qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

drm_fourcc.h (62616B)


      1 /*
      2  * Copyright 2011 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
     19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     21  * OTHER DEALINGS IN THE SOFTWARE.
     22  */
     23 
     24 #ifndef DRM_FOURCC_H
     25 #define DRM_FOURCC_H
     26 
     27 
     28 #if defined(__cplusplus)
     29 extern "C" {
     30 #endif
     31 
     32 /**
     33  * DOC: overview
     34  *
     35  * In the DRM subsystem, framebuffer pixel formats are described using the
     36  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
     37  * fourcc code, a Format Modifier may optionally be provided, in order to
     38  * further describe the buffer's format - for example tiling or compression.
     39  *
     40  * Format Modifiers
     41  * ----------------
     42  *
     43  * Format modifiers are used in conjunction with a fourcc code, forming a
     44  * unique fourcc:modifier pair. This format:modifier pair must fully define the
     45  * format and data layout of the buffer, and should be the only way to describe
     46  * that particular buffer.
     47  *
     48  * Having multiple fourcc:modifier pairs which describe the same layout should
     49  * be avoided, as such aliases run the risk of different drivers exposing
     50  * different names for the same data format, forcing userspace to understand
     51  * that they are aliases.
     52  *
     53  * Format modifiers may change any property of the buffer, including the number
     54  * of planes and/or the required allocation size. Format modifiers are
     55  * vendor-namespaced, and as such the relationship between a fourcc code and a
     56  * modifier is specific to the modifer being used. For example, some modifiers
     57  * may preserve meaning - such as number of planes - from the fourcc code,
     58  * whereas others may not.
     59  *
     60  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
     61  * match only a single modifier. A modifier must not be a subset of layouts of
     62  * another modifier. For instance, it's incorrect to encode pitch alignment in
     63  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
     64  * aligned modifier. That said, modifiers can have implicit minimal
     65  * requirements.
     66  *
     67  * For modifiers where the combination of fourcc code and modifier can alias,
     68  * a canonical pair needs to be defined and used by all drivers. Preferred
     69  * combinations are also encouraged where all combinations might lead to
     70  * confusion and unnecessarily reduced interoperability. An example for the
     71  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
     72  *
     73  * There are two kinds of modifier users:
     74  *
     75  * - Kernel and user-space drivers: for drivers it's important that modifiers
     76  *   don't alias, otherwise two drivers might support the same format but use
     77  *   different aliases, preventing them from sharing buffers in an efficient
     78  *   format.
     79  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
     80  *   see modifiers as opaque tokens they can check for equality and intersect.
     81  *   These users musn't need to know to reason about the modifier value
     82  *   (i.e. they are not expected to extract information out of the modifier).
     83  *
     84  * Vendors should document their modifier usage in as much detail as
     85  * possible, to ensure maximum compatibility across devices, drivers and
     86  * applications.
     87  *
     88  * The authoritative list of format modifier codes is found in
     89  * `include/uapi/drm/drm_fourcc.h`
     90  */
     91 
     92 #define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \
     93 				 ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24))
     94 
     95 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
     96 
     97 /* Reserve 0 for the invalid format specifier */
     98 #define DRM_FORMAT_INVALID	0
     99 
    100 /* color index */
    101 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
    102 
    103 /* 8 bpp Red */
    104 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
    105 
    106 /* 10 bpp Red */
    107 #define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
    108 
    109 /* 12 bpp Red */
    110 #define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
    111 
    112 /* 16 bpp Red */
    113 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
    114 
    115 /* 16 bpp RG */
    116 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
    117 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
    118 
    119 /* 32 bpp RG */
    120 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
    121 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
    122 
    123 /* 8 bpp RGB */
    124 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
    125 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
    126 
    127 /* 16 bpp RGB */
    128 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
    129 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
    130 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
    131 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
    132 
    133 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
    134 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
    135 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
    136 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
    137 
    138 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
    139 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
    140 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
    141 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
    142 
    143 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
    144 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
    145 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
    146 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
    147 
    148 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
    149 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
    150 
    151 /* 24 bpp RGB */
    152 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
    153 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
    154 
    155 /* 32 bpp RGB */
    156 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
    157 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
    158 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
    159 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
    160 
    161 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
    162 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
    163 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
    164 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
    165 
    166 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
    167 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
    168 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
    169 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
    170 
    171 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
    172 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
    173 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
    174 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
    175 
    176 /* 64 bpp RGB */
    177 #define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
    178 #define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
    179 
    180 #define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
    181 #define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
    182 
    183 /*
    184  * Floating point 64bpp RGB
    185  * IEEE 754-2008 binary16 half-precision float
    186  * [15:0] sign:exponent:mantissa 1:5:10
    187  */
    188 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
    189 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
    190 
    191 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
    192 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
    193 
    194 /*
    195  * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
    196  * of unused padding per component:
    197  */
    198 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
    199 
    200 /* packed YCbCr */
    201 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
    202 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
    203 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
    204 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
    205 
    206 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
    207 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
    208 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
    209 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
    210 
    211 /*
    212  * packed Y2xx indicate for each component, xx valid data occupy msb
    213  * 16-xx padding occupy lsb
    214  */
    215 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
    216 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
    217 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
    218 
    219 /*
    220  * packed Y4xx indicate for each component, xx valid data occupy msb
    221  * 16-xx padding occupy lsb except Y410
    222  */
    223 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
    224 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
    225 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
    226 
    227 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
    228 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
    229 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
    230 
    231 /*
    232  * packed YCbCr420 2x2 tiled formats
    233  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
    234  */
    235 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
    236 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
    237 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
    238 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
    239 
    240 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
    241 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
    242 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
    243 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
    244 
    245 /*
    246  * 1-plane YUV 4:2:0
    247  * In these formats, the component ordering is specified (Y, followed by U
    248  * then V), but the exact Linear layout is undefined.
