qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

vfio.h (51651B)


      1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
      2 /*
      3  * VFIO API definition
      4  *
      5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
      6  *     Author: Alex Williamson <alex.williamson@redhat.com>
      7  *
      8  * This program is free software; you can redistribute it and/or modify
      9  * it under the terms of the GNU General Public License version 2 as
     10  * published by the Free Software Foundation.
     11  */
     12 #ifndef VFIO_H
     13 #define VFIO_H
     14 
     15 #include <linux/types.h>
     16 #include <linux/ioctl.h>
     17 
     18 #define VFIO_API_VERSION	0
     19 
     20 
     21 /* Kernel & User level defines for VFIO IOCTLs. */
     22 
     23 /* Extensions */
     24 
     25 #define VFIO_TYPE1_IOMMU		1
     26 #define VFIO_SPAPR_TCE_IOMMU		2
     27 #define VFIO_TYPE1v2_IOMMU		3
     28 /*
     29  * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping).  This
     30  * capability is subject to change as groups are added or removed.
     31  */
     32 #define VFIO_DMA_CC_IOMMU		4
     33 
     34 /* Check if EEH is supported */
     35 #define VFIO_EEH			5
     36 
     37 /* Two-stage IOMMU */
     38 #define VFIO_TYPE1_NESTING_IOMMU	6	/* Implies v2 */
     39 
     40 #define VFIO_SPAPR_TCE_v2_IOMMU		7
     41 
     42 /*
     43  * The No-IOMMU IOMMU offers no translation or isolation for devices and
     44  * supports no ioctls outside of VFIO_CHECK_EXTENSION.  Use of VFIO's No-IOMMU
     45  * code will taint the host kernel and should be used with extreme caution.
     46  */
     47 #define VFIO_NOIOMMU_IOMMU		8
     48 
     49 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */
     50 #define VFIO_UNMAP_ALL			9
     51 
     52 /* Supports the vaddr flag for DMA map and unmap */
     53 #define VFIO_UPDATE_VADDR		10
     54 
     55 /*
     56  * The IOCTL interface is designed for extensibility by embedding the
     57  * structure length (argsz) and flags into structures passed between
     58  * kernel and userspace.  We therefore use the _IO() macro for these
     59  * defines to avoid implicitly embedding a size into the ioctl request.
     60  * As structure fields are added, argsz will increase to match and flag
     61  * bits will be defined to indicate additional fields with valid data.
     62  * It's *always* the caller's responsibility to indicate the size of
     63  * the structure passed by setting argsz appropriately.
     64  */
     65 
     66 #define VFIO_TYPE	(';')
     67 #define VFIO_BASE	100
     68 
     69 /*
     70  * For extension of INFO ioctls, VFIO makes use of a capability chain
     71  * designed after PCI/e capabilities.  A flag bit indicates whether
     72  * this capability chain is supported and a field defined in the fixed
     73  * structure defines the offset of the first capability in the chain.
     74  * This field is only valid when the corresponding bit in the flags
     75  * bitmap is set.  This offset field is relative to the start of the
     76  * INFO buffer, as is the next field within each capability header.
     77  * The id within the header is a shared address space per INFO ioctl,
     78  * while the version field is specific to the capability id.  The
     79  * contents following the header are specific to the capability id.
     80  */
     81 struct vfio_info_cap_header {
     82 	__u16	id;		/* Identifies capability */
     83 	__u16	version;	/* Version specific to the capability ID */
     84 	__u32	next;		/* Offset of next capability */
     85 };
     86 
     87 /*
     88  * Callers of INFO ioctls passing insufficiently sized buffers will see
     89  * the capability chain flag bit set, a zero value for the first capability
     90  * offset (if available within the provided argsz), and argsz will be
     91  * updated to report the necessary buffer size.  For compatibility, the
     92  * INFO ioctl will not report error in this case, but the capability chain
     93  * will not be available.
     94  */
     95 
     96 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
     97 
     98 /**
     99  * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
    100  *
    101  * Report the version of the VFIO API.  This allows us to bump the entire
    102  * API version should we later need to add or change features in incompatible
    103  * ways.
    104  * Return: VFIO_API_VERSION
    105  * Availability: Always
    106  */
    107 #define VFIO_GET_API_VERSION		_IO(VFIO_TYPE, VFIO_BASE + 0)
    108 
    109 /**
    110  * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
    111  *
    112  * Check whether an extension is supported.
    113  * Return: 0 if not supported, 1 (or some other positive integer) if supported.
    114  * Availability: Always
    115  */
    116 #define VFIO_CHECK_EXTENSION		_IO(VFIO_TYPE, VFIO_BASE + 1)
    117 
    118 /**
    119  * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
    120  *
    121  * Set the iommu to the given type.  The type must be supported by an
    122  * iommu driver as verified by calling CHECK_EXTENSION using the same
    123  * type.  A group must be set to this file descriptor before this
    124  * ioctl is available.  The IOMMU interfaces enabled by this call are
    125  * specific to the value set.
    126  * Return: 0 on success, -errno on failure
    127  * Availability: When VFIO group attached
    128  */
    129 #define VFIO_SET_IOMMU			_IO(VFIO_TYPE, VFIO_BASE + 2)
    130 
    131 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
    132 
    133 /**
    134  * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
    135  *						struct vfio_group_status)
    136  *
    137  * Retrieve information about the group.  Fills in provided
    138  * struct vfio_group_info.  Caller sets argsz.
    139  * Return: 0 on succes, -errno on failure.
    140  * Availability: Always
    141  */
    142 struct vfio_group_status {
    143 	__u32	argsz;
    144 	__u32	flags;
    145 #define VFIO_GROUP_FLAGS_VIABLE		(1 << 0)
    146 #define VFIO_GROUP_FLAGS_CONTAINER_SET	(1 << 1)
    147 };
    148 #define VFIO_GROUP_GET_STATUS		_IO(VFIO_TYPE, VFIO_BASE + 3)
    149 
    150 /**
    151  * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
    152  *
    153  * Set the container for the VFIO group to the open VFIO file
    154  * descriptor provided.  Groups may only belong to a single
    155  * container.  Containers may, at their discretion, support multiple
    156  * groups.  Only when a container is set are all of the interfaces
    157  * of the VFIO file descriptor and the VFIO group file descriptor
    158  * available to the user.
    159  * Return: 0 on success, -errno on failure.
    160  * Availability: Always
    161  */
    162 #define VFIO_GROUP_SET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 4)
    163 
    164 /**
    165  * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
    166  *
    167  * Remove the group from the attached container.  This is the
    168  * opposite of the SET_CONTAINER call and returns the group to
    169  * an initial state.  All device file descriptors must be released
    170  * prior to calling this interface.  When removing the last group
    171  * from a container, the IOMMU will be disabled and all state lost,
    172  * effectively also returning the VFIO file descriptor to an initial
    173  * state.
    174  * Return: 0 on success, -errno on failure.
    175  * Availability: When attached to container
    176  */
    177 #define VFIO_GROUP_UNSET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 5)
    178 
    179 /**
    180  * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
    181  *
    182  * Return a new file descriptor for the device object described by
    183  * the provided string.  The string should match a device listed in
    184  * the devices subdirectory of the IOMMU group sysfs entry.  The
    185  * group containing the device must already be added to this context.
