator property "dirty-ring-size" set. 1907 # A virtual CPU's dirty page rate is a measure of its memory load. 1908 # To observe dirty page rates, use @calc-dirty-rate. 1909 # 1910 # @cpu-index: index of a virtual CPU, default is all. 1911 # 1912 # @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 1913 # 1914 # Since: 7.1 1915 # 1916 # Example: 1917 # {"execute": "set-vcpu-dirty-limit"} 1918 # "arguments": { "dirty-rate": 200, 1919 # "cpu-index": 1 } } 1920 # 1921 ## 1922 { 'command': 'set-vcpu-dirty-limit', 1923 'data': { '*cpu-index': 'int', 1924 'dirty-rate': 'uint64' } } 1925 1926 ## 1927 # @cancel-vcpu-dirty-limit: 1928 # 1929 # Cancel the upper limit of dirty page rate for virtual CPUs. 1930 # 1931 # Cancel the dirty page limit for the vCPU which has been set with 1932 # set-vcpu-dirty-limit command. Note that this command requires 1933 # support from dirty ring, same as the "set-vcpu-dirty-limit". 1934 # 1935 # @cpu-index: index of a virtual CPU, default is all. 1936 # 1937 # Since: 7.1 1938 # 1939 # Example: 1940 # {"execute": "cancel-vcpu-dirty-limit"} 1941 # "arguments": { "cpu-index": 1 } } 1942 # 1943 ## 1944 { 'command': 'cancel-vcpu-dirty-limit', 1945 'data': { '*cpu-index': 'int'} } 1946 1947 ## 1948 # @query-vcpu-dirty-limit: 1949 # 1950 # Returns information about virtual CPU dirty page rate limits, if any. 1951 # 1952 # Since: 7.1 1953 # 1954 # Example: 1955 # {"execute": "query-vcpu-dirty-limit"} 1956 # 1957 ## 1958 { 'command': 'query-vcpu-dirty-limit', 1959 'returns': [ 'DirtyLimitInfo' ] } 1960 1961 ## 1962 # @snapshot-save: 1963 # 1964 # Save a VM snapshot 1965 # 1966 # @job-id: identifier for the newly created job 1967 # @tag: name of the snapshot to create 1968 # @vmstate: block device node name to save vmstate to 1969 # @devices: list of block device node names to save a snapshot to 1970 # 1971 # Applications should not assume that the snapshot save is complete 1972 # when this command returns. The job commands / events must be used 1973 # to determine completion and to fetch details of any errors that arise. 1974 # 1975 # Note that execution of the guest CPUs may be stopped during the 1976 # time it takes to save the snapshot. A future version of QEMU 1977 # may ensure CPUs are executing continuously. 1978 # 1979 # It is strongly recommended that @devices contain all writable 1980 # block device nodes if a consistent snapshot is required. 1981 # 1982 # If @tag already exists, an error will be reported 1983 # 1984 # Returns: nothing 1985 # 1986 # Example: 1987 # 1988 # -> { "execute": "snapshot-save", 1989 # "arguments": { 1990 # "job-id": "snapsave0", 1991 # "tag": "my-snap", 1992 # "vmstate": "disk0", 1993 # "devices": ["disk0", "disk1"] 1994 # } 1995 # } 1996 # <- { "return": { } } 1997 # <- {"event": "JOB_STATUS_CHANGE", 1998 # "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1999 # "data": {"status": "created", "id": "snapsave0"}} 2000 # <- {"event": "JOB_STATUS_CHANGE", 2001 # "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2002 # "data": {"status": "running", "id": "snapsave0"}} 2003 # <- {"event": "STOP", 2004 # "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2005 # <- {"event": "RESUME", 2006 # "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2007 # <- {"event": "JOB_STATUS_CHANGE", 2008 # "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2009 # "data": {"status": "waiting", "id": "snapsave0"}} 2010 # <- {"event": "JOB_STATUS_CHANGE", 2011 # "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2012 # "data": {"status": "pending", "id": "snapsave0"}} 2013 # <- {"event": "JOB_STATUS_CHANGE", 2014 # "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2015 # "data": {"status": "concluded", "id": "snapsave0"}} 2016 # -> {"execute": "query-jobs"} 2017 # <- {"return": [{"current-progress": 1, 2018 # "status": "concluded", 2019 # "total-progress": 1, 2020 # "type": "snapshot-save", 2021 # "id": "snapsave0"}]} 2022 # 2023 # Since: 6.0 2024 ## 2025 { 'command': 'snapshot-save', 2026 'data': { 'job-id': 'str', 2027 'tag': 'str', 2028 'vmstate': 'str', 2029 'devices': ['str'] } } 2030 2031 ## 2032 # @snapshot-load: 2033 # 2034 # Load a VM snapshot 2035 # 2036 # @job-id: identifier for the newly created job 2037 # @tag: name of the snapshot to load. 2038 # @vmstate: block device node name to load vmstate from 2039 # @devices: list of block device node names to load a snapshot from 2040 # 2041 # Applications should not assume that the snapshot load is complete 2042 # when this command returns. The job commands / events must be used 2043 # to determine completion and to fetch details of any errors that arise. 