    249  * These formats can only be used with a non-Linear modifier.
    250  */
    251 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
    252 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
    253 
    254 /*
    255  * 2 plane RGB + A
    256  * index 0 = RGB plane, same format as the corresponding non _A8 format has
    257  * index 1 = A plane, [7:0] A
    258  */
    259 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
    260 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
    261 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
    262 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
    263 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
    264 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
    265 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
    266 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
    267 
    268 /*
    269  * 2 plane YCbCr
    270  * index 0 = Y plane, [7:0] Y
    271  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
    272  * or
    273  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
    274  */
    275 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
    276 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
    277 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
    278 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
    279 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
    280 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
    281 /*
    282  * 2 plane YCbCr
    283  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
    284  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
    285  */
    286 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
    287 
    288 /*
    289  * 2 plane YCbCr MSB aligned
    290  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
    291  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
    292  */
    293 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
    294 
    295 /*
    296  * 2 plane YCbCr MSB aligned
    297  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
    298  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
    299  */
    300 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
    301 
    302 /*
    303  * 2 plane YCbCr MSB aligned
    304  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
    305  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
    306  */
    307 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
    308 
    309 /*
    310  * 2 plane YCbCr MSB aligned
    311  * index 0 = Y plane, [15:0] Y little endian
    312  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
    313  */
    314 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
    315 
    316 /* 2 plane YCbCr420.
    317  * 3 10 bit components and 2 padding bits packed into 4 bytes.
    318  * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
    319  * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
    320  */
    321 #define DRM_FORMAT_P030		fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
    322 
    323 /* 3 plane non-subsampled (444) YCbCr
    324  * 16 bits per component, but only 10 bits are used and 6 bits are padded
    325  * index 0: Y plane, [15:0] Y:x [10:6] little endian
    326  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
    327  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
    328  */
    329 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
    330 
    331 /* 3 plane non-subsampled (444) YCrCb
    332  * 16 bits per component, but only 10 bits are used and 6 bits are padded
    333  * index 0: Y plane, [15:0] Y:x [10:6] little endian
    334  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
    335  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
    336  */
    337 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
    338 
    339 /*
    340  * 3 plane YCbCr
    341  * index 0: Y plane, [7:0] Y
    342  * index 1: Cb plane, [7:0] Cb
    343  * index 2: Cr plane, [7:0] Cr
    344  * or
    345  * index 1: Cr plane, [7:0] Cr
    346  * index 2: Cb plane, [7:0] Cb
    347  */
    348 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
    349 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
    350 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
    351 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
    352 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
    353 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
    354 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
    355 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
    356 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
    357 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
    358 
    359 
    360 /*
    361  * Format Modifiers:
    362  *
    363  * Format modifiers describe, typically, a re-ordering or modification
    364  * of the data in a plane of an FB.  This can be used to express tiled/
    365  * swizzled formats, or compression, or a combination of the two.
    366  *
    367  * The upper 8 bits of the format modifier are a vendor-id as assigned
    368  * below.  The lower 56 bits are assigned as vendor sees fit.
    369  */
    370 
    371 /* Vendor Ids: */
    372 #define DRM_FORMAT_MOD_VENDOR_NONE    0
    373 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
    374 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
    375 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
    376 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
    377 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
    378 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
    379 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
    380 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
    381 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
    382 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
    383 
    384 /* add more to the end as needed */
    385 
    386 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
    387 
    388 #define fourcc_mod_get_vendor(modifier) \
    389 	(((modifier) >> 56) & 0xff)
    390 
    391 #define fourcc_mod_is_vendor(modifier, vendor) \
    392 	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
    393 
    394 #define fourcc_mod_code(vendor, val) \
    395 	((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
    396 
    397 /*
    398  * Format Modifier tokens:
    399  *
    400  * When adding a new token please document the layout with a code comment,
    401  * similar to the fourcc codes above. drm_fourcc.h is considered the
    402  * authoritative source for all of these.
    403  *
    404  * Generic modifier names:
    405  *
    406  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
    407  * for layouts which are common across multiple vendors. To preserve
    408  * compatibility, in cases where a vendor-specific definition already exists and
    409  * a generic name for it is desired, the common name is a purely symbolic alias
    410  * and must use the same numerical value as the original definition.
    411  *
    412  * Note that generic names should only be used for modifiers which describe
    413  * generic layouts (such as pixel re-ordering), which may have
    414  * independently-developed support across multiple vendors.
    415  *
    416  * In future cases where a generic layout is identified before merging with a
    417  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
    418  * 'NONE' could be considered. This should only be for obvious, exceptional
    419  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
    420  * apply to a single vendor.
    421  *
    422  * Generic names should not be used for cases where multiple hardware vendors
    423  * have implementations of the same standardised compression scheme (such as
    424  * AFBC). In those cases, all implementations should use the same format
    425  * modifier(s), reflecting the vendor of the standard.
    426  */
    427 
    428 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
    429 
    430 /*
    431  * Invalid Modifier
    432  *
    433  * This modifier can be used as a sentinel to terminate the format modifiers
    434  * list, or to initialize a variable with an invalid modifier. It might also be
    435  * used to report an error back to userspace for certain APIs.
    436  */
    437 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
    438 
    439 /*
    440  * Linear Layout
    441  *
    442  * Just plain linear layout. Note that this is different from no specifying any
    443  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
    444  * which tells the driver to also take driver-internal information into account
    445  * and so might actually result in a tiled framebuffer.