    186  * Return: new file descriptor on success, -errno on failure.
    187  * Availability: When attached to container
    188  */
    189 #define VFIO_GROUP_GET_DEVICE_FD	_IO(VFIO_TYPE, VFIO_BASE + 6)
    190 
    191 /* --------------- IOCTLs for DEVICE file descriptors --------------- */
    192 
    193 /**
    194  * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
    195  *						struct vfio_device_info)
    196  *
    197  * Retrieve information about the device.  Fills in provided
    198  * struct vfio_device_info.  Caller sets argsz.
    199  * Return: 0 on success, -errno on failure.
    200  */
    201 struct vfio_device_info {
    202 	__u32	argsz;
    203 	__u32	flags;
    204 #define VFIO_DEVICE_FLAGS_RESET	(1 << 0)	/* Device supports reset */
    205 #define VFIO_DEVICE_FLAGS_PCI	(1 << 1)	/* vfio-pci device */
    206 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2)	/* vfio-platform device */
    207 #define VFIO_DEVICE_FLAGS_AMBA  (1 << 3)	/* vfio-amba device */
    208 #define VFIO_DEVICE_FLAGS_CCW	(1 << 4)	/* vfio-ccw device */
    209 #define VFIO_DEVICE_FLAGS_AP	(1 << 5)	/* vfio-ap device */
    210 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6)	/* vfio-fsl-mc device */
    211 #define VFIO_DEVICE_FLAGS_CAPS	(1 << 7)	/* Info supports caps */
    212 	__u32	num_regions;	/* Max region index + 1 */
    213 	__u32	num_irqs;	/* Max IRQ index + 1 */
    214 	__u32   cap_offset;	/* Offset within info struct of first cap */
    215 };
    216 #define VFIO_DEVICE_GET_INFO		_IO(VFIO_TYPE, VFIO_BASE + 7)
    217 
    218 /*
    219  * Vendor driver using Mediated device framework should provide device_api
    220  * attribute in supported type attribute groups. Device API string should be one
    221  * of the following corresponding to device flags in vfio_device_info structure.
    222  */
    223 
    224 #define VFIO_DEVICE_API_PCI_STRING		"vfio-pci"
    225 #define VFIO_DEVICE_API_PLATFORM_STRING		"vfio-platform"
    226 #define VFIO_DEVICE_API_AMBA_STRING		"vfio-amba"
    227 #define VFIO_DEVICE_API_CCW_STRING		"vfio-ccw"
    228 #define VFIO_DEVICE_API_AP_STRING		"vfio-ap"
    229 
    230 /*
    231  * The following capabilities are unique to s390 zPCI devices.  Their contents
    232  * are further-defined in vfio_zdev.h
    233  */
    234 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE		1
    235 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP		2
    236 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL		3
    237 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP		4
    238 
    239 /**
    240  * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
    241  *				       struct vfio_region_info)
    242  *
    243  * Retrieve information about a device region.  Caller provides
    244  * struct vfio_region_info with index value set.  Caller sets argsz.
    245  * Implementation of region mapping is bus driver specific.  This is
    246  * intended to describe MMIO, I/O port, as well as bus specific
    247  * regions (ex. PCI config space).  Zero sized regions may be used
    248  * to describe unimplemented regions (ex. unimplemented PCI BARs).
    249  * Return: 0 on success, -errno on failure.
    250  */
    251 struct vfio_region_info {
    252 	__u32	argsz;
    253 	__u32	flags;
    254 #define VFIO_REGION_INFO_FLAG_READ	(1 << 0) /* Region supports read */
    255 #define VFIO_REGION_INFO_FLAG_WRITE	(1 << 1) /* Region supports write */
    256 #define VFIO_REGION_INFO_FLAG_MMAP	(1 << 2) /* Region supports mmap */
    257 #define VFIO_REGION_INFO_FLAG_CAPS	(1 << 3) /* Info supports caps */
    258 	__u32	index;		/* Region index */
    259 	__u32	cap_offset;	/* Offset within info struct of first cap */
    260 	__u64	size;		/* Region size (bytes) */
    261 	__u64	offset;		/* Region offset from start of device fd */
    262 };
    263 #define VFIO_DEVICE_GET_REGION_INFO	_IO(VFIO_TYPE, VFIO_BASE + 8)
    264 
    265 /*
    266  * The sparse mmap capability allows finer granularity of specifying areas
    267  * within a region with mmap support.  When specified, the user should only
    268  * mmap the offset ranges specified by the areas array.  mmaps outside of the
    269  * areas specified may fail (such as the range covering a PCI MSI-X table) or
    270  * may result in improper device behavior.
    271  *
    272  * The structures below define version 1 of this capability.
    273  */
    274 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP	1
    275 
    276 struct vfio_region_sparse_mmap_area {
    277 	__u64	offset;	/* Offset of mmap'able area within region */
    278 	__u64	size;	/* Size of mmap'able area */
    279 };
    280 
    281 struct vfio_region_info_cap_sparse_mmap {
    282 	struct vfio_info_cap_header header;
    283 	__u32	nr_areas;
    284 	__u32	reserved;
    285 	struct vfio_region_sparse_mmap_area areas[];
    286 };
    287 
    288 /*
    289  * The device specific type capability allows regions unique to a specific
    290  * device or class of devices to be exposed.  This helps solve the problem for
    291  * vfio bus drivers of defining which region indexes correspond to which region
    292  * on the device, without needing to resort to static indexes, as done by
    293  * vfio-pci.  For instance, if we were to go back in time, we might remove
    294  * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
    295  * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
    296  * make a "VGA" device specific type to describe the VGA access space.  This
    297  * means that non-VGA devices wouldn't need to waste this index, and thus the
    298  * address space associated with it due to implementation of device file
    299  * descriptor offsets in vfio-pci.
    300  *
    301  * The current implementation is now part of the user ABI, so we can't use this
    302  * for VGA, but there are other upcoming use cases, such as opregions for Intel
    303  * IGD devices and framebuffers for vGPU devices.  We missed VGA, but we'll
    304  * use this for future additions.
    305  *
    306  * The structure below defines version 1 of this capability.
    307  */
    308 #define VFIO_REGION_INFO_CAP_TYPE	2
    309 
    310 struct vfio_region_info_cap_type {
    311 	struct vfio_info_cap_header header;
    312 	__u32 type;	/* global per bus driver */
    313 	__u32 subtype;	/* type specific */
    314 };
    315 
    316 /*
    317  * List of region types, global per bus driver.
    318  * If you introduce a new type, please add it here.
    319  */
    320 
    321 /* PCI region type containing a PCI vendor part */
    322 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE	(1 << 31)
    323 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK	(0xffff)
    324 #define VFIO_REGION_TYPE_GFX                    (1)
    325 #define VFIO_REGION_TYPE_CCW			(2)
    326 #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED   (3)
    327 
    328 /* sub-types for VFIO_REGION_TYPE_PCI_* */
    329 
    330 /* 8086 vendor PCI sub-types */
    331 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION	(1)
    332 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG	(2)
    333 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG	(3)
    334 
    335 /* 10de vendor PCI sub-types */
    336 /*
    337  * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
    338  *
    339  * Deprecated, region no longer provided
    340  */
    341 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM	(1)
    342 
    343 /* 1014 vendor PCI sub-types */
    344 /*
    345  * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
    346  * to do TLB invalidation on a GPU.
