qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

machine.json (40151B)


      1 # -*- Mode: Python -*-
      2 # vim: filetype=python
      3 #
      4 # This work is licensed under the terms of the GNU GPL, version 2 or later.
      5 # See the COPYING file in the top-level directory.
      6 
      7 ##
      8 # = Machines
      9 ##
     10 
     11 { 'include': 'common.json' }
     12 
     13 ##
     14 # @SysEmuTarget:
     15 #
     16 # The comprehensive enumeration of QEMU system emulation ("softmmu")
     17 # targets. Run "./configure --help" in the project root directory, and
     18 # look for the \*-softmmu targets near the "--target-list" option. The
     19 # individual target constants are not documented here, for the time
     20 # being.
     21 #
     22 # @rx: since 5.0
     23 # @avr: since 5.1
     24 #
     25 # Notes: The resulting QMP strings can be appended to the "qemu-system-"
     26 #        prefix to produce the corresponding QEMU executable name. This
     27 #        is true even for "qemu-system-x86_64".
     28 #
     29 # Since: 3.0
     30 ##
     31 { 'enum' : 'SysEmuTarget',
     32   'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
     33              'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
     34              'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
     35              'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
     36              'sh4eb', 'sparc', 'sparc64', 'tricore',
     37              'x86_64', 'xtensa', 'xtensaeb' ] }
     38 
     39 ##
     40 # @CpuS390State:
     41 #
     42 # An enumeration of cpu states that can be assumed by a virtual
     43 # S390 CPU
     44 #
     45 # Since: 2.12
     46 ##
     47 { 'enum': 'CpuS390State',
     48   'prefix': 'S390_CPU_STATE',
     49   'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
     50 
     51 ##
     52 # @CpuInfoS390:
     53 #
     54 # Additional information about a virtual S390 CPU
     55 #
     56 # @cpu-state: the virtual CPU's state
     57 #
     58 # Since: 2.12
     59 ##
     60 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
     61 
     62 ##
     63 # @CpuInfoFast:
     64 #
     65 # Information about a virtual CPU
     66 #
     67 # @cpu-index: index of the virtual CPU
     68 #
     69 # @qom-path: path to the CPU object in the QOM tree
     70 #
     71 # @thread-id: ID of the underlying host thread
     72 #
     73 # @props: properties describing to which node/socket/core/thread
     74 #         virtual CPU belongs to, provided if supported by board
     75 #
     76 # @target: the QEMU system emulation target, which determines which
     77 #          additional fields will be listed (since 3.0)
     78 #
     79 # Since: 2.12
     80 ##
     81 { 'union'         : 'CpuInfoFast',
     82   'base'          : { 'cpu-index'    : 'int',
     83                       'qom-path'     : 'str',
     84                       'thread-id'    : 'int',
     85                       '*props'       : 'CpuInstanceProperties',
     86                       'target'       : 'SysEmuTarget' },
     87   'discriminator' : 'target',
     88   'data'          : { 's390x'        : 'CpuInfoS390' } }
     89 
     90 ##
     91 # @query-cpus-fast:
     92 #
     93 # Returns information about all virtual CPUs.
     94 #
     95 # Returns: list of @CpuInfoFast
     96 #
     97 # Since: 2.12
     98 #
     99 # Example:
    100 #
    101 # -> { "execute": "query-cpus-fast" }
    102 # <- { "return": [
    103 #         {
    104 #             "thread-id": 25627,
    105 #             "props": {
    106 #                 "core-id": 0,
    107 #                 "thread-id": 0,
    108 #                 "socket-id": 0
    109 #             },
    110 #             "qom-path": "/machine/unattached/device[0]",
    111 #             "target":"x86_64",
    112 #             "cpu-index": 0
    113 #         },
    114 #         {
    115 #             "thread-id": 25628,
    116 #             "props": {
    117 #                 "core-id": 0,
    118 #                 "thread-id": 0,
    119 #                 "socket-id": 1
    120 #             },
    121 #             "qom-path": "/machine/unattached/device[2]",
    122 #             "target":"x86_64",
    123 #             "cpu-index": 1
    124 #         }
    125 #     ]
    126 # }
    127 ##
    128 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
    129 
    130 ##
    131 # @MachineInfo:
    132 #
    133 # Information describing a machine.
    134 #
    135 # @name: the name of the machine
    136 #
    137 # @alias: an alias for the machine name
    138 #
    139 # @is-default: whether the machine is default
    140 #
    141 # @cpu-max: maximum number of CPUs supported by the machine type
    142 #           (since 1.5)
    143 #
    144 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
    145 #
    146 # @numa-mem-supported: true if '-numa node,mem' option is supported by
    147 #                      the machine type and false otherwise (since 4.1)
    148 #
    149 # @deprecated: if true, the machine type is deprecated and may be removed
    150 #              in future versions of QEMU according to the QEMU deprecation
    151 #              policy (since 4.1)
    152 #
    153 # @default-cpu-type: default CPU model typename if none is requested via
    154 #                    the -cpu argument. (since 4.2)
    155 #
    156 # @default-ram-id: the default ID of initial RAM memory backend (since 5.2)
    157 #
    158 # Since: 1.2
    159 ##
    160 { 'struct': 'MachineInfo',
    161   'data': { 'name': 'str', '*alias': 'str',
    162             '*is-default': 'bool', 'cpu-max': 'int',
    163             'hotpluggable-cpus': 'bool',  'numa-mem-supported': 'bool',
    164             'deprecated': 'bool', '*default-cpu-type': 'str',
    165             '*default-ram-id': 'str' } }
    166 
    167 ##
    168 # @query-machines:
    169 #
    170 # Return a list of supported machines
    171 #
    172 # Returns: a list of MachineInfo
    173 #
    174 # Since: 1.2
    175 ##
    176 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
    177 
    178 ##
    179 # @CurrentMachineParams:
    180 #
    181 # Information describing the running machine parameters.
    182 #
    183 # @wakeup-suspend-support: true if the machine supports wake up from
    184 #                          suspend
    185 #
    186 # Since: 4.0
    187 ##
    188 { 'struct': 'CurrentMachineParams',
    189   'data': { 'wakeup-suspend-support': 'bool'} }
    190 
    191 ##
    192 # @query-current-machine:
    193 #
    194 # Return information on the current virtual machine.
    195 #
    196 # Returns: CurrentMachineParams
    197 #
    198 # Since: 4.0
    199 ##
    200 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
    201 
    202 ##
    203 # @TargetInfo:
    204 #
    205 # Information describing the QEMU target.