    446  */
    447 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
    448 
    449 /*
    450  * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
    451  *
    452  * The "none" format modifier doesn't actually mean that the modifier is
    453  * implicit, instead it means that the layout is linear. Whether modifiers are
    454  * used is out-of-band information carried in an API-specific way (e.g. in a
    455  * flag for drm_mode_fb_cmd2).
    456  */
    457 #define DRM_FORMAT_MOD_NONE	0
    458 
    459 /* Intel framebuffer modifiers */
    460 
    461 /*
    462  * Intel X-tiling layout
    463  *
    464  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
    465  * in row-major layout. Within the tile bytes are laid out row-major, with
    466  * a platform-dependent stride. On top of that the memory can apply
    467  * platform-depending swizzling of some higher address bits into bit6.
    468  *
    469  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
    470  * On earlier platforms the is highly platforms specific and not useful for
    471  * cross-driver sharing. It exists since on a given platform it does uniquely
    472  * identify the layout in a simple way for i915-specific userspace, which
    473  * facilitated conversion of userspace to modifiers. Additionally the exact
    474  * format on some really old platforms is not known.
    475  */
    476 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
    477 
    478 /*
    479  * Intel Y-tiling layout
    480  *
    481  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
    482  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
    483  * chunks column-major, with a platform-dependent height. On top of that the
    484  * memory can apply platform-depending swizzling of some higher address bits
    485  * into bit6.
    486  *
    487  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
    488  * On earlier platforms the is highly platforms specific and not useful for
    489  * cross-driver sharing. It exists since on a given platform it does uniquely
    490  * identify the layout in a simple way for i915-specific userspace, which
    491  * facilitated conversion of userspace to modifiers. Additionally the exact
    492  * format on some really old platforms is not known.
    493  */
    494 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
    495 
    496 /*
    497  * Intel Yf-tiling layout
    498  *
    499  * This is a tiled layout using 4Kb tiles in row-major layout.
    500  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
    501  * are arranged in four groups (two wide, two high) with column-major layout.
    502  * Each group therefore consits out of four 256 byte units, which are also laid
    503  * out as 2x2 column-major.
    504  * 256 byte units are made out of four 64 byte blocks of pixels, producing
    505  * either a square block or a 2:1 unit.
    506  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
    507  * in pixel depends on the pixel depth.
    508  */
    509 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
    510 
    511 /*
    512  * Intel color control surface (CCS) for render compression
    513  *
    514  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
    515  * The main surface will be plane index 0 and must be Y/Yf-tiled,
    516  * the CCS will be plane index 1.
    517  *
    518  * Each CCS tile matches a 1024x512 pixel area of the main surface.
    519  * To match certain aspects of the 3D hardware the CCS is
    520  * considered to be made up of normal 128Bx32 Y tiles, Thus
    521  * the CCS pitch must be specified in multiples of 128 bytes.
    522  *
    523  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
    524  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
    525  * But that fact is not relevant unless the memory is accessed
    526  * directly.
    527  */
    528 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
    529 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
    530 
    531 /*
    532  * Intel color control surfaces (CCS) for Gen-12 render compression.
    533  *
    534  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
    535  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
    536  * main surface. In other words, 4 bits in CCS map to a main surface cache
    537  * line pair. The main surface pitch is required to be a multiple of four
    538  * Y-tile widths.
    539  */
    540 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
    541 
    542 /*
    543  * Intel color control surfaces (CCS) for Gen-12 media compression
    544  *
    545  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
    546  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
    547  * main surface. In other words, 4 bits in CCS map to a main surface cache
    548  * line pair. The main surface pitch is required to be a multiple of four
    549  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
    550  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
    551  * planes 2 and 3 for the respective CCS.
    552  */
    553 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
    554 
    555 /*
    556  * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
    557  * compression.
    558  *
    559  * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
    560  * and at index 1. The clear color is stored at index 2, and the pitch should
    561  * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
    562  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
    563  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
    564  * the converted clear color of size 64 bits. The first 32 bits store the Lower
    565  * Converted Clear Color value and the next 32 bits store the Higher Converted
    566  * Clear Color value when applicable. The Converted Clear Color values are
    567  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
    568  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
    569  * corresponds to an area of 4x1 tiles in the main surface. The main surface
    570  * pitch is required to be a multiple of 4 tile widths.
    571  */
    572 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
    573 
    574 /*
    575  * Intel Tile 4 layout
    576  *
    577  * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
    578  * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
    579  * only differs from Tile Y at the 256B granularity in between. At this
    580  * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
    581  * of 64B x 8 rows.
    582  */
    583 #define I915_FORMAT_MOD_4_TILED         fourcc_mod_code(INTEL, 9)
    584 
    585 /*
    586  * Intel color control surfaces (CCS) for DG2 render compression.
    587  *
    588  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
    589  * outside of the GEM object in a reserved memory area dedicated for the
    590  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
    591  * main surface pitch is required to be a multiple of four Tile 4 widths.
    592  */
    593 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
    594 
    595 /*
    596  * Intel color control surfaces (CCS) for DG2 media compression.
    597  *
    598  * The main surface is Tile 4 and at plane index 0. For semi-planar formats
    599  * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
    600  * 0 and 1, respectively. The CCS for all planes are stored outside of the
    601  * GEM object in a reserved memory area dedicated for the storage of the
    602  * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
    603  * pitch is required to be a multiple of four Tile 4 widths.
    604  */
    605 #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
    606 
    607 /*
    608  * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
    609  *
    610  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
    611  * outside of the GEM object in a reserved memory area dedicated for the
    612  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
    613  * main surface pitch is required to be a multiple of four Tile 4 widths. The
    614  * clear color is stored at plane index 1 and the pitch should be 64 bytes
    615  * aligned. The format of the 256 bits of clear color data matches the one used
    616  * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
    617  * for details.
