qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

postcopy-ram.c (54175B)


      1 /*
      2  * Postcopy migration for RAM
      3  *
      4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
      5  *
      6  * Authors:
      7  *  Dave Gilbert  <dgilbert@redhat.com>
      8  *
      9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
     10  * See the COPYING file in the top-level directory.
     11  *
     12  */
     13 
     14 /*
     15  * Postcopy is a migration technique where the execution flips from the
     16  * source to the destination before all the data has been copied.
     17  */
     18 
     19 #include "qemu/osdep.h"
     20 #include "qemu/rcu.h"
     21 #include "qemu/madvise.h"
     22 #include "exec/target_page.h"
     23 #include "migration.h"
     24 #include "qemu-file.h"
     25 #include "savevm.h"
     26 #include "postcopy-ram.h"
     27 #include "ram.h"
     28 #include "qapi/error.h"
     29 #include "qemu/notify.h"
     30 #include "qemu/rcu.h"
     31 #include "sysemu/sysemu.h"
     32 #include "qemu/error-report.h"
     33 #include "trace.h"
     34 #include "hw/boards.h"
     35 #include "exec/ramblock.h"
     36 #include "socket.h"
     37 #include "qemu-file.h"
     38 #include "yank_functions.h"
     39 #include "tls.h"
     40 
     41 /* Arbitrary limit on size of each discard command,
     42  * keeps them around ~200 bytes
     43  */
     44 #define MAX_DISCARDS_PER_COMMAND 12
     45 
     46 struct PostcopyDiscardState {
     47     const char *ramblock_name;
     48     uint16_t cur_entry;
     49     /*
     50      * Start and length of a discard range (bytes)
     51      */
     52     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
     53     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
     54     unsigned int nsentwords;
     55     unsigned int nsentcmds;
     56 };
     57 
     58 static NotifierWithReturnList postcopy_notifier_list;
     59 
     60 void postcopy_infrastructure_init(void)
     61 {
     62     notifier_with_return_list_init(&postcopy_notifier_list);
     63 }
     64 
     65 void postcopy_add_notifier(NotifierWithReturn *nn)
     66 {
     67     notifier_with_return_list_add(&postcopy_notifier_list, nn);
     68 }
     69 
     70 void postcopy_remove_notifier(NotifierWithReturn *n)
     71 {
     72     notifier_with_return_remove(n);
     73 }
     74 
     75 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
     76 {
     77     struct PostcopyNotifyData pnd;
     78     pnd.reason = reason;
     79     pnd.errp = errp;
     80 
     81     return notifier_with_return_list_notify(&postcopy_notifier_list,
     82                                             &pnd);
     83 }
     84 
     85 /*
     86  * NOTE: this routine is not thread safe, we can't call it concurrently. But it
     87  * should be good enough for migration's purposes.
     88  */
     89 void postcopy_thread_create(MigrationIncomingState *mis,
     90                             QemuThread *thread, const char *name,
     91                             void *(*fn)(void *), int joinable)
     92 {
     93     qemu_sem_init(&mis->thread_sync_sem, 0);
     94     qemu_thread_create(thread, name, fn, mis, joinable);
     95     qemu_sem_wait(&mis->thread_sync_sem);
     96     qemu_sem_destroy(&mis->thread_sync_sem);
     97 }
     98 
     99 /* Postcopy needs to detect accesses to pages that haven't yet been copied
    100  * across, and efficiently map new pages in, the techniques for doing this
    101  * are target OS specific.
    102  */
    103 #if defined(__linux__)
    104 
    105 #include <poll.h>
    106 #include <sys/ioctl.h>
    107 #include <sys/syscall.h>
    108 #include <asm/types.h> /* for __u64 */
    109 #endif
    110 
    111 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
    112 #include <sys/eventfd.h>
    113 #include <linux/userfaultfd.h>
    114 
    115 typedef struct PostcopyBlocktimeContext {
    116     /* time when page fault initiated per vCPU */
    117     uint32_t *page_fault_vcpu_time;
    118     /* page address per vCPU */
    119     uintptr_t *vcpu_addr;
    120     uint32_t total_blocktime;
    121     /* blocktime per vCPU */
    122     uint32_t *vcpu_blocktime;
    123     /* point in time when last page fault was initiated */
    124     uint32_t last_begin;
    125     /* number of vCPU are suspended */
    126     int smp_cpus_down;
    127     uint64_t start_time;
    128 
    129     /*
    130      * Handler for exit event, necessary for
    131      * releasing whole blocktime_ctx
    132      */
    133     Notifier exit_notifier;
    134 } PostcopyBlocktimeContext;
    135 
    136 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
    137 {
    138     g_free(ctx->page_fault_vcpu_time);
    139     g_free(ctx->vcpu_addr);
    140     g_free(ctx->vcpu_blocktime);
    141     g_free(ctx);
    142 }
    143 
    144 static void migration_exit_cb(Notifier *n, void *data)
    145 {
    146     PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
    147                                                  exit_notifier);
    148     destroy_blocktime_context(ctx);
    149 }
    150 
    151 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
    152 {
    153     MachineState *ms = MACHINE(qdev_get_machine());
    154     unsigned int smp_cpus = ms->smp.cpus;
    155     PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
    156     ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
    157     ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
    158     ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
    159 
    160     ctx->exit_notifier.notify = migration_exit_cb;
    161     ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
    162     qemu_add_exit_notifier(&ctx->exit_notifier);
    163     return ctx;
    164 }
    165 
    166 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
    167 {
    168     MachineState *ms = MACHINE(qdev_get_machine());
    169     uint32List *list = NULL;
    170     int i;
    171 
    172     for (i = ms->smp.cpus - 1; i >= 0; i--) {
    173         QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
    174     }
    175 
    176     return list;
    177 }
    178 
    179 /*
    180  * This function just populates MigrationInfo from postcopy's
    181  * blocktime context. It will not populate MigrationInfo,
    182  * unless postcopy-blocktime capability was set.
    183  *
    184  * @info: pointer to MigrationInfo to populate
    185  */
    186 void fill_destination_postcopy_migration_info(MigrationInfo *info)
    187 {
    188     MigrationIncomingState *mis = migration_incoming_get_current();
    189     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
    190 
    191     if (!bc) {
    192         return;
    193     }
    194 
    195     info->has_postcopy_blocktime = true;
    196     info->postcopy_blocktime = bc->total_blocktime;
    197     info->has_postcopy_vcpu_blocktime = true;
    198     info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
    199 }
    200 
    201 static uint32_t get_postcopy_total_blocktime(void)
    202 {
    203     MigrationIncomingState *mis = migration_incoming_get_current();
    204     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
    205 
    206     if (!bc) {
    207         return 0;
    208     }
    209 
    210     return bc->total_blocktime;
    211 }
    212 
    213 /**
    214  * receive_ufd_features: check userfault fd features, to request only supported
    215  * features in the future.