    347  *
    348  * Deprecated, region no longer provided
    349  */
    350 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD	(1)
    351 
    352 /* sub-types for VFIO_REGION_TYPE_GFX */
    353 #define VFIO_REGION_SUBTYPE_GFX_EDID            (1)
    354 
    355 /**
    356  * struct vfio_region_gfx_edid - EDID region layout.
    357  *
    358  * Set display link state and EDID blob.
    359  *
    360  * The EDID blob has monitor information such as brand, name, serial
    361  * number, physical size, supported video modes and more.
    362  *
    363  * This special region allows userspace (typically qemu) set a virtual
    364  * EDID for the virtual monitor, which allows a flexible display
    365  * configuration.
    366  *
    367  * For the edid blob spec look here:
    368  *    https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
    369  *
    370  * On linux systems you can find the EDID blob in sysfs:
    371  *    /sys/class/drm/${card}/${connector}/edid
    372  *
    373  * You can use the edid-decode ulility (comes with xorg-x11-utils) to
    374  * decode the EDID blob.
    375  *
    376  * @edid_offset: location of the edid blob, relative to the
    377  *               start of the region (readonly).
    378  * @edid_max_size: max size of the edid blob (readonly).
    379  * @edid_size: actual edid size (read/write).
    380  * @link_state: display link state (read/write).
    381  * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
    382  * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
    383  * @max_xres: max display width (0 == no limitation, readonly).
    384  * @max_yres: max display height (0 == no limitation, readonly).
    385  *
    386  * EDID update protocol:
    387  *   (1) set link-state to down.
    388  *   (2) update edid blob and size.
    389  *   (3) set link-state to up.
    390  */
    391 struct vfio_region_gfx_edid {
    392 	__u32 edid_offset;
    393 	__u32 edid_max_size;
    394 	__u32 edid_size;
    395 	__u32 max_xres;
    396 	__u32 max_yres;
    397 	__u32 link_state;
    398 #define VFIO_DEVICE_GFX_LINK_STATE_UP    1
    399 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN  2
    400 };
    401 
    402 /* sub-types for VFIO_REGION_TYPE_CCW */
    403 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD	(1)
    404 #define VFIO_REGION_SUBTYPE_CCW_SCHIB		(2)
    405 #define VFIO_REGION_SUBTYPE_CCW_CRW		(3)
    406 
    407 /* sub-types for VFIO_REGION_TYPE_MIGRATION */
    408 #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1)
    409 
    410 struct vfio_device_migration_info {
    411 	__u32 device_state;         /* VFIO device state */
    412 #define VFIO_DEVICE_STATE_V1_STOP      (0)
    413 #define VFIO_DEVICE_STATE_V1_RUNNING   (1 << 0)
    414 #define VFIO_DEVICE_STATE_V1_SAVING    (1 << 1)
    415 #define VFIO_DEVICE_STATE_V1_RESUMING  (1 << 2)
    416 #define VFIO_DEVICE_STATE_MASK      (VFIO_DEVICE_STATE_V1_RUNNING | \
    417 				     VFIO_DEVICE_STATE_V1_SAVING |  \
    418 				     VFIO_DEVICE_STATE_V1_RESUMING)
    419 
    420 #define VFIO_DEVICE_STATE_VALID(state) \
    421 	(state & VFIO_DEVICE_STATE_V1_RESUMING ? \
    422 	(state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1)
    423 
    424 #define VFIO_DEVICE_STATE_IS_ERROR(state) \
    425 	((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \
    426 					      VFIO_DEVICE_STATE_V1_RESUMING))
    427 
    428 #define VFIO_DEVICE_STATE_SET_ERROR(state) \
    429 	((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \
    430 					     VFIO_DEVICE_STATE_V1_RESUMING)
    431 
    432 	__u32 reserved;
    433 	__u64 pending_bytes;
    434 	__u64 data_offset;
    435 	__u64 data_size;
    436 };
    437 
    438 /*
    439  * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
    440  * which allows direct access to non-MSIX registers which happened to be within
    441  * the same system page.
    442  *
    443  * Even though the userspace gets direct access to the MSIX data, the existing
    444  * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
    445  */
    446 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE	3
    447 
    448 /*
    449  * Capability with compressed real address (aka SSA - small system address)
    450  * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
    451  * and by the userspace to associate a NVLink bridge with a GPU.
    452  *
    453  * Deprecated, capability no longer provided
    454  */
    455 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT	4
    456 
    457 struct vfio_region_info_cap_nvlink2_ssatgt {
    458 	struct vfio_info_cap_header header;
    459 	__u64 tgt;
    460 };
    461 
    462 /*
    463  * Capability with an NVLink link speed. The value is read by
    464  * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
    465  * property in the device tree. The value is fixed in the hardware
    466  * and failing to provide the correct value results in the link
    467  * not working with no indication from the driver why.
    468  *
    469  * Deprecated, capability no longer provided
    470  */
    471 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD	5
    472 
    473 struct vfio_region_info_cap_nvlink2_lnkspd {
    474 	struct vfio_info_cap_header header;
    475 	__u32 link_speed;
    476 	__u32 __pad;
    477 };
    478 
    479 /**
    480  * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
    481  *				    struct vfio_irq_info)
    482  *
    483  * Retrieve information about a device IRQ.  Caller provides
    484  * struct vfio_irq_info with index value set.  Caller sets argsz.
    485  * Implementation of IRQ mapping is bus driver specific.  Indexes
    486  * using multiple IRQs are primarily intended to support MSI-like
    487  * interrupt blocks.  Zero count irq blocks may be used to describe
    488  * unimplemented interrupt types.
    489  *
    490  * The EVENTFD flag indicates the interrupt index supports eventfd based
    491  * signaling.
    492  *
    493  * The MASKABLE flags indicates the index supports MASK and UNMASK
    494  * actions described below.
    495  *
    496  * AUTOMASKED indicates that after signaling, the interrupt line is
    497  * automatically masked by VFIO and the user needs to unmask the line
    498  * to receive new interrupts.  This is primarily intended to distinguish
    499  * level triggered interrupts.
    500  *
    501  * The NORESIZE flag indicates that the interrupt lines within the index
    502  * are setup as a set and new subindexes cannot be enabled without first
    503  * disabling the entire index.  This is used for interrupts like PCI MSI
    504  * and MSI-X where the driver may only use a subset of the available
    505  * indexes, but VFIO needs to enable a specific number of vectors
    506  * upfront.  In the case of MSI-X, where the user can enable MSI-X and
    507  * then add and unmask vectors, it's up to userspace to make the decision
    508  * whether to allocate the maximum supported number of vectors or tear
    509  * down setup and incrementally increase the vectors as each is enabled.