    206 #
    207 # @arch: the target architecture
    208 #
    209 # Since: 1.2
    210 ##
    211 { 'struct': 'TargetInfo',
    212   'data': { 'arch': 'SysEmuTarget' } }
    213 
    214 ##
    215 # @query-target:
    216 #
    217 # Return information about the target for this QEMU
    218 #
    219 # Returns: TargetInfo
    220 #
    221 # Since: 1.2
    222 ##
    223 { 'command': 'query-target', 'returns': 'TargetInfo' }
    224 
    225 ##
    226 # @UuidInfo:
    227 #
    228 # Guest UUID information (Universally Unique Identifier).
    229 #
    230 # @UUID: the UUID of the guest
    231 #
    232 # Since: 0.14
    233 #
    234 # Notes: If no UUID was specified for the guest, a null UUID is returned.
    235 ##
    236 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
    237 
    238 ##
    239 # @query-uuid:
    240 #
    241 # Query the guest UUID information.
    242 #
    243 # Returns: The @UuidInfo for the guest
    244 #
    245 # Since: 0.14
    246 #
    247 # Example:
    248 #
    249 # -> { "execute": "query-uuid" }
    250 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
    251 #
    252 ##
    253 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
    254 
    255 ##
    256 # @GuidInfo:
    257 #
    258 # GUID information.
    259 #
    260 # @guid: the globally unique identifier
    261 #
    262 # Since: 2.9
    263 ##
    264 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
    265 
    266 ##
    267 # @query-vm-generation-id:
    268 #
    269 # Show Virtual Machine Generation ID
    270 #
    271 # Since: 2.9
    272 ##
    273 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
    274 
    275 ##
    276 # @system_reset:
    277 #
    278 # Performs a hard reset of a guest.
    279 #
    280 # Since: 0.14
    281 #
    282 # Example:
    283 #
    284 # -> { "execute": "system_reset" }
    285 # <- { "return": {} }
    286 #
    287 ##
    288 { 'command': 'system_reset' }
    289 
    290 ##
    291 # @system_powerdown:
    292 #
    293 # Requests that a guest perform a powerdown operation.
    294 #
    295 # Since: 0.14
    296 #
    297 # Notes: A guest may or may not respond to this command.  This command
    298 #        returning does not indicate that a guest has accepted the request or
    299 #        that it has shut down.  Many guests will respond to this command by
    300 #        prompting the user in some way.
    301 #
    302 # Example:
    303 #
    304 # -> { "execute": "system_powerdown" }
    305 # <- { "return": {} }
    306 #
    307 ##
    308 { 'command': 'system_powerdown' }
    309 
    310 ##
    311 # @system_wakeup:
    312 #
    313 # Wake up guest from suspend. If the guest has wake-up from suspend
    314 # support enabled (wakeup-suspend-support flag from
    315 # query-current-machine), wake-up guest from suspend if the guest is
    316 # in SUSPENDED state. Return an error otherwise.
    317 #
    318 # Since: 1.1
    319 #
    320 # Returns: nothing.
    321 #
    322 # Note: prior to 4.0, this command does nothing in case the guest
    323 #       isn't suspended.
    324 #
    325 # Example:
    326 #
    327 # -> { "execute": "system_wakeup" }
    328 # <- { "return": {} }
    329 #
    330 ##
    331 { 'command': 'system_wakeup' }
    332 
    333 ##
    334 # @LostTickPolicy:
    335 #
    336 # Policy for handling lost ticks in timer devices.  Ticks end up getting
    337 # lost when, for example, the guest is paused.
    338 #
    339 # @discard: throw away the missed ticks and continue with future injection
    340 #           normally.  The guest OS will see the timer jump ahead by a
    341 #           potentially quite significant amount all at once, as if the
    342 #           intervening chunk of time had simply not existed; needless to
    343 #           say, such a sudden jump can easily confuse a guest OS which is
    344 #           not specifically prepared to deal with it.  Assuming the guest
    345 #           OS can deal correctly with the time jump, the time in the guest
    346 #           and in the host should now match.
    347 #
    348 # @delay: continue to deliver ticks at the normal rate.  The guest OS will
    349 #         not notice anything is amiss, as from its point of view time will
    350 #         have continued to flow normally.  The time in the guest should now
    351 #         be behind the time in the host by exactly the amount of time during
    352 #         which ticks have been missed.
    353 #
    354 # @slew: deliver ticks at a higher rate to catch up with the missed ticks.
    355 #        The guest OS will not notice anything is amiss, as from its point
    356 #        of view time will have continued to flow normally.  Once the timer
    357 #        has managed to catch up with all the missing ticks, the time in
    358 #        the guest and in the host should match.
    359 #
    360 # Since: 2.0
    361 ##
    362 { 'enum': 'LostTickPolicy',
    363   'data': ['discard', 'delay', 'slew' ] }
    364 
    365 ##
    366 # @inject-nmi:
    367 #
    368 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
    369 # The command fails when the guest doesn't support injecting.
    370 #
    371 # Returns: If successful, nothing
    372 #
    373 # Since: 0.14
    374 #
    375 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
    376 #
    377 # Example:
    378 #
    379 # -> { "execute": "inject-nmi" }
    380 # <- { "return": {} }
    381 #
    382 ##
    383 { 'command': 'inject-nmi' }
    384 
    385 ##
    386 # @KvmInfo:
    387 #
    388 # Information about support for KVM acceleration
    389 #
    390 # @enabled: true if KVM acceleration is active
    391 #
    392 # @present: true if KVM acceleration is built into this executable
    393 #
    394 # Since: 0.14
    395 ##
    396 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
    397 
    398 ##
    399 # @query-kvm:
    400 #
    401 # Returns information about KVM acceleration
    402 #
    403 # Returns: @KvmInfo
    404 #
    405 # Since: 0.14
    406 #
    407 # Example:
    408 #
    409 # -> { "execute": "query-kvm" }
    410 # <- { "return": { "enabled": true, "present": true } }
    411 #
    412 ##
    413 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
    414 
    415 ##
    416 # @NumaOptionsType:
    417 #
    418 # @node: NUMA nodes configuration
    419 #
    420 # @dist: NUMA distance configuration (since 2.10)
    421 #
    422 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
    423 #
    424 # @hmat-lb: memory latency and bandwidth information (Since: 5.0)
    425 #
    426 # @hmat-cache: memory side cache information (Since: 5.0)
    427 #
    428 # Since: 2.1
    429 ##
    430 { 'enum': 'NumaOptionsType',
    431   'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
    432 
    433 ##
    434 # @NumaOptions:
    435 #
    436 # A discriminated record of NUMA options. (for OptsVisitor)
    437 #
    438 # Since: 2.1
    439 ##
    440 { 'union': 'NumaOptions',
    441   'base': { 'type': 'NumaOptionsType' },
    442   'discriminator': 'type',
    443   'data': {
    444     'node': 'NumaNodeOptions',
    445     'dist': 'NumaDistOptions',
    446     'cpu': 'NumaCpuOptions',
    447     'hmat-lb': 'NumaHmatLBOptions',
    448     'hmat-cache': 'NumaHmatCacheOptions' }}
    449 
    450 ##
    451 # @NumaNodeOptions:
    452 #
    453 # Create a guest NUMA node. (for OptsVisitor)
    454 #
    455 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
    456 #
    457 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
    458 #         if omitted)
    459 #
    460 # @mem: memory size of this node; mutually exclusive with @memdev.
