machine.json (40151B)
1 # -*- Mode: Python -*- 2 # vim: filetype=python 3 # 4 # This work is licensed under the terms of the GNU GPL, version 2 or later. 5 # See the COPYING file in the top-level directory. 6 7 ## 8 # = Machines 9 ## 10 11 { 'include': 'common.json' } 12 13 ## 14 # @SysEmuTarget: 15 # 16 # The comprehensive enumeration of QEMU system emulation ("softmmu") 17 # targets. Run "./configure --help" in the project root directory, and 18 # look for the \*-softmmu targets near the "--target-list" option. The 19 # individual target constants are not documented here, for the time 20 # being. 21 # 22 # @rx: since 5.0 23 # @avr: since 5.1 24 # 25 # Notes: The resulting QMP strings can be appended to the "qemu-system-" 26 # prefix to produce the corresponding QEMU executable name. This 27 # is true even for "qemu-system-x86_64". 28 # 29 # Since: 3.0 30 ## 31 { 'enum' : 'SysEmuTarget', 32 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 33 'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64', 34 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc', 35 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4', 36 'sh4eb', 'sparc', 'sparc64', 'tricore', 37 'x86_64', 'xtensa', 'xtensaeb' ] } 38 39 ## 40 # @CpuS390State: 41 # 42 # An enumeration of cpu states that can be assumed by a virtual 43 # S390 CPU 44 # 45 # Since: 2.12 46 ## 47 { 'enum': 'CpuS390State', 48 'prefix': 'S390_CPU_STATE', 49 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] } 50 51 ## 52 # @CpuInfoS390: 53 # 54 # Additional information about a virtual S390 CPU 55 # 56 # @cpu-state: the virtual CPU's state 57 # 58 # Since: 2.12 59 ## 60 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } } 61 62 ## 63 # @CpuInfoFast: 64 # 65 # Information about a virtual CPU 66 # 67 # @cpu-index: index of the virtual CPU 68 # 69 # @qom-path: path to the CPU object in the QOM tree 70 # 71 # @thread-id: ID of the underlying host thread 72 # 73 # @props: properties describing to which node/socket/core/thread 74 # virtual CPU belongs to, provided if supported by board 75 # 76 # @target: the QEMU system emulation target, which determines which 77 # additional fields will be listed (since 3.0) 78 # 79 # Since: 2.12 80 ## 81 { 'union' : 'CpuInfoFast', 82 'base' : { 'cpu-index' : 'int', 83 'qom-path' : 'str', 84 'thread-id' : 'int', 85 '*props' : 'CpuInstanceProperties', 86 'target' : 'SysEmuTarget' }, 87 'discriminator' : 'target', 88 'data' : { 's390x' : 'CpuInfoS390' } } 89 90 ## 91 # @query-cpus-fast: 92 # 93 # Returns information about all virtual CPUs. 94 # 95 # Returns: list of @CpuInfoFast 96 # 97 # Since: 2.12 98 # 99 # Example: 100 # 101 # -> { "execute": "query-cpus-fast" } 102 # <- { "return": [ 103 # { 104 # "thread-id": 25627, 105 # "props": { 106 # "core-id": 0, 107 # "thread-id": 0, 108 # "socket-id": 0 109 # }, 110 # "qom-path": "/machine/unattached/device[0]", 111 # "target":"x86_64", 112 # "cpu-index": 0 113 # }, 114 # { 115 # "thread-id": 25628, 116 # "props": { 117 # "core-id": 0, 118 # "thread-id": 0, 119 # "socket-id": 1 120 # }, 121 # "qom-path": "/machine/unattached/device[2]", 122 # "target":"x86_64", 123 # "cpu-index": 1 124 # } 125 # ] 126 # } 127 ## 128 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] } 129 130 ## 131 # @MachineInfo: 132 # 133 # Information describing a machine. 134 # 135 # @name: the name of the machine 136 # 137 # @alias: an alias for the machine name 138 # 139 # @is-default: whether the machine is default 140 # 141 # @cpu-max: maximum number of CPUs supported by the machine type 142 # (since 1.5) 143 # 144 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7) 145 # 146 # @numa-mem-supported: true if '-numa node,mem' option is supported by 147 # the machine type and false otherwise (since 4.1) 148 # 149 # @deprecated: if true, the machine type is deprecated and may be removed 150 # in future versions of QEMU according to the QEMU deprecation 151 # policy (since 4.1) 152 # 153 # @default-cpu-type: default CPU model typename if none is requested via 154 # the -cpu argument. (since 4.2) 155 # 156 # @default-ram-id: the default ID of initial RAM memory backend (since 5.2) 157 # 158 # Since: 1.2 159 ## 160 { 'struct': 'MachineInfo', 161 'data': { 'name': 'str', '*alias': 'str', 162 '*is-default': 'bool', 'cpu-max': 'int', 163 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool', 164 'deprecated': 'bool', '*default-cpu-type': 'str', 165 '*default-ram-id': 'str' } } 166 167 ## 168 # @query-machines: 169 # 170 # Return a list of supported machines 171 # 172 # Returns: a list of MachineInfo 173 # 174 # Since: 1.2 175 ## 176 { 'command': 'query-machines', 'returns': ['MachineInfo'] } 177 178 ## 179 # @CurrentMachineParams: 180 # 181 # Information describing the running machine parameters. 182 # 183 # @wakeup-suspend-support: true if the machine supports wake up from 184 # suspend 185 # 186 # Since: 4.0 187 ## 188 { 'struct': 'CurrentMachineParams', 189 'data': { 'wakeup-suspend-support': 'bool'} } 190 191 ## 192 # @query-current-machine: 193 # 194 # Return information on the current virtual machine. 195 # 196 # Returns: CurrentMachineParams 197 # 198 # Since: 4.0 199 ## 200 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' } 201 202 ## 203 # @TargetInfo: 204 # 205 # Information describing the QEMU target. 