    618  */
    619 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
    620 
    621 /*
    622  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
    623  *
    624  * Macroblocks are laid in a Z-shape, and each pixel data is following the
    625  * standard NV12 style.
    626  * As for NV12, an image is the result of two frame buffers: one for Y,
    627  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
    628  * Alignment requirements are (for each buffer):
    629  * - multiple of 128 pixels for the width
    630  * - multiple of  32 pixels for the height
    631  *
    632  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
    633  */
    634 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
    635 
    636 /*
    637  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
    638  *
    639  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
    640  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
    641  * they correspond to their 16x16 luma block.
    642  */
    643 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
    644 
    645 /*
    646  * Qualcomm Compressed Format
    647  *
    648  * Refers to a compressed variant of the base format that is compressed.
    649  * Implementation may be platform and base-format specific.
    650  *
    651  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
    652  * Pixel data pitch/stride is aligned with macrotile width.
    653  * Pixel data height is aligned with macrotile height.
    654  * Entire pixel data buffer is aligned with 4k(bytes).
    655  */
    656 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
    657 
    658 /*
    659  * Qualcomm Tiled Format
    660  *
    661  * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
    662  * Implementation may be platform and base-format specific.
    663  *
    664  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
    665  * Pixel data pitch/stride is aligned with macrotile width.
    666  * Pixel data height is aligned with macrotile height.
    667  * Entire pixel data buffer is aligned with 4k(bytes).
    668  */
    669 #define DRM_FORMAT_MOD_QCOM_TILED3	fourcc_mod_code(QCOM, 3)
    670 
    671 /*
    672  * Qualcomm Alternate Tiled Format
    673  *
    674  * Alternate tiled format typically only used within GMEM.
    675  * Implementation may be platform and base-format specific.
    676  */
    677 #define DRM_FORMAT_MOD_QCOM_TILED2	fourcc_mod_code(QCOM, 2)
    678 
    679 
    680 /* Vivante framebuffer modifiers */
    681 
    682 /*
    683  * Vivante 4x4 tiling layout
    684  *
    685  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
    686  * layout.
    687  */
    688 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
    689 
    690 /*
    691  * Vivante 64x64 super-tiling layout
    692  *
    693  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
    694  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
    695  * major layout.
    696  *
    697  * For more information: see
    698  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
    699  */
    700 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
    701 
    702 /*
    703  * Vivante 4x4 tiling layout for dual-pipe
    704  *
    705  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
    706  * different base address. Offsets from the base addresses are therefore halved
    707  * compared to the non-split tiled layout.
    708  */
    709 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
    710 
    711 /*
    712  * Vivante 64x64 super-tiling layout for dual-pipe
    713  *
    714  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
    715  * starts at a different base address. Offsets from the base addresses are
    716  * therefore halved compared to the non-split super-tiled layout.
    717  */
    718 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
    719 
    720 /* NVIDIA frame buffer modifiers */
    721 
    722 /*
    723  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
    724  *
    725  * Pixels are arranged in simple tiles of 16 x 16 bytes.
    726  */
    727 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
    728 
    729 /*
    730  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
    731  * and Tegra GPUs starting with Tegra K1.
    732  *
    733  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
    734  * based on the architecture generation.  GOBs themselves are then arranged in
    735  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
    736  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
    737  * a block depth or height of "4").
    738  *
    739  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
    740  * in full detail.
    741  *
    742  *       Macro
    743  * Bits  Param Description
    744  * ----  ----- -----------------------------------------------------------------
    745  *
    746  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
    747  *             compatibility with the existing
    748  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
    749  *
    750  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
    751  *             compatibility with the existing
    752  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
    753  *
    754  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
    755  *             size).  Must be zero.
    756  *
    757  *             Note there is no log2(width) parameter.  Some portions of the
    758  *             hardware support a block width of two gobs, but it is impractical
    759  *             to use due to lack of support elsewhere, and has no known
    760  *             benefits.
    761  *
    762  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
    763  *             in blocks, specified via log2(tile width in blocks)).  Must be
    764  *             zero.
    765  *
    766  * 19:12 k     Page Kind.  This value directly maps to a field in the page
    767  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
    768  *             in memory and can be derived from the tuple
    769  *
    770  *               (format, GPU model, compression type, samples per pixel)
    771  *
    772  *             Where compression type is defined below.  If GPU model were
    773  *             implied by the format modifier, format, or memory buffer, page
    774  *             kind would not need to be included in the modifier itself, but
    775  *             since the modifier should define the layout of the associated
    776  *             memory buffer independent from any device or other context, it
    777  *             must be included here.
    778  *
    779  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
    780  *             starting with Fermi GPUs.  Additionally, the mapping between page
    781  *             kind and bit layout has changed at various points.
    782  *
    783  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
    784  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
    785  *               2 = Gob Height 8, Turing+ Page Kind mapping
    786  *               3 = Reserved for future use.
    787  *
    788  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
    789  *             bit remapping step that occurs at an even lower level than the
    790  *             page kind and block linear swizzles.  This causes the layout of
    791  *             surfaces mapped in those SOC's GPUs to be incompatible with the
    792  *             equivalent mapping on other GPUs in the same system.
    793  *
    794  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
    795  *               1 = Desktop GPU and Tegra Xavier+ Layout
    796  *
    797  * 25:23 c     Lossless Framebuffer Compression type.