    510  */
    511 struct vfio_irq_info {
    512 	__u32	argsz;
    513 	__u32	flags;
    514 #define VFIO_IRQ_INFO_EVENTFD		(1 << 0)
    515 #define VFIO_IRQ_INFO_MASKABLE		(1 << 1)
    516 #define VFIO_IRQ_INFO_AUTOMASKED	(1 << 2)
    517 #define VFIO_IRQ_INFO_NORESIZE		(1 << 3)
    518 	__u32	index;		/* IRQ index */
    519 	__u32	count;		/* Number of IRQs within this index */
    520 };
    521 #define VFIO_DEVICE_GET_IRQ_INFO	_IO(VFIO_TYPE, VFIO_BASE + 9)
    522 
    523 /**
    524  * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
    525  *
    526  * Set signaling, masking, and unmasking of interrupts.  Caller provides
    527  * struct vfio_irq_set with all fields set.  'start' and 'count' indicate
    528  * the range of subindexes being specified.
    529  *
    530  * The DATA flags specify the type of data provided.  If DATA_NONE, the
    531  * operation performs the specified action immediately on the specified
    532  * interrupt(s).  For example, to unmask AUTOMASKED interrupt [0,0]:
    533  * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
    534  *
    535  * DATA_BOOL allows sparse support for the same on arrays of interrupts.
    536  * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
    537  * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
    538  * data = {1,0,1}
    539  *
    540  * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
    541  * A value of -1 can be used to either de-assign interrupts if already
    542  * assigned or skip un-assigned interrupts.  For example, to set an eventfd
    543  * to be trigger for interrupts [0,0] and [0,2]:
    544  * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
    545  * data = {fd1, -1, fd2}
    546  * If index [0,1] is previously set, two count = 1 ioctls calls would be
    547  * required to set [0,0] and [0,2] without changing [0,1].
    548  *
    549  * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
    550  * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
    551  * from userspace (ie. simulate hardware triggering).
    552  *
    553  * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
    554  * enables the interrupt index for the device.  Individual subindex interrupts
    555  * can be disabled using the -1 value for DATA_EVENTFD or the index can be
    556  * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
    557  *
    558  * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
    559  * ACTION_TRIGGER specifies kernel->user signaling.
    560  */
    561 struct vfio_irq_set {
    562 	__u32	argsz;
    563 	__u32	flags;
    564 #define VFIO_IRQ_SET_DATA_NONE		(1 << 0) /* Data not present */
    565 #define VFIO_IRQ_SET_DATA_BOOL		(1 << 1) /* Data is bool (u8) */
    566 #define VFIO_IRQ_SET_DATA_EVENTFD	(1 << 2) /* Data is eventfd (s32) */
    567 #define VFIO_IRQ_SET_ACTION_MASK	(1 << 3) /* Mask interrupt */
    568 #define VFIO_IRQ_SET_ACTION_UNMASK	(1 << 4) /* Unmask interrupt */
    569 #define VFIO_IRQ_SET_ACTION_TRIGGER	(1 << 5) /* Trigger interrupt */
    570 	__u32	index;
    571 	__u32	start;
    572 	__u32	count;
    573 	__u8	data[];
    574 };
    575 #define VFIO_DEVICE_SET_IRQS		_IO(VFIO_TYPE, VFIO_BASE + 10)
    576 
    577 #define VFIO_IRQ_SET_DATA_TYPE_MASK	(VFIO_IRQ_SET_DATA_NONE | \
    578 					 VFIO_IRQ_SET_DATA_BOOL | \
    579 					 VFIO_IRQ_SET_DATA_EVENTFD)
    580 #define VFIO_IRQ_SET_ACTION_TYPE_MASK	(VFIO_IRQ_SET_ACTION_MASK | \
    581 					 VFIO_IRQ_SET_ACTION_UNMASK | \
    582 					 VFIO_IRQ_SET_ACTION_TRIGGER)
    583 /**
    584  * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
    585  *
    586  * Reset a device.
    587  */
    588 #define VFIO_DEVICE_RESET		_IO(VFIO_TYPE, VFIO_BASE + 11)
    589 
    590 /*
    591  * The VFIO-PCI bus driver makes use of the following fixed region and
    592  * IRQ index mapping.  Unimplemented regions return a size of zero.
    593  * Unimplemented IRQ types return a count of zero.
    594  */
    595 
    596 enum {
    597 	VFIO_PCI_BAR0_REGION_INDEX,
    598 	VFIO_PCI_BAR1_REGION_INDEX,
    599 	VFIO_PCI_BAR2_REGION_INDEX,
    600 	VFIO_PCI_BAR3_REGION_INDEX,
    601 	VFIO_PCI_BAR4_REGION_INDEX,
    602 	VFIO_PCI_BAR5_REGION_INDEX,
    603 	VFIO_PCI_ROM_REGION_INDEX,
    604 	VFIO_PCI_CONFIG_REGION_INDEX,
    605 	/*
    606 	 * Expose VGA regions defined for PCI base class 03, subclass 00.
    607 	 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
    608 	 * as well as the MMIO range 0xa0000 to 0xbffff.  Each implemented
    609 	 * range is found at it's identity mapped offset from the region
    610 	 * offset, for example 0x3b0 is region_info.offset + 0x3b0.  Areas
    611 	 * between described ranges are unimplemented.
    612 	 */
    613 	VFIO_PCI_VGA_REGION_INDEX,
    614 	VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
    615 				 /* device specific cap to define content. */
    616 };
    617 
    618 enum {
    619 	VFIO_PCI_INTX_IRQ_INDEX,
    620 	VFIO_PCI_MSI_IRQ_INDEX,
    621 	VFIO_PCI_MSIX_IRQ_INDEX,
    622 	VFIO_PCI_ERR_IRQ_INDEX,
    623 	VFIO_PCI_REQ_IRQ_INDEX,
    624 	VFIO_PCI_NUM_IRQS
    625 };
    626 
    627 /*
    628  * The vfio-ccw bus driver makes use of the following fixed region and
    629  * IRQ index mapping. Unimplemented regions return a size of zero.
    630  * Unimplemented IRQ types return a count of zero.
    631  */
    632 
    633 enum {
    634 	VFIO_CCW_CONFIG_REGION_INDEX,
    635 	VFIO_CCW_NUM_REGIONS
    636 };
    637 
    638 enum {
    639 	VFIO_CCW_IO_IRQ_INDEX,
    640 	VFIO_CCW_CRW_IRQ_INDEX,
    641 	VFIO_CCW_REQ_IRQ_INDEX,
    642 	VFIO_CCW_NUM_IRQS
    643 };
    644 
    645 /**
    646  * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12,
    647  *					      struct vfio_pci_hot_reset_info)
    648  *
    649  * Return: 0 on success, -errno on failure:
    650  *	-enospc = insufficient buffer, -enodev = unsupported for device.
    651  */
    652 struct vfio_pci_dependent_device {
    653 	__u32	group_id;
    654 	__u16	segment;
    655 	__u8	bus;
    656 	__u8	devfn; /* Use PCI_SLOT/PCI_FUNC */
    657 };
    658 
    659 struct vfio_pci_hot_reset_info {
    660 	__u32	argsz;
    661 	__u32	flags;
    662 	__u32	count;
    663 	struct vfio_pci_dependent_device	devices[];
    664 };
    665 
    666 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
    667 
    668 /**
    669  * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
    670  *				    struct vfio_pci_hot_reset)
    671  *
    672  * Return: 0 on success, -errno on failure.