    216  *
    217  * Returns: true on success
    218  *
    219  * __NR_userfaultfd - should be checked before
    220  *  @features: out parameter will contain uffdio_api.features provided by kernel
    221  *              in case of success
    222  */
    223 static bool receive_ufd_features(uint64_t *features)
    224 {
    225     struct uffdio_api api_struct = {0};
    226     int ufd;
    227     bool ret = true;
    228 
    229     /* if we are here __NR_userfaultfd should exists */
    230     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
    231     if (ufd == -1) {
    232         error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
    233                      strerror(errno));
    234         return false;
    235     }
    236 
    237     /* ask features */
    238     api_struct.api = UFFD_API;
    239     api_struct.features = 0;
    240     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
    241         error_report("%s: UFFDIO_API failed: %s", __func__,
    242                      strerror(errno));
    243         ret = false;
    244         goto release_ufd;
    245     }
    246 
    247     *features = api_struct.features;
    248 
    249 release_ufd:
    250     close(ufd);
    251     return ret;
    252 }
    253 
    254 /**
    255  * request_ufd_features: this function should be called only once on a newly
    256  * opened ufd, subsequent calls will lead to error.
    257  *
    258  * Returns: true on success
    259  *
    260  * @ufd: fd obtained from userfaultfd syscall
    261  * @features: bit mask see UFFD_API_FEATURES
    262  */
    263 static bool request_ufd_features(int ufd, uint64_t features)
    264 {
    265     struct uffdio_api api_struct = {0};
    266     uint64_t ioctl_mask;
    267 
    268     api_struct.api = UFFD_API;
    269     api_struct.features = features;
    270     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
    271         error_report("%s failed: UFFDIO_API failed: %s", __func__,
    272                      strerror(errno));
    273         return false;
    274     }
    275 
    276     ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
    277                  (__u64)1 << _UFFDIO_UNREGISTER;
    278     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
    279         error_report("Missing userfault features: %" PRIx64,
    280                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
    281         return false;
    282     }
    283 
    284     return true;
    285 }
    286 
    287 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
    288 {
    289     uint64_t asked_features = 0;
    290     static uint64_t supported_features;
    291 
    292     /*
    293      * it's not possible to
    294      * request UFFD_API twice per one fd
    295      * userfault fd features is persistent
    296      */
    297     if (!supported_features) {
    298         if (!receive_ufd_features(&supported_features)) {
    299             error_report("%s failed", __func__);
    300             return false;
    301         }
    302     }
    303 
    304 #ifdef UFFD_FEATURE_THREAD_ID
    305     if (UFFD_FEATURE_THREAD_ID & supported_features) {
    306         asked_features |= UFFD_FEATURE_THREAD_ID;
    307         if (migrate_postcopy_blocktime()) {
    308             if (!mis->blocktime_ctx) {
    309                 mis->blocktime_ctx = blocktime_context_new();
    310             }
    311         }
    312     }
    313 #endif
    314 
    315     /*
    316      * request features, even if asked_features is 0, due to
    317      * kernel expects UFFD_API before UFFDIO_REGISTER, per
    318      * userfault file descriptor
    319      */
    320     if (!request_ufd_features(ufd, asked_features)) {
    321         error_report("%s failed: features %" PRIu64, __func__,
    322                      asked_features);
    323         return false;
    324     }
    325 
    326     if (qemu_real_host_page_size() != ram_pagesize_summary()) {
    327         bool have_hp = false;
    328         /* We've got a huge page */
    329 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
    330         have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
    331 #endif
    332         if (!have_hp) {
    333             error_report("Userfault on this host does not support huge pages");
    334             return false;
    335         }
    336     }
    337     return true;
    338 }
    339 
    340 /* Callback from postcopy_ram_supported_by_host block iterator.
    341  */
    342 static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
    343 {
    344     const char *block_name = qemu_ram_get_idstr(rb);
    345     ram_addr_t length = qemu_ram_get_used_length(rb);
    346     size_t pagesize = qemu_ram_pagesize(rb);
    347 
    348     if (length % pagesize) {
    349         error_report("Postcopy requires RAM blocks to be a page size multiple,"
    350                      " block %s is 0x" RAM_ADDR_FMT " bytes with a "
    351                      "page size of 0x%zx", block_name, length, pagesize);
    352         return 1;
    353     }
    354     return 0;
    355 }
    356 
    357 /*
    358  * Note: This has the side effect of munlock'ing all of RAM, that's
    359  * normally fine since if the postcopy succeeds it gets turned back on at the
    360  * end.
    361  */
    362 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
    363 {
    364     long pagesize = qemu_real_host_page_size();
    365     int ufd = -1;
    366     bool ret = false; /* Error unless we change it */
    367     void *testarea = NULL;
    368     struct uffdio_register reg_struct;
    369     struct uffdio_range range_struct;
    370     uint64_t feature_mask;
    371     Error *local_err = NULL;
    372 
    373     if (qemu_target_page_size() > pagesize) {
    374         error_report("Target page size bigger than host page size");
    375         goto out;
    376     }
    377 
    378     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
    379     if (ufd == -1) {
    380         error_report("%s: userfaultfd not available: %s", __func__,
    381                      strerror(errno));
    382         goto out;
    383     }
    384 
    385     /* Give devices a chance to object */
    386     if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
    387         error_report_err(local_err);
    388         goto out;
    389     }
    390 
    391     /* Version and features check */
    392     if (!ufd_check_and_apply(ufd, mis)) {
    393         goto out;
    394     }
    395 
    396     /* We don't support postcopy with shared RAM yet */
    397     if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
    398         goto out;
    399     }
    400 
    401     /*
    402      * userfault and mlock don't go together; we'll put it back later if
    403      * it was enabled.
    404      */
    405     if (munlockall()) {
    406         error_report("%s: munlockall: %s", __func__,  strerror(errno));
    407         goto out;
    408     }
    409 
    410     /*
    411      *  We need to check that the ops we need are supported on anon memory
    412      *  To do that we need to register a chunk and see the flags that
    413      *  are returned.
    414      */
    415     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
    416                                     MAP_ANONYMOUS, -1, 0);
    417     if (testarea == MAP_FAILED) {
    418         error_report("%s: Failed to map test area: %s", __func__,
    419                      strerror(errno));
    420         goto out;
    421     }
    422     g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize));
    423 
    424     reg_struct.range.start = (uintptr_t)testarea;
    425     reg_struct.range.len = pagesize;
    426     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
    427 
    428     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
    429         error_report("%s userfault register: %s", __func__, strerror(errno));
    430         goto out;
    431     }
    432 
    433     range_struct.start = (uintptr_t)testarea;
    434     range_struct.len = pagesize;
    435     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
    436         error_report("%s userfault unregister: %s", __func__, strerror(errno));
    437         goto out;
    438     }
    439 
    440     feature_mask = (__u64)1 << _UFFDIO_WAKE |
    441                    (__u64)1 << _UFFDIO_COPY |
    442                    (__u64)1 << _UFFDIO_ZEROPAGE;
    443     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
    444         error_report("Missing userfault map features: %" PRIx64,
    445                      (uint64_t)(~reg_struct.ioctls & feature_mask));
    446         goto out;
    447     }
    448 
    449     /* Success! */
    450     ret = true;
    451 out:
    452     if (testarea) {
    453         munmap(testarea, pagesize);
    454     }
    455     if (ufd != -1) {
    456         close(ufd);
    457     }
    458     return ret;
    459 }
    460 
    461 /*
    462  * Setup an area of RAM so that it *can* be used for postcopy later; this
    463  * must be done right at the start prior to pre-copy.