    798  *
    799  *               0 = none
    800  *               1 = ROP/3D, layout 1, exact compression format implied by Page
    801  *                   Kind field
    802  *               2 = ROP/3D, layout 2, exact compression format implied by Page
    803  *                   Kind field
    804  *               3 = CDE horizontal
    805  *               4 = CDE vertical
    806  *               5 = Reserved for future use
    807  *               6 = Reserved for future use
    808  *               7 = Reserved for future use
    809  *
    810  * 55:25 -     Reserved for future use.  Must be zero.
    811  */
    812 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
    813 	fourcc_mod_code(NVIDIA, (0x10 | \
    814 				 ((h) & 0xf) | \
    815 				 (((k) & 0xff) << 12) | \
    816 				 (((g) & 0x3) << 20) | \
    817 				 (((s) & 0x1) << 22) | \
    818 				 (((c) & 0x7) << 23)))
    819 
    820 /* To grandfather in prior block linear format modifiers to the above layout,
    821  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
    822  * with block-linear layouts, is remapped within drivers to the value 0xfe,
    823  * which corresponds to the "generic" kind used for simple single-sample
    824  * uncompressed color formats on Fermi - Volta GPUs.
    825  */
    826 static inline uint64_t
    827 drm_fourcc_canonicalize_nvidia_format_mod(uint64_t modifier)
    828 {
    829 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
    830 		return modifier;
    831 	else
    832 		return modifier | (0xfe << 12);
    833 }
    834 
    835 /*
    836  * 16Bx2 Block Linear layout, used by Tegra K1 and later
    837  *
    838  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
    839  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
    840  *
    841  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
    842  *
    843  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
    844  * Valid values are:
    845  *
    846  * 0 == ONE_GOB
    847  * 1 == TWO_GOBS
    848  * 2 == FOUR_GOBS
    849  * 3 == EIGHT_GOBS
    850  * 4 == SIXTEEN_GOBS
    851  * 5 == THIRTYTWO_GOBS
    852  *
    853  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
    854  * in full detail.
    855  */
    856 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
    857 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
    858 
    859 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
    860 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
    861 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
    862 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
    863 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
    864 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
    865 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
    866 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
    867 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
    868 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
    869 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
    870 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
    871 
    872 /*
    873  * Some Broadcom modifiers take parameters, for example the number of
    874  * vertical lines in the image. Reserve the lower 32 bits for modifier
    875  * type, and the next 24 bits for parameters. Top 8 bits are the
    876  * vendor code.
    877  */
    878 #define __fourcc_mod_broadcom_param_shift 8
    879 #define __fourcc_mod_broadcom_param_bits 48
    880 #define fourcc_mod_broadcom_code(val, params) \
    881 	fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val))
    882 #define fourcc_mod_broadcom_param(m) \
    883 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
    884 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
    885 #define fourcc_mod_broadcom_mod(m) \
    886 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
    887 		 __fourcc_mod_broadcom_param_shift))
    888 
    889 /*
    890  * Broadcom VC4 "T" format
    891  *
    892  * This is the primary layout that the V3D GPU can texture from (it
    893  * can't do linear).  The T format has:
    894  *
    895  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
    896  *   pixels at 32 bit depth.
    897  *
    898  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
    899  *   16x16 pixels).
    900  *
    901  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
    902  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
    903  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
    904  *
    905  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
    906  *   tiles) or right-to-left (odd rows of 4k tiles).
    907  */
    908 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
    909 
    910 /*
    911  * Broadcom SAND format
    912  *
    913  * This is the native format that the H.264 codec block uses.  For VC4
    914  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
    915  *
    916  * The image can be considered to be split into columns, and the
    917  * columns are placed consecutively into memory.  The width of those
    918  * columns can be either 32, 64, 128, or 256 pixels, but in practice
    919  * only 128 pixel columns are used.
    920  *
    921  * The pitch between the start of each column is set to optimally
    922  * switch between SDRAM banks. This is passed as the number of lines
    923  * of column width in the modifier (we can't use the stride value due
    924  * to various core checks that look at it , so you should set the
    925  * stride to width*cpp).
    926  *
    927  * Note that the column height for this format modifier is the same
    928  * for all of the planes, assuming that each column contains both Y
    929  * and UV.  Some SAND-using hardware stores UV in a separate tiled
    930  * image from Y to reduce the column height, which is not supported
    931  * with these modifiers.
    932  *
    933  * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
    934  * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
    935  * wide, but as this is a 10 bpp format that translates to 96 pixels.
    936  */
    937 
    938 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
    939 	fourcc_mod_broadcom_code(2, v)
    940 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
    941 	fourcc_mod_broadcom_code(3, v)
    942 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
    943 	fourcc_mod_broadcom_code(4, v)
    944 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
    945 	fourcc_mod_broadcom_code(5, v)
    946 
    947 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
    948 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
    949 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
    950 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
    951 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
    952 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
    953 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
    954 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
    955 
    956 /* Broadcom UIF format
    957  *
    958  * This is the common format for the current Broadcom multimedia
    959  * blocks, including V3D 3.x and newer, newer video codecs, and
    960  * displays.
    961  *
    962  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
    963  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
    964  * stored in columns, with padding between the columns to ensure that
    965  * moving from one column to the next doesn't hit the same SDRAM page
    966  * bank.
    967  *
    968  * To calculate the padding, it is assumed that each hardware block
    969  * and the software driving it knows the platform's SDRAM page size,
    970  * number of banks, and XOR address, and that it's identical between
    971  * all blocks using the format.  This tiling modifier will use XOR as
    972  * necessary to reduce the padding.  If a hardware block can't do XOR,
    973  * the assumption is that a no-XOR tiling modifier will be created.