    461 #       Equally divide total memory among nodes if both @mem and @memdev are
    462 #       omitted.
    463 #
    464 # @memdev: memory backend object.  If specified for one node,
    465 #          it must be specified for all nodes.
    466 #
    467 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145,
    468 #             points to the nodeid which has the memory controller
    469 #             responsible for this NUMA node. This field provides
    470 #             additional information as to the initiator node that
    471 #             is closest (as in directly attached) to this node, and
    472 #             therefore has the best performance (since 5.0)
    473 #
    474 # Since: 2.1
    475 ##
    476 { 'struct': 'NumaNodeOptions',
    477   'data': {
    478    '*nodeid': 'uint16',
    479    '*cpus':   ['uint16'],
    480    '*mem':    'size',
    481    '*memdev': 'str',
    482    '*initiator': 'uint16' }}
    483 
    484 ##
    485 # @NumaDistOptions:
    486 #
    487 # Set the distance between 2 NUMA nodes.
    488 #
    489 # @src: source NUMA node.
    490 #
    491 # @dst: destination NUMA node.
    492 #
    493 # @val: NUMA distance from source node to destination node.
    494 #       When a node is unreachable from another node, set the distance
    495 #       between them to 255.
    496 #
    497 # Since: 2.10
    498 ##
    499 { 'struct': 'NumaDistOptions',
    500   'data': {
    501    'src': 'uint16',
    502    'dst': 'uint16',
    503    'val': 'uint8' }}
    504 
    505 ##
    506 # @CXLFixedMemoryWindowOptions:
    507 #
    508 # Create a CXL Fixed Memory Window
    509 #
    510 # @size: Size of the Fixed Memory Window in bytes. Must be a multiple
    511 #        of 256MiB.
    512 # @interleave-granularity: Number of contiguous bytes for which
    513 #                          accesses will go to a given interleave target.
    514 #                          Accepted values [256, 512, 1k, 2k, 4k, 8k, 16k]
    515 # @targets: Target root bridge IDs from -device ...,id=<ID> for each root
    516 #           bridge.
    517 #
    518 # Since 7.1
    519 ##
    520 { 'struct': 'CXLFixedMemoryWindowOptions',
    521   'data': {
    522       'size': 'size',
    523       '*interleave-granularity': 'size',
    524       'targets': ['str'] }}
    525 
    526 ##
    527 # @CXLFMWProperties:
    528 #
    529 # List of CXL Fixed Memory Windows.
    530 #
    531 # @cxl-fmw: List of CXLFixedMemoryWindowOptions
    532 #
    533 # Since 7.1
    534 ##
    535 { 'struct' : 'CXLFMWProperties',
    536   'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
    537 }
    538 
    539 ##
    540 # @X86CPURegister32:
    541 #
    542 # A X86 32-bit register
    543 #
    544 # Since: 1.5
    545 ##
    546 { 'enum': 'X86CPURegister32',
    547   'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
    548 
    549 ##
    550 # @X86CPUFeatureWordInfo:
    551 #
    552 # Information about a X86 CPU feature word
    553 #
    554 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
    555 #
    556 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
    557 #                   feature word
    558 #
    559 # @cpuid-register: Output register containing the feature bits
    560 #
    561 # @features: value of output register, containing the feature bits
    562 #
    563 # Since: 1.5
    564 ##
    565 { 'struct': 'X86CPUFeatureWordInfo',
    566   'data': { 'cpuid-input-eax': 'int',
    567             '*cpuid-input-ecx': 'int',
    568             'cpuid-register': 'X86CPURegister32',
    569             'features': 'int' } }
    570 
    571 ##
    572 # @DummyForceArrays:
    573 #
    574 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
    575 #
    576 # Since: 2.5
    577 ##
    578 { 'struct': 'DummyForceArrays',
    579   'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
    580 
    581 ##
    582 # @NumaCpuOptions:
    583 #
    584 # Option "-numa cpu" overrides default cpu to node mapping.
    585 # It accepts the same set of cpu properties as returned by
    586 # query-hotpluggable-cpus[].props, where node-id could be used to
    587 # override default node mapping.
    588 #
    589 # Since: 2.10
    590 ##
    591 { 'struct': 'NumaCpuOptions',
    592    'base': 'CpuInstanceProperties',
    593    'data' : {} }
    594 
    595 ##
    596 # @HmatLBMemoryHierarchy:
    597 #
    598 # The memory hierarchy in the System Locality Latency and Bandwidth
    599 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
    600 #
    601 # For more information about @HmatLBMemoryHierarchy, see chapter
    602 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
    603 #
    604 # @memory: the structure represents the memory performance
    605 #
    606 # @first-level: first level of memory side cache
    607 #
    608 # @second-level: second level of memory side cache
    609 #
    610 # @third-level: third level of memory side cache
    611 #
    612 # Since: 5.0
    613 ##
    614 { 'enum': 'HmatLBMemoryHierarchy',
    615   'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
    616 
    617 ##
    618 # @HmatLBDataType:
    619 #
    620 # Data type in the System Locality Latency and Bandwidth
    621 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
    622 #
    623 # For more information about @HmatLBDataType, see chapter
    624 # 5.2.27.4: Table 5-146:  Field "Data Type" of ACPI 6.3 spec.
    625 #
    626 # @access-latency: access latency (nanoseconds)
    627 #
    628 # @read-latency: read latency (nanoseconds)
    629 #
    630 # @write-latency: write latency (nanoseconds)
    631 #
    632 # @access-bandwidth: access bandwidth (Bytes per second)
    633 #
    634 # @read-bandwidth: read bandwidth (Bytes per second)
    635 #
    636 # @write-bandwidth: write bandwidth (Bytes per second)
    637 #
    638 # Since: 5.0
    639 ##
    640 { 'enum': 'HmatLBDataType',
    641   'data': [ 'access-latency', 'read-latency', 'write-latency',
    642             'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
    643 
    644 ##
    645 # @NumaHmatLBOptions:
    646 #
    647 # Set the system locality latency and bandwidth information
    648 # between Initiator and Target proximity Domains.
    649 #
    650 # For more information about @NumaHmatLBOptions, see chapter
    651 # 5.2.27.4: Table 5-146 of ACPI 6.3 spec.