206 # 207 # @arch: the target architecture 208 # 209 # Since: 1.2 210 ## 211 { 'struct': 'TargetInfo', 212 'data': { 'arch': 'SysEmuTarget' } } 213 214 ## 215 # @query-target: 216 # 217 # Return information about the target for this QEMU 218 # 219 # Returns: TargetInfo 220 # 221 # Since: 1.2 222 ## 223 { 'command': 'query-target', 'returns': 'TargetInfo' } 224 225 ## 226 # @UuidInfo: 227 # 228 # Guest UUID information (Universally Unique Identifier). 229 # 230 # @UUID: the UUID of the guest 231 # 232 # Since: 0.14 233 # 234 # Notes: If no UUID was specified for the guest, a null UUID is returned. 235 ## 236 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} } 237 238 ## 239 # @query-uuid: 240 # 241 # Query the guest UUID information. 242 # 243 # Returns: The @UuidInfo for the guest 244 # 245 # Since: 0.14 246 # 247 # Example: 248 # 249 # -> { "execute": "query-uuid" } 250 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } } 251 # 252 ## 253 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true } 254 255 ## 256 # @GuidInfo: 257 # 258 # GUID information. 259 # 260 # @guid: the globally unique identifier 261 # 262 # Since: 2.9 263 ## 264 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} } 265 266 ## 267 # @query-vm-generation-id: 268 # 269 # Show Virtual Machine Generation ID 270 # 271 # Since: 2.9 272 ## 273 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' } 274 275 ## 276 # @system_reset: 277 # 278 # Performs a hard reset of a guest. 279 # 280 # Since: 0.14 281 # 282 # Example: 283 # 284 # -> { "execute": "system_reset" } 285 # <- { "return": {} } 286 # 287 ## 288 { 'command': 'system_reset' } 289 290 ## 291 # @system_powerdown: 292 # 293 # Requests that a guest perform a powerdown operation. 294 # 295 # Since: 0.14 296 # 297 # Notes: A guest may or may not respond to this command. This command 298 # returning does not indicate that a guest has accepted the request or 299 # that it has shut down. Many guests will respond to this command by 300 # prompting the user in some way. 301 # 302 # Example: 303 # 304 # -> { "execute": "system_powerdown" } 305 # <- { "return": {} } 306 # 307 ## 308 { 'command': 'system_powerdown' } 309 310 ## 311 # @system_wakeup: 312 # 313 # Wake up guest from suspend. If the guest has wake-up from suspend 314 # support enabled (wakeup-suspend-support flag from 315 # query-current-machine), wake-up guest from suspend if the guest is 316 # in SUSPENDED state. Return an error otherwise. 317 # 318 # Since: 1.1 319 # 320 # Returns: nothing. 321 # 322 # Note: prior to 4.0, this command does nothing in case the guest 323 # isn't suspended. 324 # 325 # Example: 326 # 327 # -> { "execute": "system_wakeup" } 328 # <- { "return": {} } 329 # 330 ## 331 { 'command': 'system_wakeup' } 332 333 ## 334 # @LostTickPolicy: 335 # 336 # Policy for handling lost ticks in timer devices. Ticks end up getting 337 # lost when, for example, the guest is paused. 338 # 339 # @discard: throw away the missed ticks and continue with future injection 340 # normally. The guest OS will see the timer jump ahead by a 341 # potentially quite significant amount all at once, as if the 342 # intervening chunk of time had simply not existed; needless to 343 # say, such a sudden jump can easily confuse a guest OS which is 344 # not specifically prepared to deal with it. Assuming the guest 345 # OS can deal correctly with the time jump, the time in the guest 346 # and in the host should now match. 347 # 348 # @delay: continue to deliver ticks at the normal rate. The guest OS will 349 # not notice anything is amiss, as from its point of view time will 350 # have continued to flow normally. The time in the guest should now 351 # be behind the time in the host by exactly the amount of time during 352 # which ticks have been missed. 353 # 354 # @slew: deliver ticks at a higher rate to catch up with the missed ticks. 355 # The guest OS will not notice anything is amiss, as from its point 356 # of view time will have continued to flow normally. Once the timer 357 # has managed to catch up with all the missing ticks, the time in 358 # the guest and in the host should match. 359 # 360 # Since: 2.0 361 ## 362 { 'enum': 'LostTickPolicy', 363 'data': ['discard', 'delay', 'slew' ] } 364 365 ## 366 # @inject-nmi: 367 # 368 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64). 369 # The command fails when the guest doesn't support injecting. 370 # 371 # Returns: If successful, nothing 372 # 373 # Since: 0.14 374 # 375 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs 376 # 377 # Example: 378 # 379 # -> { "execute": "inject-nmi" } 380 # <- { "return": {} } 381 # 382 ## 383 { 'command': 'inject-nmi' } 384 385 ## 386 # @KvmInfo: 387 # 388 # Information about support for KVM acceleration 389 # 390 # @enabled: true if KVM acceleration is active 391 # 392 # @present: true if KVM acceleration is built into this executable 393 # 394 # Since: 0.14 395 ## 396 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} } 397 398 ## 399 # @query-kvm: 400 # 401 # Returns information about KVM acceleration 402 # 403 # Returns: @KvmInfo 404 # 405 # Since: 0.14 406 # 407 # Example: 408 # 409 # -> { "execute": "query-kvm" } 410 # <- { "return": { "enabled": true, "present": true } } 411 # 412 ## 413 { 'command': 'query-kvm', 'returns': 'KvmInfo' } 414 415 ## 416 # @NumaOptionsType: 417 # 418 # @node: NUMA nodes configuration 419 # 420 # @dist: NUMA distance configuration (since 2.10) 421 # 422 # @cpu: property based CPU(s) to node mapping (Since: 2.10) 423 # 424 # @hmat-lb: memory latency and bandwidth information (Since: 5.0) 425 # 426 # @hmat-cache: memory side