    464  * opaque should be the MIS.
    465  */
    466 static int init_range(RAMBlock *rb, void *opaque)
    467 {
    468     const char *block_name = qemu_ram_get_idstr(rb);
    469     void *host_addr = qemu_ram_get_host_addr(rb);
    470     ram_addr_t offset = qemu_ram_get_offset(rb);
    471     ram_addr_t length = qemu_ram_get_used_length(rb);
    472     trace_postcopy_init_range(block_name, host_addr, offset, length);
    473 
    474     /*
    475      * Save the used_length before running the guest. In case we have to
    476      * resize RAM blocks when syncing RAM block sizes from the source during
    477      * precopy, we'll update it manually via the ram block notifier.
    478      */
    479     rb->postcopy_length = length;
    480 
    481     /*
    482      * We need the whole of RAM to be truly empty for postcopy, so things
    483      * like ROMs and any data tables built during init must be zero'd
    484      * - we're going to get the copy from the source anyway.
    485      * (Precopy will just overwrite this data, so doesn't need the discard)
    486      */
    487     if (ram_discard_range(block_name, 0, length)) {
    488         return -1;
    489     }
    490 
    491     return 0;
    492 }
    493 
    494 /*
    495  * At the end of migration, undo the effects of init_range
    496  * opaque should be the MIS.
    497  */
    498 static int cleanup_range(RAMBlock *rb, void *opaque)
    499 {
    500     const char *block_name = qemu_ram_get_idstr(rb);
    501     void *host_addr = qemu_ram_get_host_addr(rb);
    502     ram_addr_t offset = qemu_ram_get_offset(rb);
    503     ram_addr_t length = rb->postcopy_length;
    504     MigrationIncomingState *mis = opaque;
    505     struct uffdio_range range_struct;
    506     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
    507 
    508     /*
    509      * We turned off hugepage for the precopy stage with postcopy enabled
    510      * we can turn it back on now.
    511      */
    512     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
    513 
    514     /*
    515      * We can also turn off userfault now since we should have all the
    516      * pages.   It can be useful to leave it on to debug postcopy
    517      * if you're not sure it's always getting every page.
    518      */
    519     range_struct.start = (uintptr_t)host_addr;
    520     range_struct.len = length;
    521 
    522     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
    523         error_report("%s: userfault unregister %s", __func__, strerror(errno));
    524 
    525         return -1;
    526     }
    527 
    528     return 0;
    529 }
    530 
    531 /*
    532  * Initialise postcopy-ram, setting the RAM to a state where we can go into
    533  * postcopy later; must be called prior to any precopy.
    534  * called from arch_init's similarly named ram_postcopy_incoming_init
    535  */
    536 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
    537 {
    538     if (foreach_not_ignored_block(init_range, NULL)) {
    539         return -1;
    540     }
    541 
    542     return 0;
    543 }
    544 
    545 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis)
    546 {
    547     int i;
    548 
    549     if (mis->postcopy_tmp_pages) {
    550         for (i = 0; i < mis->postcopy_channels; i++) {
    551             if (mis->postcopy_tmp_pages[i].tmp_huge_page) {
    552                 munmap(mis->postcopy_tmp_pages[i].tmp_huge_page,
    553                        mis->largest_page_size);
    554                 mis->postcopy_tmp_pages[i].tmp_huge_page = NULL;
    555             }
    556         }
    557         g_free(mis->postcopy_tmp_pages);
    558         mis->postcopy_tmp_pages = NULL;
    559     }
    560 
    561     if (mis->postcopy_tmp_zero_page) {
    562         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
    563         mis->postcopy_tmp_zero_page = NULL;
    564     }
    565 }
    566 
    567 /*
    568  * At the end of a migration where postcopy_ram_incoming_init was called.
    569  */
    570 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
    571 {
    572     trace_postcopy_ram_incoming_cleanup_entry();
    573 
    574     if (mis->postcopy_prio_thread_created) {
    575         qemu_thread_join(&mis->postcopy_prio_thread);
    576         mis->postcopy_prio_thread_created = false;
    577     }
    578 
    579     if (mis->have_fault_thread) {
    580         Error *local_err = NULL;
    581 
    582         /* Let the fault thread quit */
    583         qatomic_set(&mis->fault_thread_quit, 1);
    584         postcopy_fault_thread_notify(mis);
    585         trace_postcopy_ram_incoming_cleanup_join();
    586         qemu_thread_join(&mis->fault_thread);
    587 
    588         if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
    589             error_report_err(local_err);
    590             return -1;
    591         }
    592 
    593         if (foreach_not_ignored_block(cleanup_range, mis)) {
    594             return -1;
    595         }
    596 
    597         trace_postcopy_ram_incoming_cleanup_closeuf();
    598         close(mis->userfault_fd);
    599         close(mis->userfault_event_fd);
    600         mis->have_fault_thread = false;
    601     }
    602 
    603     if (enable_mlock) {
    604         if (os_mlock() < 0) {
    605             error_report("mlock: %s", strerror(errno));
    606             /*
    607              * It doesn't feel right to fail at this point, we have a valid
    608              * VM state.
    609              */
    610         }
    611     }
    612 
    613     postcopy_temp_pages_cleanup(mis);
    614 
    615     trace_postcopy_ram_incoming_cleanup_blocktime(
    616             get_postcopy_total_blocktime());
    617 
    618     trace_postcopy_ram_incoming_cleanup_exit();
    619     return 0;
    620 }
    621 
    622 /*
    623  * Disable huge pages on an area
    624  */
    625 static int nhp_range(RAMBlock *rb, void *opaque)
    626 {
    627     const char *block_name = qemu_ram_get_idstr(rb);
    628     void *host_addr = qemu_ram_get_host_addr(rb);
    629     ram_addr_t offset = qemu_ram_get_offset(rb);
    630     ram_addr_t length = rb->postcopy_length;
    631     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
    632 
    633     /*
    634      * Before we do discards we need to ensure those discards really
    635      * do delete areas of the page, even if THP thinks a hugepage would
    636      * be a good idea, so force hugepages off.
    637      */
    638     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
    639 
    640     return 0;
    641 }
    642 
    643 /*
    644  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
    645  * however leaving it until after precopy means that most of the precopy
    646  * data is still THPd
    647  */
    648 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
    649 {
    650     if (foreach_not_ignored_block(nhp_range, mis)) {
    651         return -1;
    652     }
    653 
    654     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
    655 
    656     return 0;
    657 }
    658 
    659 /*
    660  * Mark the given area of RAM as requiring notification to unwritten areas
    661  * Used as a  callback on foreach_not_ignored_block.