    652 #
    653 # @initiator: the Initiator Proximity Domain.
    654 #
    655 # @target: the Target Proximity Domain.
    656 #
    657 # @hierarchy: the Memory Hierarchy. Indicates the performance
    658 #             of memory or side cache.
    659 #
    660 # @data-type: presents the type of data, access/read/write
    661 #             latency or hit latency.
    662 #
    663 # @latency: the value of latency from @initiator to @target
    664 #           proximity domain, the latency unit is "ns(nanosecond)".
    665 #
    666 # @bandwidth: the value of bandwidth between @initiator and @target
    667 #             proximity domain, the bandwidth unit is
    668 #             "Bytes per second".
    669 #
    670 # Since: 5.0
    671 ##
    672 { 'struct': 'NumaHmatLBOptions',
    673     'data': {
    674     'initiator': 'uint16',
    675     'target': 'uint16',
    676     'hierarchy': 'HmatLBMemoryHierarchy',
    677     'data-type': 'HmatLBDataType',
    678     '*latency': 'uint64',
    679     '*bandwidth': 'size' }}
    680 
    681 ##
    682 # @HmatCacheAssociativity:
    683 #
    684 # Cache associativity in the Memory Side Cache Information Structure
    685 # of HMAT
    686 #
    687 # For more information of @HmatCacheAssociativity, see chapter
    688 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
    689 #
    690 # @none: None (no memory side cache in this proximity domain,
    691 #              or cache associativity unknown)
    692 #
    693 # @direct: Direct Mapped
    694 #
    695 # @complex: Complex Cache Indexing (implementation specific)
    696 #
    697 # Since: 5.0
    698 ##
    699 { 'enum': 'HmatCacheAssociativity',
    700   'data': [ 'none', 'direct', 'complex' ] }
    701 
    702 ##
    703 # @HmatCacheWritePolicy:
    704 #
    705 # Cache write policy in the Memory Side Cache Information Structure
    706 # of HMAT
    707 #
    708 # For more information of @HmatCacheWritePolicy, see chapter
    709 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
    710 #
    711 # @none: None (no memory side cache in this proximity domain,
    712 #        or cache write policy unknown)
    713 #
    714 # @write-back: Write Back (WB)
    715 #
    716 # @write-through: Write Through (WT)
    717 #
    718 # Since: 5.0
    719 ##
    720 { 'enum': 'HmatCacheWritePolicy',
    721   'data': [ 'none', 'write-back', 'write-through' ] }
    722 
    723 ##
    724 # @NumaHmatCacheOptions:
    725 #
    726 # Set the memory side cache information for a given memory domain.
    727 #
    728 # For more information of @NumaHmatCacheOptions, see chapter
    729 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
    730 #
    731 # @node-id: the memory proximity domain to which the memory belongs.
    732 #
    733 # @size: the size of memory side cache in bytes.
    734 #
    735 # @level: the cache level described in this structure.
    736 #
    737 # @associativity: the cache associativity,
    738 #                 none/direct-mapped/complex(complex cache indexing).
    739 #
    740 # @policy: the write policy, none/write-back/write-through.
    741 #
    742 # @line: the cache Line size in bytes.
    743 #
    744 # Since: 5.0
    745 ##
    746 { 'struct': 'NumaHmatCacheOptions',
    747   'data': {
    748    'node-id': 'uint32',
    749    'size': 'size',
    750    'level': 'uint8',
    751    'associativity': 'HmatCacheAssociativity',
    752    'policy': 'HmatCacheWritePolicy',
    753    'line': 'uint16' }}
    754 
    755 ##
    756 # @memsave:
    757 #
    758 # Save a portion of guest memory to a file.
    759 #
    760 # @val: the virtual address of the guest to start from
    761 #
    762 # @size: the size of memory region to save
    763 #
    764 # @filename: the file to save the memory to as binary data
    765 #
    766 # @cpu-index: the index of the virtual CPU to use for translating the
    767 #             virtual address (defaults to CPU 0)
    768 #
    769 # Returns: Nothing on success
    770 #
    771 # Since: 0.14
    772 #
    773 # Notes: Errors were not reliably returned until 1.1
    774 #
    775 # Example:
    776 #
    777 # -> { "execute": "memsave",
    778 #      "arguments": { "val": 10,
    779 #                     "size": 100,
    780 #                     "filename": "/tmp/virtual-mem-dump" } }
    781 # <- { "return": {} }
    782 #
    783 ##
    784 { 'command': 'memsave',
    785   'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
    786 
    787 ##
    788 # @pmemsave:
    789 #
    790 # Save a portion of guest physical memory to a file.
    791 #
    792 # @val: the physical address of the guest to start from
    793 #
    794 # @size: the size of memory region to save
    795 #
    796 # @filename: the file to save the memory to as binary data
    797 #
    798 # Returns: Nothing on success
    799 #
    800 # Since: 0.14
    801 #
    802 # Notes: Errors were not reliably returned until 1.1
    803 #
    804 # Example:
    805 #
    806 # -> { "execute": "pmemsave",
    807 #      "arguments": { "val": 10,
    808 #                     "size": 100,
    809 #                     "filename": "/tmp/physical-mem-dump" } }
    810 # <- { "return": {} }
    811 #
    812 ##
    813 { 'command': 'pmemsave',
    814   'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
    815 
    816 ##
    817 # @Memdev:
    818 #
    819 # Information about memory backend
    820 #
    821 # @id: backend's ID if backend has 'id' property (since 2.9)
    822 #
    823 # @size: memory backend size
    824 #
    825 # @merge: whether memory merge support is enabled
    826 #
    827 # @dump: whether memory backend's memory is included in a core dump
    828 #
    829 # @prealloc: whether memory was preallocated
    830 #
    831 # @share: whether memory is private to QEMU or shared (since 6.1)
    832 #
    833 # @reserve: whether swap space (or huge pages) was reserved if applicable.
    834 #           This corresponds to the user configuration and not the actual
    835 #           behavior implemented in the OS to perform the reservation.
    836 #           For example, Linux will never reserve swap space for shared
    837 #           file mappings. (since 6.1)
    838 #
    839 # @host-nodes: host nodes for its memory policy
    840 #
    841 # @policy: memory policy of memory backend
    842 #
    843 # Since: 2.1
    844 ##
    845 { 'struct': 'Memdev',
    846   'data': {
    847     '*id':        'str',
    848     'size':       'size',
    849     'merge':      'bool',
    850     'dump':       'bool',
    851     'prealloc':   'bool',
    852     'share':      'bool',
    853     '*reserve':    'bool',
    854     'host-nodes': ['uint16'],
    855     'policy':     'HostMemPolicy' }}
    856 
    857 ##
    858 # @query-memdev:
    859 #
    860 # Returns information for all memory backends.