cache information (Since: 5.0) 427 # 428 # Since: 2.1 429 ## 430 { 'enum': 'NumaOptionsType', 431 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] } 432 433 ## 434 # @NumaOptions: 435 # 436 # A discriminated record of NUMA options. (for OptsVisitor) 437 # 438 # Since: 2.1 439 ## 440 { 'union': 'NumaOptions', 441 'base': { 'type': 'NumaOptionsType' }, 442 'discriminator': 'type', 443 'data': { 444 'node': 'NumaNodeOptions', 445 'dist': 'NumaDistOptions', 446 'cpu': 'NumaCpuOptions', 447 'hmat-lb': 'NumaHmatLBOptions', 448 'hmat-cache': 'NumaHmatCacheOptions' }} 449 450 ## 451 # @NumaNodeOptions: 452 # 453 # Create a guest NUMA node. (for OptsVisitor) 454 # 455 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted) 456 # 457 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin 458 # if omitted) 459 # 460 # @mem: memory size of this node; mutually exclusive with @memdev. 461 # Equally divide total memory among nodes if both @mem and @memdev are 462 # omitted. 463 # 464 # @memdev: memory backend object. If specified for one node, 465 # it must be specified for all nodes. 466 # 467 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, 468 # points to the nodeid which has the memory controller 469 # responsible for this NUMA node. This field provides 470 # additional information as to the initiator node that 471 # is closest (as in directly attached) to this node, and 472 # therefore has the best performance (since 5.0) 473 # 474 # Since: 2.1 475 ## 476 { 'struct': 'NumaNodeOptions', 477 'data': { 478 '*nodeid': 'uint16', 479 '*cpus': ['uint16'], 480 '*mem': 'size', 481 '*memdev': 'str', 482 '*initiator': 'uint16' }} 483 484 ## 485 # @NumaDistOptions: 486 # 487 # Set the distance between 2 NUMA nodes. 488 # 489 # @src: source NUMA node. 490 # 491 # @dst: destination NUMA node. 492 # 493 # @val: NUMA distance from source node to destination node. 494 # When a node is unreachable from another node, set the distance 495 # between them to 255. 496 # 497 # Since: 2.10 498 ## 499 { 'struct': 'NumaDistOptions', 500 'data': { 501 'src': 'uint16', 502 'dst': 'uint16', 503 'val': 'uint8' }} 504 505 ## 506 # @CXLFixedMemoryWindowOptions: 507 # 508 # Create a CXL Fixed Memory Window 509 # 510 # @size: Size of the Fixed Memory Window in bytes. Must be a multiple 511 # of 256MiB. 512 # @interleave-granularity: Number of contiguous bytes for which 513 # accesses will go to a given interleave target. 514 # Accepted values [256, 512, 1k, 2k, 4k, 8k, 16k] 515 # @targets: Target root bridge IDs from -device ...,id=<ID> for each root 516 # bridge. 517 # 518 # Since 7.1 519 ## 520 { 'struct': 'CXLFixedMemoryWindowOptions', 521 'data': { 522 'size': 'size', 523 '*interleave-granularity': 'size', 524 'targets': ['str'] }} 525 526 ## 527 # @CXLFMWProperties: 528 # 529 # List of CXL Fixed Memory Windows. 530 # 531 # @cxl-fmw: List of CXLFixedMemoryWindowOptions 532 # 533 # Since 7.1 534 ## 535 { 'struct' : 'CXLFMWProperties', 536 'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] } 537 } 538 539 ## 540 # @X86CPURegister32: 541 # 542 # A X86 32-bit register 543 # 544 # Since: 1.5 545 ## 546 { 'enum': 'X86CPURegister32', 547 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] } 548 549 ## 550 # @X86CPUFeatureWordInfo: 551 # 552 # Information about a X86 CPU feature word 553 # 554 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word 555 # 556 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that 557 # feature word 558 # 559 # @cpuid-register: Output register containing the feature bits 560 # 561 # @features: value of output register, containing the feature bits 562 # 563 # Since: 1.5 564 ## 565 { 'struct': 'X86CPUFeatureWordInfo', 566 'data': { 'cpuid-input-eax': 'int', 567 '*cpuid-input-ecx': 'int', 568 'cpuid-register': 'X86CPURegister32', 569 'features': 'int' } } 570 571 ## 572 # @DummyForceArrays: 573 # 574 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally 575 # 576 # Since: 2.5 577 ## 578 { 'struct': 'DummyForceArrays', 579 'data': { 'unused': ['X86CPUFeatureWordInfo'] } } 580 581 ## 582 # @NumaCpuOptions: 583 # 584 # Option "-numa cpu" overrides default cpu to node mapping. 585 # It accepts the same set of cpu properties as returned by 586 # query-hotpluggable-cpus[].props, where node-id could be used to 587 # override default node mapping. 588 # 589 # Since: 2.10 590 ## 591 { 'struct': 'NumaCpuOptions', 592 'base': 'CpuInstanceProperties', 593 'data' : {} } 594 595 ## 596 # @HmatLBMemoryHierarchy: 597 # 598 # The memory hierarchy in the System Locality Latency and Bandwidth 599 # Information Structure of HMAT (Heterogeneous Memory Attribute Table) 600 # 601 # For more information about @HmatLBMemoryHierarchy, see chapter 602 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec. 603 # 604 # @memory: the structure represents the memory performance 605 # 606 # @first-level: first level of memory side cache 607 # 608 # @second-level: second level of memory side cache 609 # 610 # @third-level: third level of memory side cache 611 # 612 # Since: 5.0 613 ## 614 { 'enum': 'HmatLBMemoryHierarchy', 615 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] } 616 617 ## 618 # @HmatLBDataType: 619 # 620 # Data type in the System Locality Latency and Bandwidth 621 # Information Structure of HMAT (Heterogeneous Memory Attribute Table) 622 # 623 # For more information about @HmatLBDataType, see chapter 624 # 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec. 625 # 626 # @access-latency: access latency (nanoseconds) 627 # 628 # @read-latency: read latency (nanoseconds) 629 # 630 # @write-latency: write latency (nanoseconds) 631 # 632 # @access-bandwidth: access bandwidth (Bytes per second) 633 # 634 # @read-bandwidth: read bandwidth (Bytes per second) 635 # 636 # @write-bandwidth: write bandwidth (Bytes per second) 637 # 638 # Since: 5.0 639 ## 640 { 'enum': 'HmatLBDataType', 641 'data': [ 'access-latency', 'read-latency', 'write-latency', 642 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] } 643 644 ## 645 # @NumaHmatLBOptions: 646 # 647 # Set the system locality latency and bandwidth information 648 # between Initiator and Target proximity Domains. 