    673  */
    674 struct vfio_pci_hot_reset {
    675 	__u32	argsz;
    676 	__u32	flags;
    677 	__u32	count;
    678 	__s32	group_fds[];
    679 };
    680 
    681 #define VFIO_DEVICE_PCI_HOT_RESET	_IO(VFIO_TYPE, VFIO_BASE + 13)
    682 
    683 /**
    684  * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
    685  *                                    struct vfio_device_query_gfx_plane)
    686  *
    687  * Set the drm_plane_type and flags, then retrieve the gfx plane info.
    688  *
    689  * flags supported:
    690  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
    691  *   to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
    692  *   support for dma-buf.
    693  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
    694  *   to ask if the mdev supports region. 0 on support, -EINVAL on no
    695  *   support for region.
    696  * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
    697  *   with each call to query the plane info.
    698  * - Others are invalid and return -EINVAL.
    699  *
    700  * Note:
    701  * 1. Plane could be disabled by guest. In that case, success will be
    702  *    returned with zero-initialized drm_format, size, width and height
    703  *    fields.
    704  * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
    705  *
    706  * Return: 0 on success, -errno on other failure.
    707  */
    708 struct vfio_device_gfx_plane_info {
    709 	__u32 argsz;
    710 	__u32 flags;
    711 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
    712 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
    713 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
    714 	/* in */
    715 	__u32 drm_plane_type;	/* type of plane: DRM_PLANE_TYPE_* */
    716 	/* out */
    717 	__u32 drm_format;	/* drm format of plane */
    718 	__u64 drm_format_mod;   /* tiled mode */
    719 	__u32 width;	/* width of plane */
    720 	__u32 height;	/* height of plane */
    721 	__u32 stride;	/* stride of plane */
    722 	__u32 size;	/* size of plane in bytes, align on page*/
    723 	__u32 x_pos;	/* horizontal position of cursor plane */
    724 	__u32 y_pos;	/* vertical position of cursor plane*/
    725 	__u32 x_hot;    /* horizontal position of cursor hotspot */
    726 	__u32 y_hot;    /* vertical position of cursor hotspot */
    727 	union {
    728 		__u32 region_index;	/* region index */
    729 		__u32 dmabuf_id;	/* dma-buf id */
    730 	};
    731 };
    732 
    733 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
    734 
    735 /**
    736  * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
    737  *
    738  * Return a new dma-buf file descriptor for an exposed guest framebuffer
    739  * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
    740  * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
    741  */
    742 
    743 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
    744 
    745 /**
    746  * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
    747  *                              struct vfio_device_ioeventfd)
    748  *
    749  * Perform a write to the device at the specified device fd offset, with
    750  * the specified data and width when the provided eventfd is triggered.
    751  * vfio bus drivers may not support this for all regions, for all widths,
    752  * or at all.  vfio-pci currently only enables support for BAR regions,
    753  * excluding the MSI-X vector table.
    754  *
    755  * Return: 0 on success, -errno on failure.
    756  */
    757 struct vfio_device_ioeventfd {
    758 	__u32	argsz;
    759 	__u32	flags;
    760 #define VFIO_DEVICE_IOEVENTFD_8		(1 << 0) /* 1-byte write */
    761 #define VFIO_DEVICE_IOEVENTFD_16	(1 << 1) /* 2-byte write */
    762 #define VFIO_DEVICE_IOEVENTFD_32	(1 << 2) /* 4-byte write */
    763 #define VFIO_DEVICE_IOEVENTFD_64	(1 << 3) /* 8-byte write */
    764 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK	(0xf)
    765 	__u64	offset;			/* device fd offset of write */
    766 	__u64	data;			/* data to be written */
    767 	__s32	fd;			/* -1 for de-assignment */
    768 };
    769 
    770 #define VFIO_DEVICE_IOEVENTFD		_IO(VFIO_TYPE, VFIO_BASE + 16)
    771 
    772 /**
    773  * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
    774  *			       struct vfio_device_feature)
    775  *
    776  * Get, set, or probe feature data of the device.  The feature is selected
    777  * using the FEATURE_MASK portion of the flags field.  Support for a feature
    778  * can be probed by setting both the FEATURE_MASK and PROBE bits.  A probe
    779  * may optionally include the GET and/or SET bits to determine read vs write
    780  * access of the feature respectively.  Probing a feature will return success
    781  * if the feature is supported and all of the optionally indicated GET/SET
    782  * methods are supported.  The format of the data portion of the structure is
    783  * specific to the given feature.  The data portion is not required for
    784  * probing.  GET and SET are mutually exclusive, except for use with PROBE.
    785  *
    786  * Return 0 on success, -errno on failure.
    787  */
    788 struct vfio_device_feature {
    789 	__u32	argsz;
    790 	__u32	flags;
    791 #define VFIO_DEVICE_FEATURE_MASK	(0xffff) /* 16-bit feature index */
    792 #define VFIO_DEVICE_FEATURE_GET		(1 << 16) /* Get feature into data[] */
    793 #define VFIO_DEVICE_FEATURE_SET		(1 << 17) /* Set feature from data[] */
    794 #define VFIO_DEVICE_FEATURE_PROBE	(1 << 18) /* Probe feature support */
    795 	__u8	data[];
    796 };
    797 
    798 #define VFIO_DEVICE_FEATURE		_IO(VFIO_TYPE, VFIO_BASE + 17)
    799 
    800 /*
    801  * Provide support for setting a PCI VF Token, which is used as a shared
    802  * secret between PF and VF drivers.  This feature may only be set on a
    803  * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
    804  * open VFs.  Data provided when setting this feature is a 16-byte array
    805  * (__u8 b[16]), representing a UUID.
    806  */
    807 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN	(0)
    808 
    809 /*
    810  * Indicates the device can support the migration API through
    811  * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and
    812  * ERROR states are always supported. Support for additional states is
    813  * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be
    814  * set.
    815  *
    816  * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and
    817  * RESUMING are supported.
    818  *
    819  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P
    820  * is supported in addition to the STOP_COPY states.
    821  *
    822  * Other combinations of flags have behavior to be defined in the future.
    823  */
    824 struct vfio_device_feature_migration {
    825 	__aligned_u64 flags;
    826 #define VFIO_MIGRATION_STOP_COPY	(1 << 0)
    827 #define VFIO_MIGRATION_P2P		(1 << 1)
    828 };
    829 #define VFIO_DEVICE_FEATURE_MIGRATION 1
    830 
    831 /*
    832  * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO
    833  * device. The new state is supplied in device_state, see enum
    834  * vfio_device_mig_state for details
    835  *
    836  * The kernel migration driver must fully transition the device to the new state
    837  * value before the operation returns to the user.
    838  *
    839  * The kernel migration driver must not generate asynchronous device state
    840  * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET
    841  * ioctl as described above.
    842  *
    843  * If this function fails then current device_state may be the original
    844  * operating state or some other state along the combination transition path.
    845  * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt
    846  * to return to the original state, or attempt to return to some other state
    847  * such as RUNNING or STOP.
    848  *
    849  * If the new_state starts a new data transfer session then the FD associated
    850  * with that session is returned in data_fd. The user is responsible to close
    851  * this FD when it is finished. The user must consider the migration data stream
    852  * carried over the FD to be opaque and must preserve the byte order of the
    853  * stream. The user is not required to preserve buffer segmentation when writing
    854  * the data stream during the RESUMING operation.
    855  *
    856  * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO
    857  * device, data_fd will be -1.