    662  *   host_addr: Base of area to mark
    663  *   offset: Offset in the whole ram arena
    664  *   length: Length of the section
    665  *   opaque: MigrationIncomingState pointer
    666  * Returns 0 on success
    667  */
    668 static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
    669 {
    670     MigrationIncomingState *mis = opaque;
    671     struct uffdio_register reg_struct;
    672 
    673     reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
    674     reg_struct.range.len = rb->postcopy_length;
    675     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
    676 
    677     /* Now tell our userfault_fd that it's responsible for this area */
    678     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
    679         error_report("%s userfault register: %s", __func__, strerror(errno));
    680         return -1;
    681     }
    682     if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
    683         error_report("%s userfault: Region doesn't support COPY", __func__);
    684         return -1;
    685     }
    686     if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
    687         qemu_ram_set_uf_zeroable(rb);
    688     }
    689 
    690     return 0;
    691 }
    692 
    693 int postcopy_wake_shared(struct PostCopyFD *pcfd,
    694                          uint64_t client_addr,
    695                          RAMBlock *rb)
    696 {
    697     size_t pagesize = qemu_ram_pagesize(rb);
    698     struct uffdio_range range;
    699     int ret;
    700     trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
    701     range.start = ROUND_DOWN(client_addr, pagesize);
    702     range.len = pagesize;
    703     ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
    704     if (ret) {
    705         error_report("%s: Failed to wake: %zx in %s (%s)",
    706                      __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
    707                      strerror(errno));
    708     }
    709     return ret;
    710 }
    711 
    712 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb,
    713                                  ram_addr_t start, uint64_t haddr)
    714 {
    715     void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb));
    716 
    717     /*
    718      * Discarded pages (via RamDiscardManager) are never migrated. On unlikely
    719      * access, place a zeropage, which will also set the relevant bits in the
    720      * recv_bitmap accordingly, so we won't try placing a zeropage twice.
    721      *
    722      * Checking a single bit is sufficient to handle pagesize > TPS as either
    723      * all relevant bits are set or not.
    724      */
    725     assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb)));
    726     if (ramblock_page_is_discarded(rb, start)) {
    727         bool received = ramblock_recv_bitmap_test_byte_offset(rb, start);
    728 
    729         return received ? 0 : postcopy_place_page_zero(mis, aligned, rb);
    730     }
    731 
    732     return migrate_send_rp_req_pages(mis, rb, start, haddr);
    733 }
    734 
    735 /*
    736  * Callback from shared fault handlers to ask for a page,
    737  * the page must be specified by a RAMBlock and an offset in that rb
    738  * Note: Only for use by shared fault handlers (in fault thread)
    739  */
    740 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
    741                                  uint64_t client_addr, uint64_t rb_offset)
    742 {
    743     uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
    744     MigrationIncomingState *mis = migration_incoming_get_current();
    745 
    746     trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
    747                                        rb_offset);
    748     if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
    749         trace_postcopy_request_shared_page_present(pcfd->idstr,
    750                                         qemu_ram_get_idstr(rb), rb_offset);
    751         return postcopy_wake_shared(pcfd, client_addr, rb);
    752     }
    753     postcopy_request_page(mis, rb, aligned_rbo, client_addr);
    754     return 0;
    755 }
    756 
    757 static int get_mem_fault_cpu_index(uint32_t pid)
    758 {
    759     CPUState *cpu_iter;
    760 
    761     CPU_FOREACH(cpu_iter) {
    762         if (cpu_iter->thread_id == pid) {
    763             trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
    764             return cpu_iter->cpu_index;
    765         }
    766     }
    767     trace_get_mem_fault_cpu_index(-1, pid);
    768     return -1;
    769 }
    770 
    771 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
    772 {
    773     int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
    774                                     dc->start_time;
    775     return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
    776 }
    777 
    778 /*
    779  * This function is being called when pagefault occurs. It
    780  * tracks down vCPU blocking time.
    781  *
    782  * @addr: faulted host virtual address
    783  * @ptid: faulted process thread id
    784  * @rb: ramblock appropriate to addr
    785  */
    786 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
    787                                           RAMBlock *rb)
    788 {
    789     int cpu, already_received;
    790     MigrationIncomingState *mis = migration_incoming_get_current();
    791     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
    792     uint32_t low_time_offset;
    793 
    794     if (!dc || ptid == 0) {
    795         return;
    796     }
    797     cpu = get_mem_fault_cpu_index(ptid);
    798     if (cpu < 0) {
    799         return;
    800     }
    801 
    802     low_time_offset = get_low_time_offset(dc);
    803     if (dc->vcpu_addr[cpu] == 0) {
    804         qatomic_inc(&dc->smp_cpus_down);
    805     }
    806 
    807     qatomic_xchg(&dc->last_begin, low_time_offset);
    808     qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
    809     qatomic_xchg(&dc->vcpu_addr[cpu], addr);
    810 
    811     /*
    812      * check it here, not at the beginning of the function,
    813      * due to, check could occur early than bitmap_set in
    814      * qemu_ufd_copy_ioctl
    815      */
    816     already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
    817     if (already_received) {
    818         qatomic_xchg(&dc->vcpu_addr[cpu], 0);
    819         qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
    820         qatomic_dec(&dc->smp_cpus_down);
    821     }
    822     trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
    823                                         cpu, already_received);
    824 }
    825 
    826 /*
    827  *  This function just provide calculated blocktime per cpu and trace it.
    828  *  Total blocktime is calculated in mark_postcopy_blocktime_end.
    829  *
    830  *
    831  * Assume we have 3 CPU
    832  *
    833  *      S1        E1           S1               E1
    834  * -----***********------------xxx***************------------------------> CPU1
    835  *
    836  *             S2                E2
    837  * ------------****************xxx---------------------------------------> CPU2
    838  *
    839  *                         S3            E3
    840  * ------------------------****xxx********-------------------------------> CPU3
    841  *
    842  * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
    843  * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
    844  * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
    845  *            it's a part of total blocktime.