649 # 650 # For more information about @NumaHmatLBOptions, see chapter 651 # 5.2.27.4: Table 5-146 of ACPI 6.3 spec. 652 # 653 # @initiator: the Initiator Proximity Domain. 654 # 655 # @target: the Target Proximity Domain. 656 # 657 # @hierarchy: the Memory Hierarchy. Indicates the performance 658 # of memory or side cache. 659 # 660 # @data-type: presents the type of data, access/read/write 661 # latency or hit latency. 662 # 663 # @latency: the value of latency from @initiator to @target 664 # proximity domain, the latency unit is "ns(nanosecond)". 665 # 666 # @bandwidth: the value of bandwidth between @initiator and @target 667 # proximity domain, the bandwidth unit is 668 # "Bytes per second". 669 # 670 # Since: 5.0 671 ## 672 { 'struct': 'NumaHmatLBOptions', 673 'data': { 674 'initiator': 'uint16', 675 'target': 'uint16', 676 'hierarchy': 'HmatLBMemoryHierarchy', 677 'data-type': 'HmatLBDataType', 678 '*latency': 'uint64', 679 '*bandwidth': 'size' }} 680 681 ## 682 # @HmatCacheAssociativity: 683 # 684 # Cache associativity in the Memory Side Cache Information Structure 685 # of HMAT 686 # 687 # For more information of @HmatCacheAssociativity, see chapter 688 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec. 689 # 690 # @none: None (no memory side cache in this proximity domain, 691 # or cache associativity unknown) 692 # 693 # @direct: Direct Mapped 694 # 695 # @complex: Complex Cache Indexing (implementation specific) 696 # 697 # Since: 5.0 698 ## 699 { 'enum': 'HmatCacheAssociativity', 700 'data': [ 'none', 'direct', 'complex' ] } 701 702 ## 703 # @HmatCacheWritePolicy: 704 # 705 # Cache write policy in the Memory Side Cache Information Structure 706 # of HMAT 707 # 708 # For more information of @HmatCacheWritePolicy, see chapter 709 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 710 # 711 # @none: None (no memory side cache in this proximity domain, 712 # or cache write policy unknown) 713 # 714 # @write-back: Write Back (WB) 715 # 716 # @write-through: Write Through (WT) 717 # 718 # Since: 5.0 719 ## 720 { 'enum': 'HmatCacheWritePolicy', 721 'data': [ 'none', 'write-back', 'write-through' ] } 722 723 ## 724 # @NumaHmatCacheOptions: 725 # 726 # Set the memory side cache information for a given memory domain. 727 # 728 # For more information of @NumaHmatCacheOptions, see chapter 729 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 730 # 731 # @node-id: the memory proximity domain to which the memory belongs. 732 # 733 # @size: the size of memory side cache in bytes. 734 # 735 # @level: the cache level described in this structure. 736 # 737 # @associativity: the cache associativity, 738 # none/direct-mapped/complex(complex cache indexing). 739 # 740 # @policy: the write policy, none/write-back/write-through. 741 # 742 # @line: the cache Line size in bytes. 743 # 744 # Since: 5.0 745 ## 746 { 'struct': 'NumaHmatCacheOptions', 747 'data': { 748 'node-id': 'uint32', 749 'size': 'size', 750 'level': 'uint8', 751 'associativity': 'HmatCacheAssociativity', 752 'policy': 'HmatCacheWritePolicy', 753 'line': 'uint16' }} 754 755 ## 756 # @memsave: 757 # 758 # Save a portion of guest memory to a file. 759 # 760 # @val: the virtual address of the guest to start from 761 # 762 # @size: the size of memory region to save 763 # 764 # @filename: the file to save the memory to as binary data 765 # 766 # @cpu-index: the index of the virtual CPU to use for translating the 767 # virtual address (defaults to CPU 0) 768 # 769 # Returns: Nothing on success 770 # 771 # Since: 0.14 772 # 773 # Notes: Errors were not reliably returned until 1.1 774 # 775 # Example: 776 # 777 # -> { "execute": "memsave", 778 # "arguments": { "val": 10, 779 # "size": 100, 780 # "filename": "/tmp/virtual-mem-dump" } } 781 # <- { "return": {} } 782 # 783 ## 784 { 'command': 'memsave', 785 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} } 786 787 ## 788 # @pmemsave: 789 # 790 # Save a portion of guest physical memory to a file. 791 # 792 # @val: the physical address of the guest to start from 793 # 794 # @size: the size of memory region to save 795 # 796 # @filename: the file to save the memory to as binary data 797 # 798 # Returns: Nothing on success 799 # 800 # Since: 0.14 801 # 802 # Notes: Errors were not reliably returned until 1.1 803 # 804 # Example: 805 # 806 # -> { "execute": "pmemsave", 807 # "arguments": { "val": 10, 808 # "size": 100, 809 # "filename": "/tmp/physical-mem-dump" } } 810 # <- { "return": {} } 811 # 812 ## 813 { 'command': 'pmemsave', 814 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} } 815 816 ## 817 # @Memdev: 818 # 819 # Information about memory backend 820 # 821 # @id: backend's ID if backend has 'id' property (since 2.9) 822 # 823 # @size: memory backend size 824 # 825 # @merge: whether memory merge support is enabled 826 # 827 # @dump: whether memory backend's memory is included in a core dump 828 # 829 # @prealloc: whether memory was preallocated 830 # 831 # @share: whether memory is private to QEMU or shared (since 6.1) 832 # 833 # @reserve: whether swap space (or huge pages) was reserved if applicable. 