    861 #
    862 # Returns: a list of @Memdev.
    863 #
    864 # Since: 2.1
    865 #
    866 # Example:
    867 #
    868 # -> { "execute": "query-memdev" }
    869 # <- { "return": [
    870 #        {
    871 #          "id": "mem1",
    872 #          "size": 536870912,
    873 #          "merge": false,
    874 #          "dump": true,
    875 #          "prealloc": false,
    876 #          "share": false,
    877 #          "host-nodes": [0, 1],
    878 #          "policy": "bind"
    879 #        },
    880 #        {
    881 #          "size": 536870912,
    882 #          "merge": false,
    883 #          "dump": true,
    884 #          "prealloc": true,
    885 #          "share": false,
    886 #          "host-nodes": [2, 3],
    887 #          "policy": "preferred"
    888 #        }
    889 #      ]
    890 #    }
    891 #
    892 ##
    893 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
    894 
    895 ##
    896 # @CpuInstanceProperties:
    897 #
    898 # List of properties to be used for hotplugging a CPU instance,
    899 # it should be passed by management with device_add command when
    900 # a CPU is being hotplugged.
    901 #
    902 # @node-id: NUMA node ID the CPU belongs to
    903 # @socket-id: socket number within node/board the CPU belongs to
    904 # @die-id: die number within socket the CPU belongs to (since 4.1)
    905 # @cluster-id: cluster number within die the CPU belongs to (since 7.1)
    906 # @core-id: core number within cluster the CPU belongs to
    907 # @thread-id: thread number within core the CPU belongs to
    908 #
    909 # Note: currently there are 6 properties that could be present
    910 #       but management should be prepared to pass through other
    911 #       properties with device_add command to allow for future
    912 #       interface extension. This also requires the filed names to be kept in
    913 #       sync with the properties passed to -device/device_add.
    914 #
    915 # Since: 2.7
    916 ##
    917 { 'struct': 'CpuInstanceProperties',
    918   'data': { '*node-id': 'int',
    919             '*socket-id': 'int',
    920             '*die-id': 'int',
    921             '*cluster-id': 'int',
    922             '*core-id': 'int',
    923             '*thread-id': 'int'
    924   }
    925 }
    926 
    927 ##
    928 # @HotpluggableCPU:
    929 #
    930 # @type: CPU object type for usage with device_add command
    931 # @props: list of properties to be used for hotplugging CPU
    932 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
    933 # @qom-path: link to existing CPU object if CPU is present or
    934 #            omitted if CPU is not present.
    935 #
    936 # Since: 2.7
    937 ##
    938 { 'struct': 'HotpluggableCPU',
    939   'data': { 'type': 'str',
    940             'vcpus-count': 'int',
    941             'props': 'CpuInstanceProperties',
    942             '*qom-path': 'str'
    943           }
    944 }
    945 
    946 ##
    947 # @query-hotpluggable-cpus:
    948 #
    949 # TODO: Better documentation; currently there is none.
    950 #
    951 # Returns: a list of HotpluggableCPU objects.
    952 #
    953 # Since: 2.7
    954 #
    955 # Example:
    956 #
    957 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
    958 #
    959 # -> { "execute": "query-hotpluggable-cpus" }
    960 # <- {"return": [
    961 #      { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
    962 #        "vcpus-count": 1 },
    963 #      { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
    964 #        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
    965 #    ]}'
    966 #
    967 # For pc machine type started with -smp 1,maxcpus=2:
    968 #
    969 # -> { "execute": "query-hotpluggable-cpus" }
    970 # <- {"return": [
    971 #      {
    972 #         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
    973 #         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
    974 #      },
    975 #      {
    976 #         "qom-path": "/machine/unattached/device[0]",
    977 #         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
    978 #         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
    979 #      }
    980 #    ]}
    981 #
    982 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
    983 # (Since: 2.11):
    984 #
    985 # -> { "execute": "query-hotpluggable-cpus" }
    986 # <- {"return": [
    987 #      {
    988 #         "type": "qemu-s390x-cpu", "vcpus-count": 1,
    989 #         "props": { "core-id": 1 }
    990 #      },
    991 #      {
    992 #         "qom-path": "/machine/unattached/device[0]",
    993 #         "type": "qemu-s390x-cpu", "vcpus-count": 1,
    994 #         "props": { "core-id": 0 }
    995 #      }
    996 #    ]}
    997 #
    998 ##
    999 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
   1000              'allow-preconfig': true }
   1001 
   1002 ##
   1003 # @set-numa-node:
   1004 #
   1005 # Runtime equivalent of '-numa' CLI option, available at
   1006 # preconfigure stage to configure numa mapping before initializing
   1007 # machine.
   1008 #
   1009 # Since: 3.0
   1010 ##
   1011 { 'command': 'set-numa-node', 'boxed': true,
   1012   'data': 'NumaOptions',
   1013   'allow-preconfig': true
   1014 }
   1015 
   1016 ##
   1017 # @balloon:
   1018 #
   1019 # Request the balloon driver to change its balloon size.
   1020 #
   1021 # @value: the target logical size of the VM in bytes.
   1022 #         We can deduce the size of the balloon using this formula:
   1023 #
   1024 #            logical_vm_size = vm_ram_size - balloon_size
   1025 #
   1026 #         From it we have: balloon_size = vm_ram_size - @value
   1027 #
   1028 # Returns: - Nothing on success
   1029 #          - If the balloon driver is enabled but not functional because the KVM
   1030 #            kernel module cannot support it, KvmMissingCap
   1031 #          - If no balloon device is present, DeviceNotActive
   1032 #
   1033 # Notes: This command just issues a request to the guest.  When it returns,
   1034 #        the balloon size may not have changed.  A guest can change the balloon
   1035 #        size independent of this command.
   1036 #
   1037 # Since: 0.14
   1038 #
   1039 # Example:
   1040 #
   1041 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
   1042 # <- { "return": {} }
   1043 #
   1044 # With a 2.5GiB guest this command inflated the ballon to 3GiB.
   1045 #
   1046 ##
   1047 { 'command': 'balloon', 'data': {'value': 'int'} }
   1048 
   1049 ##
   1050 # @BalloonInfo:
   1051 #
   1052 # Information about the guest balloon device.
   1053 #
   1054 # @actual: the logical size of the VM in bytes
   1055 #          Formula used: logical_vm_size = vm_ram_size - balloon_size
   1056 #
   1057 # Since: 0.14
   1058 ##
   1059 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
   1060 
   1061 ##
   1062 # @query-balloon:
   1063 #
   1064 # Return information about the balloon device.