    846  * S1 - here is last_begin
    847  * Legend of the picture is following:
    848  *              * - means blocktime per vCPU
    849  *              x - means overlapped blocktime (total blocktime)
    850  *
    851  * @addr: host virtual address
    852  */
    853 static void mark_postcopy_blocktime_end(uintptr_t addr)
    854 {
    855     MigrationIncomingState *mis = migration_incoming_get_current();
    856     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
    857     MachineState *ms = MACHINE(qdev_get_machine());
    858     unsigned int smp_cpus = ms->smp.cpus;
    859     int i, affected_cpu = 0;
    860     bool vcpu_total_blocktime = false;
    861     uint32_t read_vcpu_time, low_time_offset;
    862 
    863     if (!dc) {
    864         return;
    865     }
    866 
    867     low_time_offset = get_low_time_offset(dc);
    868     /* lookup cpu, to clear it,
    869      * that algorithm looks straightforward, but it's not
    870      * optimal, more optimal algorithm is keeping tree or hash
    871      * where key is address value is a list of  */
    872     for (i = 0; i < smp_cpus; i++) {
    873         uint32_t vcpu_blocktime = 0;
    874 
    875         read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
    876         if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
    877             read_vcpu_time == 0) {
    878             continue;
    879         }
    880         qatomic_xchg(&dc->vcpu_addr[i], 0);
    881         vcpu_blocktime = low_time_offset - read_vcpu_time;
    882         affected_cpu += 1;
    883         /* we need to know is that mark_postcopy_end was due to
    884          * faulted page, another possible case it's prefetched
    885          * page and in that case we shouldn't be here */
    886         if (!vcpu_total_blocktime &&
    887             qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
    888             vcpu_total_blocktime = true;
    889         }
    890         /* continue cycle, due to one page could affect several vCPUs */
    891         dc->vcpu_blocktime[i] += vcpu_blocktime;
    892     }
    893 
    894     qatomic_sub(&dc->smp_cpus_down, affected_cpu);
    895     if (vcpu_total_blocktime) {
    896         dc->total_blocktime += low_time_offset - qatomic_fetch_add(
    897                 &dc->last_begin, 0);
    898     }
    899     trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
    900                                       affected_cpu);
    901 }
    902 
    903 static void postcopy_pause_fault_thread(MigrationIncomingState *mis)
    904 {
    905     trace_postcopy_pause_fault_thread();
    906     qemu_sem_wait(&mis->postcopy_pause_sem_fault);
    907     trace_postcopy_pause_fault_thread_continued();
    908 }
    909 
    910 /*
    911  * Handle faults detected by the USERFAULT markings
    912  */
    913 static void *postcopy_ram_fault_thread(void *opaque)
    914 {
    915     MigrationIncomingState *mis = opaque;
    916     struct uffd_msg msg;
    917     int ret;
    918     size_t index;
    919     RAMBlock *rb = NULL;
    920 
    921     trace_postcopy_ram_fault_thread_entry();
    922     rcu_register_thread();
    923     mis->last_rb = NULL; /* last RAMBlock we sent part of */
    924     qemu_sem_post(&mis->thread_sync_sem);
    925 
    926     struct pollfd *pfd;
    927     size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
    928 
    929     pfd = g_new0(struct pollfd, pfd_len);
    930 
    931     pfd[0].fd = mis->userfault_fd;
    932     pfd[0].events = POLLIN;
    933     pfd[1].fd = mis->userfault_event_fd;
    934     pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
    935     trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
    936     for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
    937         struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
    938                                                  struct PostCopyFD, index);
    939         pfd[2 + index].fd = pcfd->fd;
    940         pfd[2 + index].events = POLLIN;
    941         trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
    942                                                   pcfd->fd);
    943     }
    944 
    945     while (true) {
    946         ram_addr_t rb_offset;
    947         int poll_result;
    948 
    949         /*
    950          * We're mainly waiting for the kernel to give us a faulting HVA,
    951          * however we can be told to quit via userfault_quit_fd which is
    952          * an eventfd
    953          */
    954 
    955         poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
    956         if (poll_result == -1) {
    957             error_report("%s: userfault poll: %s", __func__, strerror(errno));
    958             break;
    959         }
    960 
    961         if (!mis->to_src_file) {
    962             /*
    963              * Possibly someone tells us that the return path is
    964              * broken already using the event. We should hold until
    965              * the channel is rebuilt.
    966              */
    967             postcopy_pause_fault_thread(mis);
    968         }
    969 
    970         if (pfd[1].revents) {
    971             uint64_t tmp64 = 0;
    972 
    973             /* Consume the signal */
    974             if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
    975                 /* Nothing obviously nicer than posting this error. */
    976                 error_report("%s: read() failed", __func__);
    977             }
    978 
    979             if (qatomic_read(&mis->fault_thread_quit)) {
    980                 trace_postcopy_ram_fault_thread_quit();
    981                 break;
    982             }
    983         }
    984 
    985         if (pfd[0].revents) {
    986             poll_result--;
    987             ret = read(mis->userfault_fd, &msg, sizeof(msg));
    988             if (ret != sizeof(msg)) {
    989                 if (errno == EAGAIN) {
    990                     /*
    991                      * if a wake up happens on the other thread just after
    992                      * the poll, there is nothing to read.
    993                      */
    994                     continue;
    995                 }
    996                 if (ret < 0) {
    997                     error_report("%s: Failed to read full userfault "
    998                                  "message: %s",
    999                                  __func__, strerror(errno));
   1000                     break;
   1001                 } else {
   1002                     error_report("%s: Read %d bytes from userfaultfd "
   1003                                  "expected %zd",
   1004                                  __func__, ret, sizeof(msg));
   1005                     break; /* Lost alignment, don't know what we'd read next */
   1006                 }
   1007             }
   1008             if (msg.event != UFFD_EVENT_PAGEFAULT) {
   1009                 error_report("%s: Read unexpected event %ud from userfaultfd",
   1010                              __func__, msg.event);
   1011                 continue; /* It's not a page fault, shouldn't happen */
   1012             }
   1013 
   1014             rb = qemu_ram_block_from_host(
   1015                      (void *)(uintptr_t)msg.arg.pagefault.address,
   1016                      true, &rb_offset);
   1017             if (!rb) {
   1018                 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
   1019                              PRIx64, (uint64_t)msg.arg.pagefault.address);
   1020                 break;
   1021             }
   1022 
   1023             rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
   1024             trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
   1025                                                 qemu_ram_get_idstr(rb),
   1026                                                 rb_offset,
   1027                                                 msg.arg.pagefault.feat.ptid);
   1028             mark_postcopy_blocktime_begin(
   1029                     (uintptr_t)(msg.arg.pagefault.address),
   1030                                 msg.arg.pagefault.feat.ptid, rb);
   1031 
   1032 retry:
   1033             /*
   1034              * Send the request to the source - we want to request one
   1035              * of our host page sizes (which is >= TPS)
   1036              */
   1037             ret = postcopy_request_page(mis, rb, rb_offset,
   1038                                         msg.arg.pagefault.address);
   1039             if (ret) {
   1040                 /* May be network failure, try to wait for recovery */
   1041                 postcopy_pause_fault_thread(mis);
   1042                 goto retry;
   1043             }
   1044         }
   1045 
   1046         /* Now handle any requests from external processes on shared memory */
   1047         /* TODO: May need to handle devices deregistering during postcopy */
   1048         for (index = 2; index < pfd_len && poll_result; index++) {
   1049             if (pfd[index].revents) {
   1050                 struct PostCopyFD *pcfd =
   1051                     &g_array_index(mis->postcopy_remote_fds,
   1052                                    struct PostCopyFD, index - 2);
   1053 
   1054                 poll_result--;
   1055                 if (pfd[index].revents & POLLERR) {
   1056                     error_report("%s: POLLERR on poll %zd fd=%d",
   1057                                  __func__, index, pcfd->fd);
   1058                     pfd[index].events = 0;
   1059                     continue;
   1060                 }
   1061 
   1062                 ret = read(pcfd->fd, &msg, sizeof(msg));
   1063                 if (ret != sizeof(msg)) {
   1064                     if (errno == EAGAIN) {
   1065                         /*
   1066                          * if a wake up happens on the other thread just after
   1067                          * the poll, there is nothing to read.