    974  */
    975 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
    976 
    977 /*
    978  * Arm Framebuffer Compression (AFBC) modifiers
    979  *
    980  * AFBC is a proprietary lossless image compression protocol and format.
    981  * It provides fine-grained random access and minimizes the amount of data
    982  * transferred between IP blocks.
    983  *
    984  * AFBC has several features which may be supported and/or used, which are
    985  * represented using bits in the modifier. Not all combinations are valid,
    986  * and different devices or use-cases may support different combinations.
    987  *
    988  * Further information on the use of AFBC modifiers can be found in
    989  * Documentation/gpu/afbc.rst
    990  */
    991 
    992 /*
    993  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
    994  * modifiers) denote the category for modifiers. Currently we have three
    995  * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
    996  * sixteen different categories.
    997  */
    998 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
    999 	fourcc_mod_code(ARM, ((uint64_t)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
   1000 
   1001 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
   1002 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
   1003 
   1004 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
   1005 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
   1006 
   1007 /*
   1008  * AFBC superblock size
   1009  *
   1010  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
   1011  * size (in pixels) must be aligned to a multiple of the superblock size.
   1012  * Four lowest significant bits(LSBs) are reserved for block size.
   1013  *
   1014  * Where one superblock size is specified, it applies to all planes of the
   1015  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
   1016  * the first applies to the Luma plane and the second applies to the Chroma
   1017  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
   1018  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
   1019  */
   1020 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
   1021 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
   1022 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
   1023 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
   1024 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
   1025 
   1026 /*
   1027  * AFBC lossless colorspace transform
   1028  *
   1029  * Indicates that the buffer makes use of the AFBC lossless colorspace
   1030  * transform.
   1031  */
   1032 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
   1033 
   1034 /*
   1035  * AFBC block-split
   1036  *
   1037  * Indicates that the payload of each superblock is split. The second
   1038  * half of the payload is positioned at a predefined offset from the start
   1039  * of the superblock payload.
   1040  */
   1041 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
   1042 
   1043 /*
   1044  * AFBC sparse layout
   1045  *
   1046  * This flag indicates that the payload of each superblock must be stored at a
   1047  * predefined position relative to the other superblocks in the same AFBC
   1048  * buffer. This order is the same order used by the header buffer. In this mode
   1049  * each superblock is given the same amount of space as an uncompressed
   1050  * superblock of the particular format would require, rounding up to the next
   1051  * multiple of 128 bytes in size.
   1052  */
   1053 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
   1054 
   1055 /*
   1056  * AFBC copy-block restrict
   1057  *
   1058  * Buffers with this flag must obey the copy-block restriction. The restriction
   1059  * is such that there are no copy-blocks referring across the border of 8x8
   1060  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
   1061  */
   1062 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
   1063 
   1064 /*
   1065  * AFBC tiled layout
   1066  *
   1067  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
   1068  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
   1069  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
   1070  * larger bpp formats. The order between the tiles is scan line.
   1071  * When the tiled layout is used, the buffer size (in pixels) must be aligned
   1072  * to the tile size.
   1073  */
   1074 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
   1075 
   1076 /*
   1077  * AFBC solid color blocks
   1078  *
   1079  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
   1080  * can be reduced if a whole superblock is a single color.
   1081  */
   1082 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
   1083 
   1084 /*
   1085  * AFBC double-buffer
   1086  *
   1087  * Indicates that the buffer is allocated in a layout safe for front-buffer
   1088  * rendering.
   1089  */
   1090 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
   1091 
   1092 /*
   1093  * AFBC buffer content hints
   1094  *
   1095  * Indicates that the buffer includes per-superblock content hints.
   1096  */
   1097 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
   1098 
   1099 /* AFBC uncompressed storage mode
   1100  *
   1101  * Indicates that the buffer is using AFBC uncompressed storage mode.
   1102  * In this mode all superblock payloads in the buffer use the uncompressed
   1103  * storage mode, which is usually only used for data which cannot be compressed.
   1104  * The buffer layout is the same as for AFBC buffers without USM set, this only
   1105  * affects the storage mode of the individual superblocks. Note that even a
   1106  * buffer without USM set may use uncompressed storage mode for some or all
   1107  * superblocks, USM just guarantees it for all.
   1108  */
   1109 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
   1110 
   1111 /*
   1112  * Arm Fixed-Rate Compression (AFRC) modifiers
   1113  *
   1114  * AFRC is a proprietary fixed rate image compression protocol and format,
   1115  * designed to provide guaranteed bandwidth and memory footprint
   1116  * reductions in graphics and media use-cases.
   1117  *
   1118  * AFRC buffers consist of one or more planes, with the same components
   1119  * and meaning as an uncompressed buffer using the same pixel format.
   1120  *
   1121  * Within each plane, the pixel/luma/chroma values are grouped into
   1122  * "coding unit" blocks which are individually compressed to a
   1123  * fixed size (in bytes). All coding units within a given plane of a buffer
   1124  * store the same number of values, and have the same compressed size.
   1125  *
   1126  * The coding unit size is configurable, allowing different rates of compression.
   1127  *
   1128  * The start of each AFRC buffer plane must be aligned to an alignment granule which
   1129  * depends on the coding unit size.
   1130  *
   1131  * Coding Unit Size   Plane Alignment
   1132  * ----------------   ---------------
   1133  * 16 bytes           1024 bytes
   1134  * 24 bytes           512  bytes
   1135  * 32 bytes           2048 bytes
   1136  *
   1137  * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
   1138  * to a multiple of the paging tile dimensions.
   1139  * The dimensions of each paging tile depend on whether the buffer is optimised for
   1140  * scanline (SCAN layout) or rotated (ROT layout) access.