   1065 #
   1066 # Returns: - @BalloonInfo on success
   1067 #          - If the balloon driver is enabled but not functional because the KVM
   1068 #            kernel module cannot support it, KvmMissingCap
   1069 #          - If no balloon device is present, DeviceNotActive
   1070 #
   1071 # Since: 0.14
   1072 #
   1073 # Example:
   1074 #
   1075 # -> { "execute": "query-balloon" }
   1076 # <- { "return": {
   1077 #          "actual": 1073741824
   1078 #       }
   1079 #    }
   1080 #
   1081 ##
   1082 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
   1083 
   1084 ##
   1085 # @BALLOON_CHANGE:
   1086 #
   1087 # Emitted when the guest changes the actual BALLOON level. This value is
   1088 # equivalent to the @actual field return by the 'query-balloon' command
   1089 #
   1090 # @actual: the logical size of the VM in bytes
   1091 #          Formula used: logical_vm_size = vm_ram_size - balloon_size
   1092 #
   1093 # Note: this event is rate-limited.
   1094 #
   1095 # Since: 1.2
   1096 #
   1097 # Example:
   1098 #
   1099 # <- { "event": "BALLOON_CHANGE",
   1100 #      "data": { "actual": 944766976 },
   1101 #      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
   1102 #
   1103 ##
   1104 { 'event': 'BALLOON_CHANGE',
   1105   'data': { 'actual': 'int' } }
   1106 
   1107 ##
   1108 # @MemoryInfo:
   1109 #
   1110 # Actual memory information in bytes.
   1111 #
   1112 # @base-memory: size of "base" memory specified with command line
   1113 #               option -m.
   1114 #
   1115 # @plugged-memory: size of memory that can be hot-unplugged. This field
   1116 #                  is omitted if target doesn't support memory hotplug
   1117 #                  (i.e. CONFIG_MEM_DEVICE not defined at build time).
   1118 #
   1119 # Since: 2.11
   1120 ##
   1121 { 'struct': 'MemoryInfo',
   1122   'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
   1123 
   1124 ##
   1125 # @query-memory-size-summary:
   1126 #
   1127 # Return the amount of initially allocated and present hotpluggable (if
   1128 # enabled) memory in bytes.
   1129 #
   1130 # Example:
   1131 #
   1132 # -> { "execute": "query-memory-size-summary" }
   1133 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
   1134 #
   1135 # Since: 2.11
   1136 ##
   1137 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
   1138 
   1139 ##
   1140 # @PCDIMMDeviceInfo:
   1141 #
   1142 # PCDIMMDevice state information
   1143 #
   1144 # @id: device's ID
   1145 #
   1146 # @addr: physical address, where device is mapped
   1147 #
   1148 # @size: size of memory that the device provides
   1149 #
   1150 # @slot: slot number at which device is plugged in
   1151 #
   1152 # @node: NUMA node number where device is plugged in
   1153 #
   1154 # @memdev: memory backend linked with device
   1155 #
   1156 # @hotplugged: true if device was hotplugged
   1157 #
   1158 # @hotpluggable: true if device if could be added/removed while machine is running
   1159 #
   1160 # Since: 2.1
   1161 ##
   1162 { 'struct': 'PCDIMMDeviceInfo',
   1163   'data': { '*id': 'str',
   1164             'addr': 'int',
   1165             'size': 'int',
   1166             'slot': 'int',
   1167             'node': 'int',
   1168             'memdev': 'str',
   1169             'hotplugged': 'bool',
   1170             'hotpluggable': 'bool'
   1171           }
   1172 }
   1173 
   1174 ##
   1175 # @VirtioPMEMDeviceInfo:
   1176 #
   1177 # VirtioPMEM state information
   1178 #
   1179 # @id: device's ID
   1180 #
   1181 # @memaddr: physical address in memory, where device is mapped
   1182 #
   1183 # @size: size of memory that the device provides
   1184 #
   1185 # @memdev: memory backend linked with device
   1186 #
   1187 # Since: 4.1
   1188 ##
   1189 { 'struct': 'VirtioPMEMDeviceInfo',
   1190   'data': { '*id': 'str',
   1191             'memaddr': 'size',
   1192             'size': 'size',
   1193             'memdev': 'str'
   1194           }
   1195 }
   1196 
   1197 ##
   1198 # @VirtioMEMDeviceInfo:
   1199 #
   1200 # VirtioMEMDevice state information
   1201 #
   1202 # @id: device's ID
   1203 #
   1204 # @memaddr: physical address in memory, where device is mapped
   1205 #
   1206 # @requested-size: the user requested size of the device
   1207 #
   1208 # @size: the (current) size of memory that the device provides
   1209 #
   1210 # @max-size: the maximum size of memory that the device can provide
   1211 #
   1212 # @block-size: the block size of memory that the device provides
   1213 #
   1214 # @node: NUMA node number where device is assigned to
   1215 #
   1216 # @memdev: memory backend linked with the region
   1217 #
   1218 # Since: 5.1
   1219 ##
   1220 { 'struct': 'VirtioMEMDeviceInfo',
   1221   'data': { '*id': 'str',
   1222             'memaddr': 'size',
   1223             'requested-size': 'size',
   1224             'size': 'size',
   1225             'max-size': 'size',
   1226             'block-size': 'size',
   1227             'node': 'int',
   1228             'memdev': 'str'
   1229           }
   1230 }
   1231 
   1232 ##
   1233 # @SgxEPCDeviceInfo:
   1234 #
   1235 # Sgx EPC state information
   1236 #
   1237 # @id: device's ID
   1238 #
   1239 # @memaddr: physical address in memory, where device is mapped
   1240 #
   1241 # @size: size of memory that the device provides
   1242 #
   1243 # @memdev: memory backend linked with device
   1244 #
   1245 # @node: the numa node (Since: 7.0)
   1246 #
   1247 # Since: 6.2
   1248 ##
   1249 { 'struct': 'SgxEPCDeviceInfo',
   1250   'data': { '*id': 'str',
   1251             'memaddr': 'size',
   1252             'size': 'size',
   1253             'node': 'int',
   1254             'memdev': 'str'
   1255           }
   1256 }
   1257 
   1258 ##
   1259 # @MemoryDeviceInfoKind:
   1260 #
   1261 # Since: 2.1
   1262 ##
   1263 { 'enum': 'MemoryDeviceInfoKind',
   1264   'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] }
   1265 
   1266 ##
   1267 # @PCDIMMDeviceInfoWrapper:
   1268 #
   1269 # Since: 2.1
   1270 ##
   1271 { 'struct': 'PCDIMMDeviceInfoWrapper',
   1272   'data': { 'data': 'PCDIMMDeviceInfo' } }
   1273 
   1274 ##
   1275 # @VirtioPMEMDeviceInfoWrapper:
   1276 #
   1277 # Since: 2.1
   1278 ##
   1279 { 'struct': 'VirtioPMEMDeviceInfoWrapper',
   1280   'data': { 'data': 'VirtioPMEMDeviceInfo' } }
   1281 
   1282 ##
   1283 # @VirtioMEMDeviceInfoWrapper:
   1284 #
   1285 # Since: 2.1
   1286 ##
   1287 { 'struct': 'VirtioMEMDeviceInfoWrapper',
   1288   'data': { 'data': 'VirtioMEMDeviceInfo' } }
   1289 
   1290 ##
   1291 # @SgxEPCDeviceInfoWrapper:
   1292 #
   1293 # Since: 6.2
   1294 ##
   1295 { 'struct': 'SgxEPCDeviceInfoWrapper',
   1296   'data': { 'data': 'SgxEPCDeviceInfo' } }
   1297 
   1298 ##
   1299 # @MemoryDeviceInfo:
   1300 #
   1301 # Union containing information about a memory device
   1302 #
   1303 # nvdimm is included since 2.12. virtio-pmem is included since 4.1.