834 # This corresponds to the user configuration and not the actual 835 # behavior implemented in the OS to perform the reservation. 836 # For example, Linux will never reserve swap space for shared 837 # file mappings. (since 6.1) 838 # 839 # @host-nodes: host nodes for its memory policy 840 # 841 # @policy: memory policy of memory backend 842 # 843 # Since: 2.1 844 ## 845 { 'struct': 'Memdev', 846 'data': { 847 '*id': 'str', 848 'size': 'size', 849 'merge': 'bool', 850 'dump': 'bool', 851 'prealloc': 'bool', 852 'share': 'bool', 853 '*reserve': 'bool', 854 'host-nodes': ['uint16'], 855 'policy': 'HostMemPolicy' }} 856 857 ## 858 # @query-memdev: 859 # 860 # Returns information for all memory backends. 861 # 862 # Returns: a list of @Memdev. 863 # 864 # Since: 2.1 865 # 866 # Example: 867 # 868 # -> { "execute": "query-memdev" } 869 # <- { "return": [ 870 # { 871 # "id": "mem1", 872 # "size": 536870912, 873 # "merge": false, 874 # "dump": true, 875 # "prealloc": false, 876 # "share": false, 877 # "host-nodes": [0, 1], 878 # "policy": "bind" 879 # }, 880 # { 881 # "size": 536870912, 882 # "merge": false, 883 # "dump": true, 884 # "prealloc": true, 885 # "share": false, 886 # "host-nodes": [2, 3], 887 # "policy": "preferred" 888 # } 889 # ] 890 # } 891 # 892 ## 893 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true } 894 895 ## 896 # @CpuInstanceProperties: 897 # 898 # List of properties to be used for hotplugging a CPU instance, 899 # it should be passed by management with device_add command when 900 # a CPU is being hotplugged. 901 # 902 # @node-id: NUMA node ID the CPU belongs to 903 # @socket-id: socket number within node/board the CPU belongs to 904 # @die-id: die number within socket the CPU belongs to (since 4.1) 905 # @cluster-id: cluster number within die the CPU belongs to (since 7.1) 906 # @core-id: core number within cluster the CPU belongs to 907 # @thread-id: thread number within core the CPU belongs to 908 # 909 # Note: currently there are 6 properties that could be present 910 # but management should be prepared to pass through other 911 # properties with device_add command to allow for future 912 # interface extension. This also requires the filed names to be kept in 913 # sync with the properties passed to -device/device_add. 914 # 915 # Since: 2.7 916 ## 917 { 'struct': 'CpuInstanceProperties', 918 'data': { '*node-id': 'int', 919 '*socket-id': 'int', 920 '*die-id': 'int', 921 '*cluster-id': 'int', 922 '*core-id': 'int', 923 '*thread-id': 'int' 924 } 925 } 926 927 ## 928 # @HotpluggableCPU: 929 # 930 # @type: CPU object type for usage with device_add command 931 # @props: list of properties to be used for hotplugging CPU 932 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides 933 # @qom-path: link to existing CPU object if CPU is present or 934 # omitted if CPU is not present. 935 # 936 # Since: 2.7 937 ## 938 { 'struct': 'HotpluggableCPU', 939 'data': { 'type': 'str', 940 'vcpus-count': 'int', 941 'props': 'CpuInstanceProperties', 942 '*qom-path': 'str' 943 } 944 } 945 946 ## 947 # @query-hotpluggable-cpus: 948 # 949 # TODO: Better documentation; currently there is none. 950 # 951 # Returns: a list of HotpluggableCPU objects. 952 # 953 # Since: 2.7 954 # 955 # Example: 956 # 957 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8: 958 # 959 # -> { "execute": "query-hotpluggable-cpus" } 960 # <- {"return": [ 961 # { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core", 962 # "vcpus-count": 1 }, 963 # { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core", 964 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"} 965 # ]}' 966 # 967 # For pc machine type started with -smp 1,maxcpus=2: 968 # 969 # -> { "execute": "query-hotpluggable-cpus" } 970 # <- {"return": [ 971 # { 972 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 973 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0} 974 # }, 975 # { 976 # "qom-path": "/machine/unattached/device[0]", 977 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 978 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0} 979 # } 980 # ]} 981 # 982 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu 983 # (Since: 2.11): 984 # 985 # -> { "execute": "query-hotpluggable-cpus" } 986 # <- {"return": [ 987 # { 988 # "type": "qemu-s390x-cpu", "vcpus-count": 1, 989 # "props": { "core-id": 1 } 990 # }, 991 # { 992 # "qom-path": "/machine/unattached/device[0]", 993 # "type": "qemu-s390x-cpu", "vcpus-count": 1, 994 # "props": { "core-id": 0 } 995 # } 996 # ]} 997 # 998 ## 999 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'], 1000 'allow-preconfig': true } 1001 1002 ## 1003 # @set-numa-node: 1004 # 1005 # Runtime equivalent of '-numa' CLI option, available at 1006 # preconfigure stage to configure numa mapping before initializing 1007 # machine. 1008 # 1009 # Since: 3.0 1010 ## 1011 { 'command': 'set-numa-node', 'boxed': true, 1012 'data': 'NumaOptions', 1013 'allow-preconfig': true 1014 } 1015 1016 ## 1017 # @balloon: 1018 # 1019 # Request the balloon driver to change its balloon size. 1020 # 1021 # @value: the target logical size of the VM in bytes. 