2044 # 2045 # Note that execution of the guest CPUs will be stopped during the 2046 # time it takes to load the snapshot. 2047 # 2048 # It is strongly recommended that @devices contain all writable 2049 # block device nodes that can have changed since the original 2050 # @snapshot-save command execution. 2051 # 2052 # Returns: nothing 2053 # 2054 # Example: 2055 # 2056 # -> { "execute": "snapshot-load", 2057 # "arguments": { 2058 # "job-id": "snapload0", 2059 # "tag": "my-snap", 2060 # "vmstate": "disk0", 2061 # "devices": ["disk0", "disk1"] 2062 # } 2063 # } 2064 # <- { "return": { } } 2065 # <- {"event": "JOB_STATUS_CHANGE", 2066 # "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2067 # "data": {"status": "created", "id": "snapload0"}} 2068 # <- {"event": "JOB_STATUS_CHANGE", 2069 # "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2070 # "data": {"status": "running", "id": "snapload0"}} 2071 # <- {"event": "STOP", 2072 # "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2073 # <- {"event": "RESUME", 2074 # "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2075 # <- {"event": "JOB_STATUS_CHANGE", 2076 # "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2077 # "data": {"status": "waiting", "id": "snapload0"}} 2078 # <- {"event": "JOB_STATUS_CHANGE", 2079 # "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2080 # "data": {"status": "pending", "id": "snapload0"}} 2081 # <- {"event": "JOB_STATUS_CHANGE", 2082 # "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2083 # "data": {"status": "concluded", "id": "snapload0"}} 2084 # -> {"execute": "query-jobs"} 2085 # <- {"return": [{"current-progress": 1, 2086 # "status": "concluded", 2087 # "total-progress": 1, 2088 # "type": "snapshot-load", 2089 # "id": "snapload0"}]} 2090 # 2091 # Since: 6.0 2092 ## 2093 { 'command': 'snapshot-load', 2094 'data': { 'job-id': 'str', 2095 'tag': 'str', 2096 'vmstate': 'str', 2097 'devices': ['str'] } } 2098 2099 ## 2100 # @snapshot-delete: 2101 # 2102 # Delete a VM snapshot 2103 # 2104 # @job-id: identifier for the newly created job 2105 # @tag: name of the snapshot to delete. 2106 # @devices: list of block device node names to delete a snapshot from 2107 # 2108 # Applications should not assume that the snapshot delete is complete 2109 # when this command returns. The job commands / events must be used 2110 # to determine completion and to fetch details of any errors that arise. 2111 # 2112 # Returns: nothing 2113 # 2114 # Example: 2115 # 2116 # -> { "execute": "snapshot-delete", 2117 # "arguments": { 2118 # "job-id": "snapdelete0", 2119 # "tag": "my-snap", 2120 # "devices": ["disk0", "disk1"] 2121 # } 2122 # } 2123 # <- { "return": { } } 2124 # <- {"event": "JOB_STATUS_CHANGE", 2125 # "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2126 # "data": {"status": "created", "id": "snapdelete0"}} 2127 # <- {"event": "JOB_STATUS_CHANGE", 2128 # "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2129 # "data": {"status": "running", "id": "snapdelete0"}} 2130 # <- {"event": "JOB_STATUS_CHANGE", 2131 # "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2132 # "data": {"status": "waiting", "id": "snapdelete0"}} 2133 # <- {"event": "JOB_STATUS_CHANGE", 2134 # "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2135 # "data": {"status": "pending", "id": "snapdelete0"}} 2136 # <- {"event": "JOB_STATUS_CHANGE", 2137 # "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2138 # "data": {"status": "concluded", "id": "snapdelete0"}} 2139 # -> {"execute": "query-jobs"} 2140 # <- {"return": [{"current-progress": 1, 2141 # "status": "concluded", 2142 # "total-progress": 1, 2143 # "type": "snapshot-delete", 2144 # "id": "snapdelete0"}]} 2145 # 2146 # Since: 6.0 2147 ## 2148 { 'command': 'snapshot-delete', 2149 'data': { 'job-id': 'str', 2150 'tag': 'str', 2151 'devices': ['str'] } }