   1304 # virtio-mem is included since 5.1. sgx-epc is included since 6.2.
   1305 #
   1306 # Since: 2.1
   1307 ##
   1308 { 'union': 'MemoryDeviceInfo',
   1309   'base': { 'type': 'MemoryDeviceInfoKind' },
   1310   'discriminator': 'type',
   1311   'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
   1312             'nvdimm': 'PCDIMMDeviceInfoWrapper',
   1313             'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
   1314             'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
   1315             'sgx-epc': 'SgxEPCDeviceInfoWrapper'
   1316           }
   1317 }
   1318 
   1319 ##
   1320 # @SgxEPC:
   1321 #
   1322 # Sgx EPC cmdline information
   1323 #
   1324 # @memdev: memory backend linked with device
   1325 #
   1326 # @node: the numa node (Since: 7.0)
   1327 #
   1328 # Since: 6.2
   1329 ##
   1330 { 'struct': 'SgxEPC',
   1331   'data': { 'memdev': 'str',
   1332             'node': 'int'
   1333           }
   1334 }
   1335 
   1336 ##
   1337 # @SgxEPCProperties:
   1338 #
   1339 # SGX properties of machine types.
   1340 #
   1341 # @sgx-epc: list of ids of memory-backend-epc objects.
   1342 #
   1343 # Since: 6.2
   1344 ##
   1345 { 'struct': 'SgxEPCProperties',
   1346   'data': { 'sgx-epc': ['SgxEPC'] }
   1347 }
   1348 
   1349 ##
   1350 # @query-memory-devices:
   1351 #
   1352 # Lists available memory devices and their state
   1353 #
   1354 # Since: 2.1
   1355 #
   1356 # Example:
   1357 #
   1358 # -> { "execute": "query-memory-devices" }
   1359 # <- { "return": [ { "data":
   1360 #                       { "addr": 5368709120,
   1361 #                         "hotpluggable": true,
   1362 #                         "hotplugged": true,
   1363 #                         "id": "d1",
   1364 #                         "memdev": "/objects/memX",
   1365 #                         "node": 0,
   1366 #                         "size": 1073741824,
   1367 #                         "slot": 0},
   1368 #                    "type": "dimm"
   1369 #                  } ] }
   1370 #
   1371 ##
   1372 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
   1373 
   1374 ##
   1375 # @MEMORY_DEVICE_SIZE_CHANGE:
   1376 #
   1377 # Emitted when the size of a memory device changes. Only emitted for memory
   1378 # devices that can actually change the size (e.g., virtio-mem due to guest
   1379 # action).
   1380 #
   1381 # @id: device's ID
   1382 #
   1383 # @size: the new size of memory that the device provides
   1384 #
   1385 # @qom-path: path to the device object in the QOM tree (since 6.2)
   1386 #
   1387 # Note: this event is rate-limited.
   1388 #
   1389 # Since: 5.1
   1390 #
   1391 # Example:
   1392 #
   1393 # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
   1394 #      "data": { "id": "vm0", "size": 1073741824,
   1395 #                "qom-path": "/machine/unattached/device[2]" },
   1396 #      "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
   1397 #
   1398 ##
   1399 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
   1400   'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
   1401 
   1402 ##
   1403 # @MEM_UNPLUG_ERROR:
   1404 #
   1405 # Emitted when memory hot unplug error occurs.
   1406 #
   1407 # @device: device name
   1408 #
   1409 # @msg: Informative message
   1410 #
   1411 # Features:
   1412 # @deprecated: This event is deprecated. Use @DEVICE_UNPLUG_GUEST_ERROR
   1413 #              instead.
   1414 #
   1415 # Since: 2.4
   1416 #
   1417 # Example:
   1418 #
   1419 # <- { "event": "MEM_UNPLUG_ERROR",
   1420 #      "data": { "device": "dimm1",
   1421 #                "msg": "acpi: device unplug for unsupported device"
   1422 #      },
   1423 #      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
   1424 #
   1425 ##
   1426 { 'event': 'MEM_UNPLUG_ERROR',
   1427   'data': { 'device': 'str', 'msg': 'str' },
   1428   'features': ['deprecated'] }
   1429 
   1430 ##
   1431 # @BootConfiguration:
   1432 #
   1433 # Schema for virtual machine boot configuration.
   1434 #
   1435 # @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
   1436 #
   1437 # @once: Boot order to apply on first boot
   1438 #
   1439 # @menu: Whether to show a boot menu
   1440 #
   1441 # @splash: The name of the file to be passed to the firmware as logo picture, if @menu is true.
   1442 #
   1443 # @splash-time: How long to show the logo picture, in milliseconds
   1444 #
   1445 # @reboot-timeout: Timeout before guest reboots after boot fails
   1446 #
   1447 # @strict: Whether to attempt booting from devices not included in the boot order
   1448 #
   1449 # Since: 7.1
   1450 ##
   1451 { 'struct': 'BootConfiguration', 'data': {
   1452      '*order': 'str',
   1453      '*once': 'str',
   1454      '*menu': 'bool',
   1455      '*splash': 'str',
   1456      '*splash-time': 'int',
   1457      '*reboot-timeout': 'int',
   1458      '*strict': 'bool' } }
   1459 
   1460 ##
   1461 # @SMPConfiguration:
   1462 #
   1463 # Schema for CPU topology configuration.  A missing value lets
   1464 # QEMU figure out a suitable value based on the ones that are provided.