   1068                          */
   1069                         continue;
   1070                     }
   1071                     if (ret < 0) {
   1072                         error_report("%s: Failed to read full userfault "
   1073                                      "message: %s (shared) revents=%d",
   1074                                      __func__, strerror(errno),
   1075                                      pfd[index].revents);
   1076                         /*TODO: Could just disable this sharer */
   1077                         break;
   1078                     } else {
   1079                         error_report("%s: Read %d bytes from userfaultfd "
   1080                                      "expected %zd (shared)",
   1081                                      __func__, ret, sizeof(msg));
   1082                         /*TODO: Could just disable this sharer */
   1083                         break; /*Lost alignment,don't know what we'd read next*/
   1084                     }
   1085                 }
   1086                 if (msg.event != UFFD_EVENT_PAGEFAULT) {
   1087                     error_report("%s: Read unexpected event %ud "
   1088                                  "from userfaultfd (shared)",
   1089                                  __func__, msg.event);
   1090                     continue; /* It's not a page fault, shouldn't happen */
   1091                 }
   1092                 /* Call the device handler registered with us */
   1093                 ret = pcfd->handler(pcfd, &msg);
   1094                 if (ret) {
   1095                     error_report("%s: Failed to resolve shared fault on %zd/%s",
   1096                                  __func__, index, pcfd->idstr);
   1097                     /* TODO: Fail? Disable this sharer? */
   1098                 }
   1099             }
   1100         }
   1101     }
   1102     rcu_unregister_thread();
   1103     trace_postcopy_ram_fault_thread_exit();
   1104     g_free(pfd);
   1105     return NULL;
   1106 }
   1107 
   1108 static int postcopy_temp_pages_setup(MigrationIncomingState *mis)
   1109 {
   1110     PostcopyTmpPage *tmp_page;
   1111     int err, i, channels;
   1112     void *temp_page;
   1113 
   1114     if (migrate_postcopy_preempt()) {
   1115         /* If preemption enabled, need extra channel for urgent requests */
   1116         mis->postcopy_channels = RAM_CHANNEL_MAX;
   1117     } else {
   1118         /* Both precopy/postcopy on the same channel */
   1119         mis->postcopy_channels = 1;
   1120     }
   1121 
   1122     channels = mis->postcopy_channels;
   1123     mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels);
   1124 
   1125     for (i = 0; i < channels; i++) {
   1126         tmp_page = &mis->postcopy_tmp_pages[i];
   1127         temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE,
   1128                          MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
   1129         if (temp_page == MAP_FAILED) {
   1130             err = errno;
   1131             error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s",
   1132                          __func__, i, strerror(err));
   1133             /* Clean up will be done later */
   1134             return -err;
   1135         }
   1136         tmp_page->tmp_huge_page = temp_page;
   1137         /* Initialize default states for each tmp page */
   1138         postcopy_temp_page_reset(tmp_page);
   1139     }
   1140 
   1141     /*
   1142      * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
   1143      */
   1144     mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
   1145                                        PROT_READ | PROT_WRITE,
   1146                                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
   1147     if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
   1148         err = errno;
   1149         mis->postcopy_tmp_zero_page = NULL;
   1150         error_report("%s: Failed to map large zero page %s",
   1151                      __func__, strerror(err));
   1152         return -err;
   1153     }
   1154 
   1155     memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
   1156 
   1157     return 0;
   1158 }
   1159 
   1160 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
   1161 {
   1162     /* Open the fd for the kernel to give us userfaults */
   1163     mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
   1164     if (mis->userfault_fd == -1) {
   1165         error_report("%s: Failed to open userfault fd: %s", __func__,
   1166                      strerror(errno));
   1167         return -1;
   1168     }
   1169 
   1170     /*
   1171      * Although the host check already tested the API, we need to
   1172      * do the check again as an ABI handshake on the new fd.
   1173      */
   1174     if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
   1175         return -1;
   1176     }
   1177 
   1178     /* Now an eventfd we use to tell the fault-thread to quit */
   1179     mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
   1180     if (mis->userfault_event_fd == -1) {
   1181         error_report("%s: Opening userfault_event_fd: %s", __func__,
   1182                      strerror(errno));
   1183         close(mis->userfault_fd);
   1184         return -1;
   1185     }
   1186 
   1187     postcopy_thread_create(mis, &mis->fault_thread, "fault-default",
   1188                            postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE);
   1189     mis->have_fault_thread = true;
   1190 
   1191     /* Mark so that we get notified of accesses to unwritten areas */
   1192     if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
   1193         error_report("ram_block_enable_notify failed");
   1194         return -1;
   1195     }
   1196 
   1197     if (postcopy_temp_pages_setup(mis)) {
   1198         /* Error dumped in the sub-function */
   1199         return -1;
   1200     }
   1201 
   1202     if (migrate_postcopy_preempt()) {
   1203         /*
   1204          * This thread needs to be created after the temp pages because
   1205          * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately.
   1206          */
   1207         postcopy_thread_create(mis, &mis->postcopy_prio_thread, "fault-fast",
   1208                                postcopy_preempt_thread, QEMU_THREAD_JOINABLE);
   1209         mis->postcopy_prio_thread_created = true;
   1210     }
   1211 
   1212     trace_postcopy_ram_enable_notify();
   1213 
   1214     return 0;
   1215 }
   1216 
   1217 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
   1218                                void *from_addr, uint64_t pagesize, RAMBlock *rb)
   1219 {
   1220     int userfault_fd = mis->userfault_fd;
   1221     int ret;
   1222 
   1223     if (from_addr) {
   1224         struct uffdio_copy copy_struct;
   1225         copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
   1226         copy_struct.src = (uint64_t)(uintptr_t)from_addr;
   1227         copy_struct.len = pagesize;
   1228         copy_struct.mode = 0;
   1229         ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
   1230     } else {
   1231         struct uffdio_zeropage zero_struct;
   1232         zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
   1233         zero_struct.range.len = pagesize;
   1234         zero_struct.mode = 0;
   1235         ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
   1236     }
   1237     if (!ret) {
   1238         qemu_mutex_lock(&mis->page_request_mutex);
   1239         ramblock_recv_bitmap_set_range(rb, host_addr,
   1240                                        pagesize / qemu_target_page_size());
   1241         /*
   1242          * If this page resolves a page fault for a previous recorded faulted
   1243          * address, take a special note to maintain the requested page list.