    858  */
    859 struct vfio_device_feature_mig_state {
    860 	__u32 device_state; /* From enum vfio_device_mig_state */
    861 	__s32 data_fd;
    862 };
    863 #define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2
    864 
    865 /*
    866  * The device migration Finite State Machine is described by the enum
    867  * vfio_device_mig_state. Some of the FSM arcs will create a migration data
    868  * transfer session by returning a FD, in this case the migration data will
    869  * flow over the FD using read() and write() as discussed below.
    870  *
    871  * There are 5 states to support VFIO_MIGRATION_STOP_COPY:
    872  *  RUNNING - The device is running normally
    873  *  STOP - The device does not change the internal or external state
    874  *  STOP_COPY - The device internal state can be read out
    875  *  RESUMING - The device is stopped and is loading a new internal state
    876  *  ERROR - The device has failed and must be reset
    877  *
    878  * And 1 optional state to support VFIO_MIGRATION_P2P:
    879  *  RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA
    880  *
    881  * The FSM takes actions on the arcs between FSM states. The driver implements
    882  * the following behavior for the FSM arcs:
    883  *
    884  * RUNNING_P2P -> STOP
    885  * STOP_COPY -> STOP
    886  *   While in STOP the device must stop the operation of the device. The device
    887  *   must not generate interrupts, DMA, or any other change to external state.
    888  *   It must not change its internal state. When stopped the device and kernel
    889  *   migration driver must accept and respond to interaction to support external
    890  *   subsystems in the STOP state, for example PCI MSI-X and PCI config space.
    891  *   Failure by the user to restrict device access while in STOP must not result
    892  *   in error conditions outside the user context (ex. host system faults).
    893  *
    894  *   The STOP_COPY arc will terminate a data transfer session.
    895  *
    896  * RESUMING -> STOP
    897  *   Leaving RESUMING terminates a data transfer session and indicates the
    898  *   device should complete processing of the data delivered by write(). The
    899  *   kernel migration driver should complete the incorporation of data written
    900  *   to the data transfer FD into the device internal state and perform
    901  *   final validity and consistency checking of the new device state. If the
    902  *   user provided data is found to be incomplete, inconsistent, or otherwise
    903  *   invalid, the migration driver must fail the SET_STATE ioctl and
    904  *   optionally go to the ERROR state as described below.
    905  *
    906  *   While in STOP the device has the same behavior as other STOP states
    907  *   described above.
    908  *
    909  *   To abort a RESUMING session the device must be reset.
    910  *
    911  * RUNNING_P2P -> RUNNING
    912  *   While in RUNNING the device is fully operational, the device may generate
    913  *   interrupts, DMA, respond to MMIO, all vfio device regions are functional,
    914  *   and the device may advance its internal state.
    915  *
    916  * RUNNING -> RUNNING_P2P
    917  * STOP -> RUNNING_P2P
    918  *   While in RUNNING_P2P the device is partially running in the P2P quiescent
    919  *   state defined below.
    920  *
    921  * STOP -> STOP_COPY
    922  *   This arc begin the process of saving the device state and will return a
    923  *   new data_fd.
    924  *
    925  *   While in the STOP_COPY state the device has the same behavior as STOP
    926  *   with the addition that the data transfers session continues to stream the
    927  *   migration state. End of stream on the FD indicates the entire device
    928  *   state has been transferred.
    929  *
    930  *   The user should take steps to restrict access to vfio device regions while
    931  *   the device is in STOP_COPY or risk corruption of the device migration data
    932  *   stream.
    933  *
    934  * STOP -> RESUMING
    935  *   Entering the RESUMING state starts a process of restoring the device state
    936  *   and will return a new data_fd. The data stream fed into the data_fd should
    937  *   be taken from the data transfer output of a single FD during saving from
    938  *   a compatible device. The migration driver may alter/reset the internal
    939  *   device state for this arc if required to prepare the device to receive the
    940  *   migration data.
    941  *
    942  * any -> ERROR
    943  *   ERROR cannot be specified as a device state, however any transition request
    944  *   can be failed with an errno return and may then move the device_state into
    945  *   ERROR. In this case the device was unable to execute the requested arc and
    946  *   was also unable to restore the device to any valid device_state.
    947  *   To recover from ERROR VFIO_DEVICE_RESET must be used to return the
    948  *   device_state back to RUNNING.
    949  *
    950  * The optional peer to peer (P2P) quiescent state is intended to be a quiescent
    951  * state for the device for the purposes of managing multiple devices within a
    952  * user context where peer-to-peer DMA between devices may be active. The
    953  * RUNNING_P2P states must prevent the device from initiating
    954  * any new P2P DMA transactions. If the device can identify P2P transactions
    955  * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration
    956  * driver must complete any such outstanding operations prior to completing the
    957  * FSM arc into a P2P state. For the purpose of specification the states
    958  * behave as though the device was fully running if not supported. Like while in
    959  * STOP or STOP_COPY the user must not touch the device, otherwise the state
    960  * can be exited.
    961  *
    962  * The remaining possible transitions are interpreted as combinations of the
    963  * above FSM arcs. As there are multiple paths through the FSM arcs the path
    964  * should be selected based on the following rules:
    965  *   - Select the shortest path.
    966  * Refer to vfio_mig_get_next_state() for the result of the algorithm.
    967  *
    968  * The automatic transit through the FSM arcs that make up the combination
    969  * transition is invisible to the user. When working with combination arcs the
    970  * user may see any step along the path in the device_state if SET_STATE
    971  * fails. When handling these types of errors users should anticipate future
    972  * revisions of this protocol using new states and those states becoming
    973  * visible in this case.
    974  *
    975  * The optional states cannot be used with SET_STATE if the device does not
    976  * support them. The user can discover if these states are supported by using
    977  * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can
    978  * avoid knowing about these optional states if the kernel driver supports them.
    979  */
    980 enum vfio_device_mig_state {
    981 	VFIO_DEVICE_STATE_ERROR = 0,
    982 	VFIO_DEVICE_STATE_STOP = 1,
    983 	VFIO_DEVICE_STATE_RUNNING = 2,
    984 	VFIO_DEVICE_STATE_STOP_COPY = 3,
    985 	VFIO_DEVICE_STATE_RESUMING = 4,
    986 	VFIO_DEVICE_STATE_RUNNING_P2P = 5,
    987 };
    988 
    989 /* -------- API for Type1 VFIO IOMMU -------- */
    990 
    991 /**
    992  * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
    993  *
    994  * Retrieve information about the IOMMU object. Fills in provided
    995  * struct vfio_iommu_info. Caller sets argsz.
    996  *
    997  * XXX Should we do these by CHECK_EXTENSION too?
    998  */
    999 struct vfio_iommu_type1_info {
   1000 	__u32	argsz;
   1001 	__u32	flags;
   1002 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0)	/* supported page sizes info */
   1003 #define VFIO_IOMMU_INFO_CAPS	(1 << 1)	/* Info supports caps */
   1004 	__u64	iova_pgsizes;	/* Bitmap of supported page sizes */
   1005 	__u32   cap_offset;	/* Offset within info struct of first cap */
   1006 };
   1007 
   1008 /*
   1009  * The IOVA capability allows to report the valid IOVA range(s)
   1010  * excluding any non-relaxable reserved regions exposed by
   1011  * devices attached to the container. Any DMA map attempt
   1012  * outside the valid iova range will return error.