   1465 #
   1466 # @cpus: number of virtual CPUs in the virtual machine
   1467 #
   1468 # @sockets: number of sockets in the CPU topology
   1469 #
   1470 # @dies: number of dies per socket in the CPU topology
   1471 #
   1472 # @clusters: number of clusters per die in the CPU topology (since 7.0)
   1473 #
   1474 # @cores: number of cores per cluster in the CPU topology
   1475 #
   1476 # @threads: number of threads per core in the CPU topology
   1477 #
   1478 # @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual machine
   1479 #
   1480 # Since: 6.1
   1481 ##
   1482 { 'struct': 'SMPConfiguration', 'data': {
   1483      '*cpus': 'int',
   1484      '*sockets': 'int',
   1485      '*dies': 'int',
   1486      '*clusters': 'int',
   1487      '*cores': 'int',
   1488      '*threads': 'int',
   1489      '*maxcpus': 'int' } }
   1490 
   1491 ##
   1492 # @x-query-irq:
   1493 #
   1494 # Query interrupt statistics
   1495 #
   1496 # Features:
   1497 # @unstable: This command is meant for debugging.
   1498 #
   1499 # Returns: interrupt statistics
   1500 #
   1501 # Since: 6.2
   1502 ##
   1503 { 'command': 'x-query-irq',
   1504   'returns': 'HumanReadableText',
   1505   'features': [ 'unstable' ] }
   1506 
   1507 ##
   1508 # @x-query-jit:
   1509 #
   1510 # Query TCG compiler statistics
   1511 #
   1512 # Features:
   1513 # @unstable: This command is meant for debugging.
   1514 #
   1515 # Returns: TCG compiler statistics
   1516 #
   1517 # Since: 6.2
   1518 ##
   1519 { 'command': 'x-query-jit',
   1520   'returns': 'HumanReadableText',
   1521   'if': 'CONFIG_TCG',
   1522   'features': [ 'unstable' ] }
   1523 
   1524 ##
   1525 # @x-query-numa:
   1526 #
   1527 # Query NUMA topology information
   1528 #
   1529 # Features:
   1530 # @unstable: This command is meant for debugging.
   1531 #
   1532 # Returns: topology information
   1533 #
   1534 # Since: 6.2
   1535 ##
   1536 { 'command': 'x-query-numa',
   1537   'returns': 'HumanReadableText',
   1538   'features': [ 'unstable' ] }
   1539 
   1540 ##
   1541 # @x-query-opcount:
   1542 #
   1543 # Query TCG opcode counters
   1544 #
   1545 # Features:
   1546 # @unstable: This command is meant for debugging.
   1547 #
   1548 # Returns: TCG opcode counters
   1549 #
   1550 # Since: 6.2
   1551 ##
   1552 { 'command': 'x-query-opcount',
   1553   'returns': 'HumanReadableText',
   1554   'if': 'CONFIG_TCG',
   1555   'features': [ 'unstable' ] }
   1556 
   1557 ##
   1558 # @x-query-profile:
   1559 #
   1560 # Query TCG profiling information
   1561 #
   1562 # Features:
   1563 # @unstable: This command is meant for debugging.
   1564 #
   1565 # Returns: profile information
   1566 #
   1567 # Since: 6.2
   1568 ##
   1569 { 'command': 'x-query-profile',
   1570   'returns': 'HumanReadableText',
   1571   'if': 'CONFIG_TCG',
   1572   'features': [ 'unstable' ] }
   1573 
   1574 ##
   1575 # @x-query-ramblock:
   1576 #
   1577 # Query system ramblock information
   1578 #
   1579 # Features:
   1580 # @unstable: This command is meant for debugging.
   1581 #
   1582 # Returns: system ramblock information
   1583 #
   1584 # Since: 6.2
   1585 ##
   1586 { 'command': 'x-query-ramblock',
   1587   'returns': 'HumanReadableText',
   1588   'features': [ 'unstable' ] }
   1589 
   1590 ##
   1591 # @x-query-rdma:
   1592 #
   1593 # Query RDMA state
   1594 #
   1595 # Features:
   1596 # @unstable: This command is meant for debugging.
   1597 #
   1598 # Returns: RDMA state
   1599 #
   1600 # Since: 6.2
   1601 ##
   1602 { 'command': 'x-query-rdma',
   1603   'returns': 'HumanReadableText',
   1604   'features': [ 'unstable' ] }
   1605 
   1606 ##
   1607 # @x-query-roms:
   1608 #
   1609 # Query information on the registered ROMS
   1610 #
   1611 # Features:
   1612 # @unstable: This command is meant for debugging.
   1613 #
   1614 # Returns: registered ROMs
   1615 #
   1616 # Since: 6.2
   1617 ##
   1618 { 'command': 'x-query-roms',
   1619   'returns': 'HumanReadableText',
   1620   'features': [ 'unstable' ] }
   1621 
   1622 ##
   1623 # @x-query-usb:
   1624 #
   1625 # Query information on the USB devices
   1626 #
   1627 # Features:
   1628 # @unstable: This command is meant for debugging.
   1629 #
   1630 # Returns: USB device information
   1631 #
   1632 # Since: 6.2
   1633 ##
   1634 { 'command': 'x-query-usb',
   1635   'returns': 'HumanReadableText',
   1636   'features': [ 'unstable' ] }
   1637 
   1638 ##
   1639 # @SmbiosEntryPointType:
   1640 #
   1641 # @32: SMBIOS version 2.1 (32-bit) Entry Point
   1642 #
   1643 # @64: SMBIOS version 3.0 (64-bit) Entry Point
   1644 #
   1645 # Since: 7.0
   1646 ##
   1647 { 'enum': 'SmbiosEntryPointType',
   1648   'data': [ '32', '64' ] }
   1649 
   1650 ##
   1651 # @MemorySizeConfiguration:
   1652 #
   1653 # Schema for memory size configuration.
   1654 #
   1655 # @size: memory size in bytes
   1656 #
   1657 # @max-size: maximum hotpluggable memory size in bytes
   1658 #
   1659 # @slots: number of available memory slots for hotplug
   1660 #
   1661 # Since: 7.1
   1662 ##
   1663 { 'struct': 'MemorySizeConfiguration', 'data': {
   1664      '*size': 'size',
   1665      '*max-size': 'size',
   1666      '*slots': 'uint64' } }
   1667 
   1668 ##
   1669 # @dumpdtb:
   1670 #
   1671 # Save the FDT in dtb format.
   1672 #
   1673 # @filename: name of the dtb file to be created
   1674 #
   1675 # Since: 7.2
   1676 #
   1677 # Example:
   1678 #   {"execute": "dumpdtb"}
   1679 #    "arguments": { "filename": "fdt.dtb" } }
   1680 #
   1681 ##
   1682 { 'command': 'dumpdtb',
   1683   'data': { 'filename': 'str' },
   1684   'if': 'CONFIG_FDT' }