1022 # We can deduce the size of the balloon using this formula: 1023 # 1024 # logical_vm_size = vm_ram_size - balloon_size 1025 # 1026 # From it we have: balloon_size = vm_ram_size - @value 1027 # 1028 # Returns: - Nothing on success 1029 # - If the balloon driver is enabled but not functional because the KVM 1030 # kernel module cannot support it, KvmMissingCap 1031 # - If no balloon device is present, DeviceNotActive 1032 # 1033 # Notes: This command just issues a request to the guest. When it returns, 1034 # the balloon size may not have changed. A guest can change the balloon 1035 # size independent of this command. 1036 # 1037 # Since: 0.14 1038 # 1039 # Example: 1040 # 1041 # -> { "execute": "balloon", "arguments": { "value": 536870912 } } 1042 # <- { "return": {} } 1043 # 1044 # With a 2.5GiB guest this command inflated the ballon to 3GiB. 1045 # 1046 ## 1047 { 'command': 'balloon', 'data': {'value': 'int'} } 1048 1049 ## 1050 # @BalloonInfo: 1051 # 1052 # Information about the guest balloon device. 1053 # 1054 # @actual: the logical size of the VM in bytes 1055 # Formula used: logical_vm_size = vm_ram_size - balloon_size 1056 # 1057 # Since: 0.14 1058 ## 1059 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } } 1060 1061 ## 1062 # @query-balloon: 1063 # 1064 # Return information about the balloon device. 1065 # 1066 # Returns: - @BalloonInfo on success 1067 # - If the balloon driver is enabled but not functional because the KVM 1068 # kernel module cannot support it, KvmMissingCap 1069 # - If no balloon device is present, DeviceNotActive 1070 # 1071 # Since: 0.14 1072 # 1073 # Example: 1074 # 1075 # -> { "execute": "query-balloon" } 1076 # <- { "return": { 1077 # "actual": 1073741824 1078 # } 1079 # } 1080 # 1081 ## 1082 { 'command': 'query-balloon', 'returns': 'BalloonInfo' } 1083 1084 ## 1085 # @BALLOON_CHANGE: 1086 # 1087 # Emitted when the guest changes the actual BALLOON level. This value is 1088 # equivalent to the @actual field return by the 'query-balloon' command 1089 # 1090 # @actual: the logical size of the VM in bytes 1091 # Formula used: logical_vm_size = vm_ram_size - balloon_size 1092 # 1093 # Note: this event is rate-limited. 1094 # 1095 # Since: 1.2 1096 # 1097 # Example: 1098 # 1099 # <- { "event": "BALLOON_CHANGE", 1100 # "data": { "actual": 944766976 }, 1101 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 1102 # 1103 ## 1104 { 'event': 'BALLOON_CHANGE', 1105 'data': { 'actual': 'int' } } 1106 1107 ## 1108 # @MemoryInfo: 1109 # 1110 # Actual memory information in bytes. 1111 # 1112 # @base-memory: size of "base" memory specified with command line 1113 # option -m. 1114 # 1115 # @plugged-memory: size of memory that can be hot-unplugged. This field 1116 # is omitted if target doesn't support memory hotplug 1117 # (i.e. CONFIG_MEM_DEVICE not defined at build time). 1118 # 1119 # Since: 2.11 1120 ## 1121 { 'struct': 'MemoryInfo', 1122 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } } 1123 1124 ## 1125 # @query-memory-size-summary: 1126 # 1127 # Return the amount of initially allocated and present hotpluggable (if 1128 # enabled) memory in bytes. 1129 # 1130 # Example: 1131 # 1132 # -> { "execute": "query-memory-size-summary" } 1133 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } } 1134 # 1135 # Since: 2.11 1136 ## 1137 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' } 1138 1139 ## 1140 # @PCDIMMDeviceInfo: 1141 # 1142 # PCDIMMDevice state information 1143 # 1144 # @id: device's ID 1145 # 1146 # @addr: physical address, where device is mapped 1147 # 1148 # @size: size of memory that the device provides 1149 # 1150 # @slot: slot number at which device is plugged in 1151 # 1152 # @node: NUMA node number where device is plugged in 1153 # 1154 # @memdev: memory backend linked with device 1155 # 1156 # @hotplugged: true if device was hotplugged 1157 # 1158 # @hotpluggable: true if device if could be added/removed while machine is running 1159 # 1160 # Since: 2.1 1161 ## 1162 { 'struct': 'PCDIMMDeviceInfo', 1163 'data': { '*id': 'str', 1164 'addr': 'int', 1165 'size': 'int', 1166 'slot': 'int', 1167 'node': 'int', 1168 'memdev': 'str', 1169 'hotplugged': 'bool', 1170 'hotpluggable': 'bool' 1171 } 1172 } 1173 1174 ## 1175 # @VirtioPMEMDeviceInfo: 1176 # 1177 # VirtioPMEM state information 1178 # 1179 # @id: device's ID 1180 # 1181 # @memaddr: physical address in memory, where device is mapped 1182 # 1183 # @size: size of memory that the device provides 1184 # 1185 # @memdev: memory backend linked with device 1186 # 1187 # Since: 4.1 1188 ## 1189 { 'struct': 'VirtioPMEMDeviceInfo', 1190 'data': { '*id': 'str', 1191 'memaddr': 'size', 1192 'size': 'size', 1193 'memdev': 'str' 1194 } 1195 } 1196 1197 ## 1198 # @VirtioMEMDeviceInfo: 1199 # 1200 # VirtioMEMDevice state information 1201 # 1202 # @id: device's ID 1203 # 1204 # @memaddr: physical address in memory, where device is mapped 1205 # 1206 # @requested-size: the user requested size of the device 1207 # 1208 # @size: the (current) size of memory that the device provides 1209 # 1210 # @max-size: the maximum size of memory that the device can provide 1211 # 1212 # @block-size: the block size of memory that the device provides 1213 # 1214 # @node: NUMA node number where device is assigned to 1215 # 1216 # @memdev: memory backend linked with the region 1217 # 1218 # Since: 5.1 1219 ## 1220 { 'struct': 'VirtioMEMDeviceInfo', 1221 'data': { '*id': 'str', 1222 'memaddr': 'size', 1223 'requested-size': 'size', 1224 