   1244          */
   1245         if (g_tree_lookup(mis->page_requested, host_addr)) {
   1246             g_tree_remove(mis->page_requested, host_addr);
   1247             mis->page_requested_count--;
   1248             trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
   1249         }
   1250         qemu_mutex_unlock(&mis->page_request_mutex);
   1251         mark_postcopy_blocktime_end((uintptr_t)host_addr);
   1252     }
   1253     return ret;
   1254 }
   1255 
   1256 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
   1257 {
   1258     int i;
   1259     MigrationIncomingState *mis = migration_incoming_get_current();
   1260     GArray *pcrfds = mis->postcopy_remote_fds;
   1261 
   1262     for (i = 0; i < pcrfds->len; i++) {
   1263         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
   1264         int ret = cur->waker(cur, rb, offset);
   1265         if (ret) {
   1266             return ret;
   1267         }
   1268     }
   1269     return 0;
   1270 }
   1271 
   1272 /*
   1273  * Place a host page (from) at (host) atomically
   1274  * returns 0 on success
   1275  */
   1276 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
   1277                         RAMBlock *rb)
   1278 {
   1279     size_t pagesize = qemu_ram_pagesize(rb);
   1280 
   1281     /* copy also acks to the kernel waking the stalled thread up
   1282      * TODO: We can inhibit that ack and only do it if it was requested
   1283      * which would be slightly cheaper, but we'd have to be careful
   1284      * of the order of updating our page state.
   1285      */
   1286     if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
   1287         int e = errno;
   1288         error_report("%s: %s copy host: %p from: %p (size: %zd)",
   1289                      __func__, strerror(e), host, from, pagesize);
   1290 
   1291         return -e;
   1292     }
   1293 
   1294     trace_postcopy_place_page(host);
   1295     return postcopy_notify_shared_wake(rb,
   1296                                        qemu_ram_block_host_offset(rb, host));
   1297 }
   1298 
   1299 /*
   1300  * Place a zero page at (host) atomically
   1301  * returns 0 on success
   1302  */
   1303 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
   1304                              RAMBlock *rb)
   1305 {
   1306     size_t pagesize = qemu_ram_pagesize(rb);
   1307     trace_postcopy_place_page_zero(host);
   1308 
   1309     /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
   1310      * but it's not available for everything (e.g. hugetlbpages)
   1311      */
   1312     if (qemu_ram_is_uf_zeroable(rb)) {
   1313         if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
   1314             int e = errno;
   1315             error_report("%s: %s zero host: %p",
   1316                          __func__, strerror(e), host);
   1317 
   1318             return -e;
   1319         }
   1320         return postcopy_notify_shared_wake(rb,
   1321                                            qemu_ram_block_host_offset(rb,
   1322                                                                       host));
   1323     } else {
   1324         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
   1325     }
   1326 }
   1327 
   1328 #else
   1329 /* No target OS support, stubs just fail */
   1330 void fill_destination_postcopy_migration_info(MigrationInfo *info)
   1331 {
   1332 }
   1333 
   1334 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
   1335 {
   1336     error_report("%s: No OS support", __func__);
   1337     return false;
   1338 }
   1339 
   1340 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
   1341 {
   1342     error_report("postcopy_ram_incoming_init: No OS support");
   1343     return -1;
   1344 }
   1345 
   1346 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
   1347 {
   1348     assert(0);
   1349     return -1;
   1350 }
   1351 
   1352 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
   1353 {
   1354     assert(0);
   1355     return -1;
   1356 }
   1357 
   1358 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
   1359                                  uint64_t client_addr, uint64_t rb_offset)
   1360 {
   1361     assert(0);
   1362     return -1;
   1363 }
   1364 
   1365 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
   1366 {
   1367     assert(0);
   1368     return -1;
   1369 }
   1370 
   1371 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
   1372                         RAMBlock *rb)
   1373 {
   1374     assert(0);
   1375     return -1;
   1376 }
   1377 
   1378 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
   1379                         RAMBlock *rb)
   1380 {
   1381     assert(0);
   1382     return -1;
   1383 }
   1384 
   1385 int postcopy_wake_shared(struct PostCopyFD *pcfd,
   1386                          uint64_t client_addr,
   1387                          RAMBlock *rb)
   1388 {
   1389     assert(0);
   1390     return -1;
   1391 }
   1392 #endif
   1393 
   1394 /* ------------------------------------------------------------------------- */
   1395 void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page)
   1396 {
   1397     tmp_page->target_pages = 0;
   1398     tmp_page->host_addr = NULL;
   1399     /*
   1400      * This is set to true when reset, and cleared as long as we received any
   1401      * of the non-zero small page within this huge page.
   1402      */
   1403     tmp_page->all_zero = true;
   1404 }
   1405 
   1406 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
   1407 {
   1408     uint64_t tmp64 = 1;
   1409 
   1410     /*
   1411      * Wakeup the fault_thread.  It's an eventfd that should currently
   1412      * be at 0, we're going to increment it to 1
   1413      */
   1414     if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
   1415         /* Not much we can do here, but may as well report it */
   1416         error_report("%s: incrementing failed: %s", __func__,
   1417                      strerror(errno));
   1418     }
   1419 }
   1420 
   1421 /**
   1422  * postcopy_discard_send_init: Called at the start of each RAMBlock before
   1423  *   asking to discard individual ranges.
   1424  *
   1425  * @ms: The current migration state.
   1426  * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
   1427  * @name: RAMBlock that discards will operate on.
   1428  */
   1429 static PostcopyDiscardState pds = {0};
   1430 void postcopy_discard_send_init(MigrationState *ms, const char *name)
   1431 {
   1432     pds.ramblock_name = name;
   1433     pds.cur_entry = 0;
   1434     pds.nsentwords = 0;
   1435     pds.nsentcmds = 0;
   1436 }
   1437 
   1438 /**
   1439  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
   1440  *   discard. May send a discard message, may just leave it queued to
   1441  *   be sent later.
   1442  *
   1443  * @ms: Current migration state.
   1444  * @start,@length: a range of pages in the migration bitmap in the
   1445  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
   1446  */
   1447 void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
   1448                                  unsigned long length)
   1449 {
   1450     size_t tp_size = qemu_target_page_size();
   1451     /* Convert to byte offsets within the RAM block */
   1452     pds.start_list[pds.cur_entry] = start  * tp_size;
   1453     pds.length_list[pds.cur_entry] = length * tp_size;
   1454     trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
   1455     pds.cur_entry++;
   1456     pds.nsentwords++;
   1457 
   1458     if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
   1459         /* Full set, ship it! */
   1460         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
   1461                                               pds.ramblock_name,
   1462                                               pds.cur_entry,
   1463                                               pds.start_list,
   1464                                               pds.length_list);
   1465         pds.nsentcmds++;
   1466         pds.cur_entry = 0;
   1467     }
   1468 }
   1469 
   1470 /**
   1471  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
   1472  * bitmap code. Sends any outstanding discard messages, frees the PDS
   1473  *
   1474  * @ms: Current migration state.
   1475  */
   1476 void postcopy_discard_send_finish(MigrationState *ms)
   1477 {
   1478     /* Anything unsent? */
   1479     if (pds.cur_entry) {
   1480         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
   1481                                               pds.ramblock_name,
   1482                                               pds.cur_entry,
   1483                                               pds.start_list,
   1484                                               pds.length_list);
   1485         pds.nsentcmds++;
   1486     }
   1487 
   1488     trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
   1489                                        pds.nsentcmds);
   1490 }
   1491 
   1492 /*
   1493  * Current state of incoming postcopy; note this is not part of
   1494  * MigrationIncomingState since it's state is used during cleanup
   1495  * at the end as MIS is being freed.