   1013  *
   1014  * The structures below define version 1 of this capability.
   1015  */
   1016 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE  1
   1017 
   1018 struct vfio_iova_range {
   1019 	__u64	start;
   1020 	__u64	end;
   1021 };
   1022 
   1023 struct vfio_iommu_type1_info_cap_iova_range {
   1024 	struct	vfio_info_cap_header header;
   1025 	__u32	nr_iovas;
   1026 	__u32	reserved;
   1027 	struct	vfio_iova_range iova_ranges[];
   1028 };
   1029 
   1030 /*
   1031  * The migration capability allows to report supported features for migration.
   1032  *
   1033  * The structures below define version 1 of this capability.
   1034  *
   1035  * The existence of this capability indicates that IOMMU kernel driver supports
   1036  * dirty page logging.
   1037  *
   1038  * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
   1039  * page logging.
   1040  * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
   1041  * size in bytes that can be used by user applications when getting the dirty
   1042  * bitmap.
   1043  */
   1044 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION  2
   1045 
   1046 struct vfio_iommu_type1_info_cap_migration {
   1047 	struct	vfio_info_cap_header header;
   1048 	__u32	flags;
   1049 	__u64	pgsize_bitmap;
   1050 	__u64	max_dirty_bitmap_size;		/* in bytes */
   1051 };
   1052 
   1053 /*
   1054  * The DMA available capability allows to report the current number of
   1055  * simultaneously outstanding DMA mappings that are allowed.
   1056  *
   1057  * The structure below defines version 1 of this capability.
   1058  *
   1059  * avail: specifies the current number of outstanding DMA mappings allowed.
   1060  */
   1061 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
   1062 
   1063 struct vfio_iommu_type1_info_dma_avail {
   1064 	struct	vfio_info_cap_header header;
   1065 	__u32	avail;
   1066 };
   1067 
   1068 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
   1069 
   1070 /**
   1071  * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
   1072  *
   1073  * Map process virtual addresses to IO virtual addresses using the
   1074  * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
   1075  *
   1076  * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova, and
   1077  * unblock translation of host virtual addresses in the iova range.  The vaddr
   1078  * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR.  To
   1079  * maintain memory consistency within the user application, the updated vaddr
   1080  * must address the same memory object as originally mapped.  Failure to do so
   1081  * will result in user memory corruption and/or device misbehavior.  iova and
   1082  * size must match those in the original MAP_DMA call.  Protection is not
   1083  * changed, and the READ & WRITE flags must be 0.
   1084  */
   1085 struct vfio_iommu_type1_dma_map {
   1086 	__u32	argsz;
   1087 	__u32	flags;
   1088 #define VFIO_DMA_MAP_FLAG_READ (1 << 0)		/* readable from device */
   1089 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1)	/* writable from device */
   1090 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2)
   1091 	__u64	vaddr;				/* Process virtual address */
   1092 	__u64	iova;				/* IO virtual address */
   1093 	__u64	size;				/* Size of mapping (bytes) */
   1094 };
   1095 
   1096 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
   1097 
   1098 struct vfio_bitmap {
   1099 	__u64        pgsize;	/* page size for bitmap in bytes */
   1100 	__u64        size;	/* in bytes */
   1101 	__u64 *data;	/* one bit per page */
   1102 };
   1103 
   1104 /**
   1105  * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
   1106  *							struct vfio_dma_unmap)
   1107  *
   1108  * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
   1109  * Caller sets argsz.  The actual unmapped size is returned in the size
   1110  * field.  No guarantee is made to the user that arbitrary unmaps of iova
   1111  * or size different from those used in the original mapping call will
   1112  * succeed.
   1113  *
   1114  * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
   1115  * before unmapping IO virtual addresses. When this flag is set, the user must
   1116  * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
   1117  * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
   1118  * A bit in the bitmap represents one page, of user provided page size in
   1119  * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
   1120  * indicates that the page at that offset from iova is dirty. A Bitmap of the
   1121  * pages in the range of unmapped size is returned in the user-provided
   1122  * vfio_bitmap.data.
   1123  *
   1124  * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses.  iova and size
   1125  * must be 0.  This cannot be combined with the get-dirty-bitmap flag.
   1126  *
   1127  * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host
   1128  * virtual addresses in the iova range.  Tasks that attempt to translate an
   1129  * iova's vaddr will block.  DMA to already-mapped pages continues.  This
   1130  * cannot be combined with the get-dirty-bitmap flag.
   1131  */
   1132 struct vfio_iommu_type1_dma_unmap {
   1133 	__u32	argsz;
   1134 	__u32	flags;
   1135 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
   1136 #define VFIO_DMA_UNMAP_FLAG_ALL		     (1 << 1)
   1137 #define VFIO_DMA_UNMAP_FLAG_VADDR	     (1 << 2)
   1138 	__u64	iova;				/* IO virtual address */
   1139 	__u64	size;				/* Size of mapping (bytes) */
   1140 	__u8    data[];
   1141 };
   1142 
   1143 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
   1144 
   1145 /*
   1146  * IOCTLs to enable/disable IOMMU container usage.
   1147  * No parameters are supported.
   1148  */
   1149 #define VFIO_IOMMU_ENABLE	_IO(VFIO_TYPE, VFIO_BASE + 15)
   1150 #define VFIO_IOMMU_DISABLE	_IO(VFIO_TYPE, VFIO_BASE + 16)
   1151 
   1152 /**
   1153  * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
   1154  *                                     struct vfio_iommu_type1_dirty_bitmap)
   1155  * IOCTL is used for dirty pages logging.
   1156  * Caller should set flag depending on which operation to perform, details as
   1157  * below:
   1158  *
   1159  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
   1160  * the IOMMU driver to log pages that are dirtied or potentially dirtied by
   1161  * the device; designed to be used when a migration is in progress. Dirty pages
   1162  * are logged until logging is disabled by user application by calling the IOCTL
   1163  * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
   1164  *
   1165  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
   1166  * the IOMMU driver to stop logging dirtied pages.
   1167  *
   1168  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
   1169  * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
   1170  * The user must specify the IOVA range and the pgsize through the structure
   1171  * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
   1172  * supports getting a bitmap of the smallest supported pgsize only and can be
   1173  * modified in future to get a bitmap of any specified supported pgsize. The
   1174  * user must provide a zeroed memory area for the bitmap memory and specify its
   1175  * size in bitmap.size. One bit is used to represent one page consecutively
   1176  * starting from iova offset. The user should provide page size in bitmap.pgsize
   1177  * field. A bit set in the bitmap indicates that the page at that offset from
   1178  * iova is dirty. The caller must set argsz to a value including the size of
   1179  * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
   1180  * actual bitmap. If dirty pages logging is not enabled, an error will be
   1181  * returned.
   1182  *
   1183  * Only one of the flags _START, _STOP and _GET may be specified at a time.