   1141  *
   1142  * Layout   Paging Tile Width   Paging Tile Height
   1143  * ------   -----------------   ------------------
   1144  * SCAN     16 coding units     4 coding units
   1145  * ROT      8  coding units     8 coding units
   1146  *
   1147  * The dimensions of each coding unit depend on the number of components
   1148  * in the compressed plane and whether the buffer is optimised for
   1149  * scanline (SCAN layout) or rotated (ROT layout) access.
   1150  *
   1151  * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
   1152  * -----------------------------   ---------   -----------------   ------------------
   1153  * 1                               SCAN        16 samples          4 samples
   1154  * Example: 16x4 luma samples in a 'Y' plane
   1155  *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
   1156  * -----------------------------   ---------   -----------------   ------------------
   1157  * 1                               ROT         8 samples           8 samples
   1158  * Example: 8x8 luma samples in a 'Y' plane
   1159  *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
   1160  * -----------------------------   ---------   -----------------   ------------------
   1161  * 2                               DONT CARE   8 samples           4 samples
   1162  * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
   1163  * -----------------------------   ---------   -----------------   ------------------
   1164  * 3                               DONT CARE   4 samples           4 samples
   1165  * Example: 4x4 pixels in an RGB buffer without alpha
   1166  * -----------------------------   ---------   -----------------   ------------------
   1167  * 4                               DONT CARE   4 samples           4 samples
   1168  * Example: 4x4 pixels in an RGB buffer with alpha
   1169  */
   1170 
   1171 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
   1172 
   1173 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
   1174 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
   1175 
   1176 /*
   1177  * AFRC coding unit size modifier.
   1178  *
   1179  * Indicates the number of bytes used to store each compressed coding unit for
   1180  * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
   1181  * is the same for both Cb and Cr, which may be stored in separate planes.
   1182  *
   1183  * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
   1184  * each compressed coding unit in the first plane of the buffer. For RGBA buffers
   1185  * this is the only plane, while for semi-planar and fully-planar YUV buffers,
   1186  * this corresponds to the luma plane.
   1187  *
   1188  * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
   1189  * each compressed coding unit in the second and third planes in the buffer.
   1190  * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
   1191  *
   1192  * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
   1193  * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
   1194  * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
   1195  * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
   1196  */
   1197 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
   1198 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
   1199 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
   1200 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
   1201 
   1202 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
   1203 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
   1204 
   1205 /*
   1206  * AFRC scanline memory layout.
   1207  *
   1208  * Indicates if the buffer uses the scanline-optimised layout
   1209  * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
   1210  * The memory layout is the same for all planes.
   1211  */
   1212 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
   1213 
   1214 /*
   1215  * Arm 16x16 Block U-Interleaved modifier
   1216  *
   1217  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
   1218  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
   1219  * in the block are reordered.
   1220  */
   1221 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
   1222 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
   1223 
   1224 /*
   1225  * Allwinner tiled modifier
   1226  *
   1227  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
   1228  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
   1229  * planes.
   1230  *
   1231  * With this tiling, the luminance samples are disposed in tiles representing
   1232  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
   1233  * The pixel order in each tile is linear and the tiles are disposed linearly,
   1234  * both in row-major order.
   1235  */
   1236 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
   1237 
   1238 /*
   1239  * Amlogic Video Framebuffer Compression modifiers
   1240  *
   1241  * Amlogic uses a proprietary lossless image compression protocol and format
   1242  * for their hardware video codec accelerators, either video decoders or
   1243  * video input encoders.
   1244  *
   1245  * It considerably reduces memory bandwidth while writing and reading
   1246  * frames in memory.
   1247  *
   1248  * The underlying storage is considered to be 3 components, 8bit or 10-bit
   1249  * per component YCbCr 420, single plane :
   1250  * - DRM_FORMAT_YUV420_8BIT
   1251  * - DRM_FORMAT_YUV420_10BIT
   1252  *
   1253  * The first 8 bits of the mode defines the layout, then the following 8 bits
   1254  * defines the options changing the layout.
   1255  *
   1256  * Not all combinations are valid, and different SoCs may support different
   1257  * combinations of layout and options.
   1258  */
   1259 #define __fourcc_mod_amlogic_layout_mask 0xff
   1260 #define __fourcc_mod_amlogic_options_shift 8
   1261 #define __fourcc_mod_amlogic_options_mask 0xff
   1262 
   1263 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
   1264 	fourcc_mod_code(AMLOGIC, \
   1265 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
   1266 			(((__options) & __fourcc_mod_amlogic_options_mask) \
   1267 			 << __fourcc_mod_amlogic_options_shift))
   1268 
   1269 /* Amlogic FBC Layouts */
   1270 
   1271 /*
   1272  * Amlogic FBC Basic Layout
   1273  *
   1274  * The basic layout is composed of:
   1275  * - a body content organized in 64x32 superblocks with 4096 bytes per
   1276  *   superblock in default mode.
   1277  * - a 32 bytes per 128x64 header block
   1278  *
   1279  * This layout is transferrable between Amlogic SoCs supporting this modifier.
   1280  */
   1281 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
   1282 
   1283 /*
   1284  * Amlogic FBC Scatter Memory layout
   1285  *
   1286  * Indicates the header contains IOMMU references to the compressed
   1287  * frames content to optimize memory access and layout.
   1288  *
   1289  * In this mode, only the header memory address is needed, thus the
   1290  * content memory organization is tied to the current producer
   1291  * execution and cannot be saved/dumped neither transferrable between
   1292  * Amlogic SoCs supporting this modifier.