   1496  */
   1497 static PostcopyState incoming_postcopy_state;
   1498 
   1499 PostcopyState  postcopy_state_get(void)
   1500 {
   1501     return qatomic_mb_read(&incoming_postcopy_state);
   1502 }
   1503 
   1504 /* Set the state and return the old state */
   1505 PostcopyState postcopy_state_set(PostcopyState new_state)
   1506 {
   1507     return qatomic_xchg(&incoming_postcopy_state, new_state);
   1508 }
   1509 
   1510 /* Register a handler for external shared memory postcopy
   1511  * called on the destination.
   1512  */
   1513 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
   1514 {
   1515     MigrationIncomingState *mis = migration_incoming_get_current();
   1516 
   1517     mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
   1518                                                   *pcfd);
   1519 }
   1520 
   1521 /* Unregister a handler for external shared memory postcopy
   1522  */
   1523 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
   1524 {
   1525     guint i;
   1526     MigrationIncomingState *mis = migration_incoming_get_current();
   1527     GArray *pcrfds = mis->postcopy_remote_fds;
   1528 
   1529     if (!pcrfds) {
   1530         /* migration has already finished and freed the array */
   1531         return;
   1532     }
   1533     for (i = 0; i < pcrfds->len; i++) {
   1534         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
   1535         if (cur->fd == pcfd->fd) {
   1536             mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
   1537             return;
   1538         }
   1539     }
   1540 }
   1541 
   1542 bool postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file)
   1543 {
   1544     /*
   1545      * The new loading channel has its own threads, so it needs to be
   1546      * blocked too.  It's by default true, just be explicit.
   1547      */
   1548     qemu_file_set_blocking(file, true);
   1549     mis->postcopy_qemufile_dst = file;
   1550     trace_postcopy_preempt_new_channel();
   1551 
   1552     /* Start the migration immediately */
   1553     return true;
   1554 }
   1555 
   1556 /*
   1557  * Setup the postcopy preempt channel with the IOC.  If ERROR is specified,
   1558  * setup the error instead.  This helper will free the ERROR if specified.
   1559  */
   1560 static void
   1561 postcopy_preempt_send_channel_done(MigrationState *s,
   1562                                    QIOChannel *ioc, Error *local_err)
   1563 {
   1564     if (local_err) {
   1565         migrate_set_error(s, local_err);
   1566         error_free(local_err);
   1567     } else {
   1568         migration_ioc_register_yank(ioc);
   1569         s->postcopy_qemufile_src = qemu_file_new_output(ioc);
   1570         trace_postcopy_preempt_new_channel();
   1571     }
   1572 
   1573     /*
   1574      * Kick the waiter in all cases.  The waiter should check upon
   1575      * postcopy_qemufile_src to know whether it failed or not.
   1576      */
   1577     qemu_sem_post(&s->postcopy_qemufile_src_sem);
   1578 }
   1579 
   1580 static void
   1581 postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque)
   1582 {
   1583     g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
   1584     MigrationState *s = opaque;
   1585     Error *local_err = NULL;
   1586 
   1587     qio_task_propagate_error(task, &local_err);
   1588     postcopy_preempt_send_channel_done(s, ioc, local_err);
   1589 }
   1590 
   1591 static void
   1592 postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque)
   1593 {
   1594     g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
   1595     MigrationState *s = opaque;
   1596     QIOChannelTLS *tioc;
   1597     Error *local_err = NULL;
   1598 
   1599     if (qio_task_propagate_error(task, &local_err)) {
   1600         goto out;
   1601     }
   1602 
   1603     if (migrate_channel_requires_tls_upgrade(ioc)) {
   1604         tioc = migration_tls_client_create(s, ioc, s->hostname, &local_err);
   1605         if (!tioc) {
   1606             goto out;
   1607         }
   1608         trace_postcopy_preempt_tls_handshake();
   1609         qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt");
   1610         qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake,
   1611                                   s, NULL, NULL);
   1612         /* Setup the channel until TLS handshake finished */
   1613         return;
   1614     }
   1615 
   1616 out:
   1617     /* This handles both good and error cases */
   1618     postcopy_preempt_send_channel_done(s, ioc, local_err);
   1619 }
   1620 
   1621 /* Returns 0 if channel established, -1 for error. */
   1622 int postcopy_preempt_wait_channel(MigrationState *s)
   1623 {
   1624     /* If preempt not enabled, no need to wait */
   1625     if (!migrate_postcopy_preempt()) {
   1626         return 0;
   1627     }
   1628 
   1629     /*
   1630      * We need the postcopy preempt channel to be established before
   1631      * starting doing anything.
   1632      */
   1633     qemu_sem_wait(&s->postcopy_qemufile_src_sem);
   1634 
   1635     return s->postcopy_qemufile_src ? 0 : -1;
   1636 }
   1637 
   1638 int postcopy_preempt_setup(MigrationState *s, Error **errp)
   1639 {
   1640     if (!migrate_postcopy_preempt()) {
   1641         return 0;
   1642     }
   1643 
   1644     if (!migrate_multi_channels_is_allowed()) {
   1645         error_setg(errp, "Postcopy preempt is not supported as current "
   1646                    "migration stream does not support multi-channels.");
   1647         return -1;
   1648     }
   1649 
   1650     /* Kick an async task to connect */
   1651     socket_send_channel_create(postcopy_preempt_send_channel_new, s);
   1652 
   1653     return 0;
   1654 }
   1655 
   1656 static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis)
   1657 {
   1658     trace_postcopy_pause_fast_load();
   1659     qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
   1660     qemu_sem_wait(&mis->postcopy_pause_sem_fast_load);
   1661     qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
   1662     trace_postcopy_pause_fast_load_continued();
   1663 }
   1664 
   1665 void *postcopy_preempt_thread(void *opaque)
   1666 {
   1667     MigrationIncomingState *mis = opaque;
   1668     int ret;
   1669 
   1670     trace_postcopy_preempt_thread_entry();
   1671 
   1672     rcu_register_thread();
   1673 
   1674     qemu_sem_post(&mis->thread_sync_sem);
   1675 
   1676     /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */
   1677     qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
   1678     while (1) {
   1679         ret = ram_load_postcopy(mis->postcopy_qemufile_dst,
   1680                                 RAM_CHANNEL_POSTCOPY);
   1681         /* If error happened, go into recovery routine */
   1682         if (ret) {
   1683             postcopy_pause_ram_fast_load(mis);
   1684         } else {
   1685             /* We're done */
   1686             break;
   1687         }
   1688     }
   1689     qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
   1690 
   1691     rcu_unregister_thread();
   1692 
   1693     trace_postcopy_preempt_thread_exit();
   1694 
   1695     return NULL;
   1696 }