'size': 'size', 1225 'max-size': 'size', 1226 'block-size': 'size', 1227 'node': 'int', 1228 'memdev': 'str' 1229 } 1230 } 1231 1232 ## 1233 # @SgxEPCDeviceInfo: 1234 # 1235 # Sgx EPC state information 1236 # 1237 # @id: device's ID 1238 # 1239 # @memaddr: physical address in memory, where device is mapped 1240 # 1241 # @size: size of memory that the device provides 1242 # 1243 # @memdev: memory backend linked with device 1244 # 1245 # @node: the numa node (Since: 7.0) 1246 # 1247 # Since: 6.2 1248 ## 1249 { 'struct': 'SgxEPCDeviceInfo', 1250 'data': { '*id': 'str', 1251 'memaddr': 'size', 1252 'size': 'size', 1253 'node': 'int', 1254 'memdev': 'str' 1255 } 1256 } 1257 1258 ## 1259 # @MemoryDeviceInfoKind: 1260 # 1261 # Since: 2.1 1262 ## 1263 { 'enum': 'MemoryDeviceInfoKind', 1264 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] } 1265 1266 ## 1267 # @PCDIMMDeviceInfoWrapper: 1268 # 1269 # Since: 2.1 1270 ## 1271 { 'struct': 'PCDIMMDeviceInfoWrapper', 1272 'data': { 'data': 'PCDIMMDeviceInfo' } } 1273 1274 ## 1275 # @VirtioPMEMDeviceInfoWrapper: 1276 # 1277 # Since: 2.1 1278 ## 1279 { 'struct': 'VirtioPMEMDeviceInfoWrapper', 1280 'data': { 'data': 'VirtioPMEMDeviceInfo' } } 1281 1282 ## 1283 # @VirtioMEMDeviceInfoWrapper: 1284 # 1285 # Since: 2.1 1286 ## 1287 { 'struct': 'VirtioMEMDeviceInfoWrapper', 1288 'data': { 'data': 'VirtioMEMDeviceInfo' } } 1289 1290 ## 1291 # @SgxEPCDeviceInfoWrapper: 1292 # 1293 # Since: 6.2 1294 ## 1295 { 'struct': 'SgxEPCDeviceInfoWrapper', 1296 'data': { 'data': 'SgxEPCDeviceInfo' } } 1297 1298 ## 1299 # @MemoryDeviceInfo: 1300 # 1301 # Union containing information about a memory device 1302 # 1303 # nvdimm is included since 2.12. virtio-pmem is included since 4.1. 1304 # virtio-mem is included since 5.1. sgx-epc is included since 6.2. 1305 # 1306 # Since: 2.1 1307 ## 1308 { 'union': 'MemoryDeviceInfo', 1309 'base': { 'type': 'MemoryDeviceInfoKind' }, 1310 'discriminator': 'type', 1311 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper', 1312 'nvdimm': 'PCDIMMDeviceInfoWrapper', 1313 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper', 1314 'virtio-mem': 'VirtioMEMDeviceInfoWrapper', 1315 'sgx-epc': 'SgxEPCDeviceInfoWrapper' 1316 } 1317 } 1318 1319 ## 1320 # @SgxEPC: 1321 # 1322 # Sgx EPC cmdline information 1323 # 1324 # @memdev: memory backend linked with device 1325 # 1326 # @node: the numa node (Since: 7.0) 1327 # 1328 # Since: 6.2 1329 ## 1330 { 'struct': 'SgxEPC', 1331 'data': { 'memdev': 'str', 1332 'node': 'int' 1333 } 1334 } 1335 1336 ## 1337 # @SgxEPCProperties: 1338 # 1339 # SGX properties of machine types. 1340 # 1341 # @sgx-epc: list of ids of memory-backend-epc objects. 1342 # 1343 # Since: 6.2 1344 ## 1345 { 'struct': 'SgxEPCProperties', 1346 'data': { 'sgx-epc': ['SgxEPC'] } 1347 } 1348 1349 ## 1350 # @query-memory-devices: 1351 # 1352 # Lists available memory devices and their state 1353 # 1354 # Since: 2.1 1355 # 1356 # Example: 1357 # 1358 # -> { "execute": "query-memory-devices" } 1359 # <- { "return": [ { "data": 1360 # { "addr": 5368709120, 1361 # "hotpluggable": true, 1362 # "hotplugged": true, 1363 # "id": "d1", 1364 # "memdev": "/objects/memX", 1365 # "node": 0, 1366 # "size": 1073741824, 1367 # "slot": 0}, 1368 # "type": "dimm" 1369 # } ] } 1370 # 1371 ## 1372 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] } 1373 1374 ## 1375 # @MEMORY_DEVICE_SIZE_CHANGE: 1376 # 1377 # Emitted when the size of a memory device changes. Only emitted for memory 1378 # devices that can actually change the size (e.g., virtio-mem due to guest 1379 # action). 1380 # 1381 # @id: device's ID 1382 # 1383 # @size: the new size of memory that the device provides 1384 # 1385 # @qom-path: path to the device object in the QOM tree (since 6.2) 1386 # 1387 # Note: this event is rate-limited. 1388 # 1389 # Since: 5.1 1390 # 1391 # Example: 1392 # 1393 # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE", 1394 # "data": { "id": "vm0", "size": 1073741824, 1395 # "qom-path": "/machine/unattached/device[2]" }, 1396 # "timestamp": { "seconds": 1588168529, "microseconds": 201316 } } 1397 # 1398 ## 1399 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE', 1400 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} } 1401 1402 ## 1403 # @MEM_UNPLUG_ERROR: 1404 # 1405 # Emitted when memory hot unplug error occurs. 1406 # 1407 # @device: device name 1408 # 1409 # @msg: Informative message 1410 # 1411 # Features: 1412 # @deprecated: This event is deprecated. Use @DEVICE_UNPLUG_GUEST_ERROR 1413 # instead. 1414 # 1415 # Since: 2.4 1416 # 1417 # Example: 1418 # 1419 # <- { "event": "MEM_UNPLUG_ERROR", 1420 # "data": { "device": "dimm1", 1421 # "msg": "acpi: device unplug for unsupported device" 1422 # }, 1423 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1424 # 1425 ## 1426 { 'event': 'MEM_UNPLUG_ERROR', 1427 'data': { 'device': 'str', 'msg': 'str' }, 1428 'features': ['deprecated'] } 1429 1430 ## 1431 # @BootConfiguration: 1432 # 1433 # Schema for virtual machine boot configuration. 