   1184  *
   1185  */
   1186 struct vfio_iommu_type1_dirty_bitmap {
   1187 	__u32        argsz;
   1188 	__u32        flags;
   1189 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START	(1 << 0)
   1190 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP	(1 << 1)
   1191 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP	(1 << 2)
   1192 	__u8         data[];
   1193 };
   1194 
   1195 struct vfio_iommu_type1_dirty_bitmap_get {
   1196 	__u64              iova;	/* IO virtual address */
   1197 	__u64              size;	/* Size of iova range */
   1198 	struct vfio_bitmap bitmap;
   1199 };
   1200 
   1201 #define VFIO_IOMMU_DIRTY_PAGES             _IO(VFIO_TYPE, VFIO_BASE + 17)
   1202 
   1203 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
   1204 
   1205 /*
   1206  * The SPAPR TCE DDW info struct provides the information about
   1207  * the details of Dynamic DMA window capability.
   1208  *
   1209  * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
   1210  * @max_dynamic_windows_supported tells the maximum number of windows
   1211  * which the platform can create.
   1212  * @levels tells the maximum number of levels in multi-level IOMMU tables;
   1213  * this allows splitting a table into smaller chunks which reduces
   1214  * the amount of physically contiguous memory required for the table.
   1215  */
   1216 struct vfio_iommu_spapr_tce_ddw_info {
   1217 	__u64 pgsizes;			/* Bitmap of supported page sizes */
   1218 	__u32 max_dynamic_windows_supported;
   1219 	__u32 levels;
   1220 };
   1221 
   1222 /*
   1223  * The SPAPR TCE info struct provides the information about the PCI bus
   1224  * address ranges available for DMA, these values are programmed into
   1225  * the hardware so the guest has to know that information.
   1226  *
   1227  * The DMA 32 bit window start is an absolute PCI bus address.
   1228  * The IOVA address passed via map/unmap ioctls are absolute PCI bus
   1229  * addresses too so the window works as a filter rather than an offset
   1230  * for IOVA addresses.
   1231  *
   1232  * Flags supported:
   1233  * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
   1234  *   (DDW) support is present. @ddw is only supported when DDW is present.
   1235  */
   1236 struct vfio_iommu_spapr_tce_info {
   1237 	__u32 argsz;
   1238 	__u32 flags;
   1239 #define VFIO_IOMMU_SPAPR_INFO_DDW	(1 << 0)	/* DDW supported */
   1240 	__u32 dma32_window_start;	/* 32 bit window start (bytes) */
   1241 	__u32 dma32_window_size;	/* 32 bit window size (bytes) */
   1242 	struct vfio_iommu_spapr_tce_ddw_info ddw;
   1243 };
   1244 
   1245 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
   1246 
   1247 /*
   1248  * EEH PE operation struct provides ways to:
   1249  * - enable/disable EEH functionality;
   1250  * - unfreeze IO/DMA for frozen PE;
   1251  * - read PE state;
   1252  * - reset PE;
   1253  * - configure PE;
   1254  * - inject EEH error.
   1255  */
   1256 struct vfio_eeh_pe_err {
   1257 	__u32 type;
   1258 	__u32 func;
   1259 	__u64 addr;
   1260 	__u64 mask;
   1261 };
   1262 
   1263 struct vfio_eeh_pe_op {
   1264 	__u32 argsz;
   1265 	__u32 flags;
   1266 	__u32 op;
   1267 	union {
   1268 		struct vfio_eeh_pe_err err;
   1269 	};
   1270 };
   1271 
   1272 #define VFIO_EEH_PE_DISABLE		0	/* Disable EEH functionality */
   1273 #define VFIO_EEH_PE_ENABLE		1	/* Enable EEH functionality  */
   1274 #define VFIO_EEH_PE_UNFREEZE_IO		2	/* Enable IO for frozen PE   */
   1275 #define VFIO_EEH_PE_UNFREEZE_DMA	3	/* Enable DMA for frozen PE  */
   1276 #define VFIO_EEH_PE_GET_STATE		4	/* PE state retrieval        */
   1277 #define  VFIO_EEH_PE_STATE_NORMAL	0	/* PE in functional state    */
   1278 #define  VFIO_EEH_PE_STATE_RESET	1	/* PE reset in progress      */
   1279 #define  VFIO_EEH_PE_STATE_STOPPED	2	/* Stopped DMA and IO        */
   1280 #define  VFIO_EEH_PE_STATE_STOPPED_DMA	4	/* Stopped DMA only          */
   1281 #define  VFIO_EEH_PE_STATE_UNAVAIL	5	/* State unavailable         */
   1282 #define VFIO_EEH_PE_RESET_DEACTIVATE	5	/* Deassert PE reset         */
   1283 #define VFIO_EEH_PE_RESET_HOT		6	/* Assert hot reset          */
   1284 #define VFIO_EEH_PE_RESET_FUNDAMENTAL	7	/* Assert fundamental reset  */
   1285 #define VFIO_EEH_PE_CONFIGURE		8	/* PE configuration          */
   1286 #define VFIO_EEH_PE_INJECT_ERR		9	/* Inject EEH error          */
   1287 
   1288 #define VFIO_EEH_PE_OP			_IO(VFIO_TYPE, VFIO_BASE + 21)
   1289 
   1290 /**
   1291  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
   1292  *
   1293  * Registers user space memory where DMA is allowed. It pins
   1294  * user pages and does the locked memory accounting so
   1295  * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
   1296  * get faster.
   1297  */
   1298 struct vfio_iommu_spapr_register_memory {
   1299 	__u32	argsz;
   1300 	__u32	flags;
   1301 	__u64	vaddr;				/* Process virtual address */
   1302 	__u64	size;				/* Size of mapping (bytes) */
   1303 };
   1304 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 17)
   1305 
   1306 /**
   1307  * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
   1308  *
   1309  * Unregisters user space memory registered with
   1310  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
   1311  * Uses vfio_iommu_spapr_register_memory for parameters.
   1312  */
   1313 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 18)
   1314 
   1315 /**
   1316  * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
   1317  *
   1318  * Creates an additional TCE table and programs it (sets a new DMA window)
   1319  * to every IOMMU group in the container. It receives page shift, window
   1320  * size and number of levels in the TCE table being created.
   1321  *
   1322  * It allocates and returns an offset on a PCI bus of the new DMA window.
   1323  */
   1324 struct vfio_iommu_spapr_tce_create {
   1325 	__u32 argsz;
   1326 	__u32 flags;
   1327 	/* in */
   1328 	__u32 page_shift;
   1329 	__u32 __resv1;
   1330 	__u64 window_size;
   1331 	__u32 levels;
   1332 	__u32 __resv2;
   1333 	/* out */
   1334 	__u64 start_addr;
   1335 };
   1336 #define VFIO_IOMMU_SPAPR_TCE_CREATE	_IO(VFIO_TYPE, VFIO_BASE + 19)
   1337 
   1338 /**
   1339  * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
   1340  *
   1341  * Unprograms a TCE table from all groups in the container and destroys it.
   1342  * It receives a PCI bus offset as a window id.
   1343  */
   1344 struct vfio_iommu_spapr_tce_remove {
   1345 	__u32 argsz;
   1346 	__u32 flags;
   1347 	/* in */
   1348 	__u64 start_addr;
   1349 };
   1350 #define VFIO_IOMMU_SPAPR_TCE_REMOVE	_IO(VFIO_TYPE, VFIO_BASE + 20)
   1351 
   1352 /* ***************************************************************** */
   1353 
   1354 #endif /* VFIO_H */