   1293  *
   1294  * Due to the nature of the layout, these buffers are not expected to
   1295  * be accessible by the user-space clients, but only accessible by the
   1296  * hardware producers and consumers.
   1297  *
   1298  * The user-space clients should expect a failure while trying to mmap
   1299  * the DMA-BUF handle returned by the producer.
   1300  */
   1301 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
   1302 
   1303 /* Amlogic FBC Layout Options Bit Mask */
   1304 
   1305 /*
   1306  * Amlogic FBC Memory Saving mode
   1307  *
   1308  * Indicates the storage is packed when pixel size is multiple of word
   1309  * boudaries, i.e. 8bit should be stored in this mode to save allocation
   1310  * memory.
   1311  *
   1312  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
   1313  * the basic layout and 3200 bytes per 64x32 superblock combined with
   1314  * the scatter layout.
   1315  */
   1316 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
   1317 
   1318 /*
   1319  * AMD modifiers
   1320  *
   1321  * Memory layout:
   1322  *
   1323  * without DCC:
   1324  *   - main surface
   1325  *
   1326  * with DCC & without DCC_RETILE:
   1327  *   - main surface in plane 0
   1328  *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
   1329  *
   1330  * with DCC & DCC_RETILE:
   1331  *   - main surface in plane 0
   1332  *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
   1333  *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
   1334  *
   1335  * For multi-plane formats the above surfaces get merged into one plane for
   1336  * each format plane, based on the required alignment only.
   1337  *
   1338  * Bits  Parameter                Notes
   1339  * ----- ------------------------ ---------------------------------------------
   1340  *
   1341  *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
   1342  *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
   1343  *    13 DCC
   1344  *    14 DCC_RETILE
   1345  *    15 DCC_PIPE_ALIGN
   1346  *    16 DCC_INDEPENDENT_64B
   1347  *    17 DCC_INDEPENDENT_128B
   1348  * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
   1349  *    20 DCC_CONSTANT_ENCODE
   1350  * 23:21 PIPE_XOR_BITS            Only for some chips
   1351  * 26:24 BANK_XOR_BITS            Only for some chips
   1352  * 29:27 PACKERS                  Only for some chips
   1353  * 32:30 RB                       Only for some chips
   1354  * 35:33 PIPE                     Only for some chips
   1355  * 55:36 -                        Reserved for future use, must be zero
   1356  */
   1357 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
   1358 
   1359 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
   1360 
   1361 /* Reserve 0 for GFX8 and older */
   1362 #define AMD_FMT_MOD_TILE_VER_GFX9 1
   1363 #define AMD_FMT_MOD_TILE_VER_GFX10 2
   1364 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
   1365 #define AMD_FMT_MOD_TILE_VER_GFX11 4
   1366 
   1367 /*
   1368  * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
   1369  * version.
   1370  */
   1371 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
   1372 
   1373 /*
   1374  * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
   1375  * GFX9 as canonical version.
   1376  */
   1377 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
   1378 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
   1379 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
   1380 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
   1381 #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
   1382 
   1383 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
   1384 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
   1385 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
   1386 
   1387 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
   1388 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
   1389 #define AMD_FMT_MOD_TILE_SHIFT 8
   1390 #define AMD_FMT_MOD_TILE_MASK 0x1F
   1391 
   1392 /* Whether DCC compression is enabled. */
   1393 #define AMD_FMT_MOD_DCC_SHIFT 13
   1394 #define AMD_FMT_MOD_DCC_MASK 0x1
   1395 
   1396 /*
   1397  * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
   1398  * one which is not-aligned.
   1399  */
   1400 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
   1401 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
   1402 
   1403 /* Only set if DCC_RETILE = false */
   1404 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
   1405 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
   1406 
   1407 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
   1408 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
   1409 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
   1410 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
   1411 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
   1412 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
   1413 
   1414 /*
   1415  * DCC supports embedding some clear colors directly in the DCC surface.
   1416  * However, on older GPUs the rendering HW ignores the embedded clear color
   1417  * and prefers the driver provided color. This necessitates doing a fastclear
   1418  * eliminate operation before a process transfers control.
   1419  *
   1420  * If this bit is set that means the fastclear eliminate is not needed for these
   1421  * embeddable colors.
   1422  */
   1423 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
   1424 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
   1425 
   1426 /*
   1427  * The below fields are for accounting for per GPU differences. These are only
   1428  * relevant for GFX9 and later and if the tile field is *_X/_T.
   1429  *
   1430  * PIPE_XOR_BITS = always needed
   1431  * BANK_XOR_BITS = only for TILE_VER_GFX9
   1432  * PACKERS = only for TILE_VER_GFX10_RBPLUS
   1433  * RB = only for TILE_VER_GFX9 & DCC
   1434  * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
   1435  */
   1436 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
   1437 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
   1438 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
   1439 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
   1440 #define AMD_FMT_MOD_PACKERS_SHIFT 27
   1441 #define AMD_FMT_MOD_PACKERS_MASK 0x7
   1442 #define AMD_FMT_MOD_RB_SHIFT 30
   1443 #define AMD_FMT_MOD_RB_MASK 0x7
   1444 #define AMD_FMT_MOD_PIPE_SHIFT 33
   1445 #define AMD_FMT_MOD_PIPE_MASK 0x7
   1446 
   1447 #define AMD_FMT_MOD_SET(field, value) \
   1448 	((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
   1449 #define AMD_FMT_MOD_GET(field, value) \
   1450 	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
   1451 #define AMD_FMT_MOD_CLEAR(field) \
   1452 	(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
   1453 
   1454 #if defined(__cplusplus)
   1455 }
   1456 #endif
   1457 
   1458 #endif /* DRM_FOURCC_H */