1434 # 1435 # @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network) 1436 # 1437 # @once: Boot order to apply on first boot 1438 # 1439 # @menu: Whether to show a boot menu 1440 # 1441 # @splash: The name of the file to be passed to the firmware as logo picture, if @menu is true. 1442 # 1443 # @splash-time: How long to show the logo picture, in milliseconds 1444 # 1445 # @reboot-timeout: Timeout before guest reboots after boot fails 1446 # 1447 # @strict: Whether to attempt booting from devices not included in the boot order 1448 # 1449 # Since: 7.1 1450 ## 1451 { 'struct': 'BootConfiguration', 'data': { 1452 '*order': 'str', 1453 '*once': 'str', 1454 '*menu': 'bool', 1455 '*splash': 'str', 1456 '*splash-time': 'int', 1457 '*reboot-timeout': 'int', 1458 '*strict': 'bool' } } 1459 1460 ## 1461 # @SMPConfiguration: 1462 # 1463 # Schema for CPU topology configuration. A missing value lets 1464 # QEMU figure out a suitable value based on the ones that are provided. 1465 # 1466 # @cpus: number of virtual CPUs in the virtual machine 1467 # 1468 # @sockets: number of sockets in the CPU topology 1469 # 1470 # @dies: number of dies per socket in the CPU topology 1471 # 1472 # @clusters: number of clusters per die in the CPU topology (since 7.0) 1473 # 1474 # @cores: number of cores per cluster in the CPU topology 1475 # 1476 # @threads: number of threads per core in the CPU topology 1477 # 1478 # @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual machine 1479 # 1480 # Since: 6.1 1481 ## 1482 { 'struct': 'SMPConfiguration', 'data': { 1483 '*cpus': 'int', 1484 '*sockets': 'int', 1485 '*dies': 'int', 1486 '*clusters': 'int', 1487 '*cores': 'int', 1488 '*threads': 'int', 1489 '*maxcpus': 'int' } } 1490 1491 ## 1492 # @x-query-irq: 1493 # 1494 # Query interrupt statistics 1495 # 1496 # Features: 1497 # @unstable: This command is meant for debugging. 1498 # 1499 # Returns: interrupt statistics 1500 # 1501 # Since: 6.2 1502 ## 1503 { 'command': 'x-query-irq', 1504 'returns': 'HumanReadableText', 1505 'features': [ 'unstable' ] } 1506 1507 ## 1508 # @x-query-jit: 1509 # 1510 # Query TCG compiler statistics 1511 # 1512 # Features: 1513 # @unstable: This command is meant for debugging. 1514 # 1515 # Returns: TCG compiler statistics 1516 # 1517 # Since: 6.2 1518 ## 1519 { 'command': 'x-query-jit', 1520 'returns': 'HumanReadableText', 1521 'if': 'CONFIG_TCG', 1522 'features': [ 'unstable' ] } 1523 1524 ## 1525 # @x-query-numa: 1526 # 1527 # Query NUMA topology information 1528 # 1529 # Features: 1530 # @unstable: This command is meant for debugging. 1531 # 1532 # Returns: topology information 1533 # 1534 # Since: 6.2 1535 ## 1536 { 'command': 'x-query-numa', 1537 'returns': 'HumanReadableText', 1538 'features': [ 'unstable' ] } 1539 1540 ## 1541 # @x-query-opcount: 1542 # 1543 # Query TCG opcode counters 1544 # 1545 # Features: 1546 # @unstable: This command is meant for debugging. 1547 # 1548 # Returns: TCG opcode counters 1549 # 1550 # Since: 6.2 1551 ## 1552 { 'command': 'x-query-opcount', 1553 'returns': 'HumanReadableText', 1554 'if': 'CONFIG_TCG', 1555 'features': [ 'unstable' ] } 1556 1557 ## 1558 # @x-query-profile: 1559 # 1560 # Query TCG profiling information 1561 # 1562 # Features: 1563 # @unstable: This command is meant for debugging. 1564 # 1565 # Returns: profile information 1566 # 1567 # Since: 6.2 1568 ## 1569 { 'command': 'x-query-profile', 1570 'returns': 'HumanReadableText', 1571 'if': 'CONFIG_TCG', 1572 'features': [ 'unstable' ] } 1573 1574 ## 1575 # @x-query-ramblock: 1576 # 1577 # Query system ramblock information 1578 # 1579 # Features: 1580 # @unstable: This command is meant for debugging. 1581 # 1582 # Returns: system ramblock information 1583 # 1584 # Since: 6.2 1585 ## 1586 { 'command': 'x-query-ramblock', 1587 'returns': 'HumanReadableText', 1588 'features': [ 'unstable' ] } 1589 1590 ## 1591 # @x-query-rdma: 1592 # 1593 # Query RDMA state 1594 # 1595 # Features: 1596 # @unstable: This command is meant for debugging. 1597 # 1598 # Returns: RDMA state 1599 # 1600 # Since: 6.2 1601 ## 1602 { 'command': 'x-query-rdma', 1603 'returns': 'HumanReadableText', 1604 'features': [ 'unstable' ] } 1605 1606 ## 1607 # @x-query-roms: 1608 # 1609 # Query information on the registered ROMS 1610 # 1611 # Features: 1612 # @unstable: This command is meant for debugging. 1613 # 1614 # Returns: registered ROMs 1615 # 1616 # Since: 6.2 1617 ## 1618 { 'command': 'x-query-roms', 1619 'returns': 'HumanReadableText', 1620 'features': [ 'unstable' ] } 1621 1622 ## 1623 # @x-query-usb: 1624 # 1625 # Query information on the USB devices 1626 # 1627 # Features: 1628 # @unstable: This command is meant for debugging. 1629 # 1630 # Returns: USB device information 1631 # 1632 # Since: 6.2 1633 ## 1634 { 'command': 'x-query-usb', 1635 'returns': 'HumanReadableText', 1636 'features': [ 'unstable' ] } 1637 1638 ## 1639 # @SmbiosEntryPointType: 1640 # 1641 # @32: SMBIOS version 2.1 (32-bit) Entry Point 1642 # 1643 # @64: SMBIOS version 3.0 (64-bit) Entry Point 1644 # 1645 # Since: 7.0 1646 ## 1647 { 'enum': 'SmbiosEntryPointType', 1648 'data': [ '32', '64' ] } 1649 1650 ## 1651 # @MemorySizeConfiguration: 1652 # 1653 # Schema for memory size configuration. 1654 # 1655 # @size: memory size in bytes 1656 # 1657 # @max-size: maximum hotpluggable memory size in bytes 1658 # 1659 # @slots: number of available memory slots for hotplug 1660 # 1661 # Since: 7.1 1662 ## 1663 { 'struct': 'MemorySizeConfiguration', 'data': { 1664 '*size': 'size', 1665 '*max-size': 'size', 1666 '*slots': 'uint64' } } 1667 1668 ## 1669 # @dumpdtb: 1670 # 1671 # Save the FDT in dtb format. 1672 # 1673 # @filename: name of the dtb file to be created 1674 # 1675 # Since: 7.2 1676 # 1677 # Example: 1678 # {"execute": "dumpdtb"} 1679 # "arguments": { "filename": "fdt.dtb" } } 1680 # 1681 ## 1682 { 'command': 'dumpdtb', 1683 'data': { 'filename': 'str' }, 1684 'if': 'CONFIG_FDT' }