qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

arm_gicv3_common.h (11520B)


      1 /*
      2  * ARM GIC support
      3  *
      4  * Copyright (c) 2012 Linaro Limited
      5  * Copyright (c) 2015 Huawei.
      6  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
      7  * Written by Peter Maydell
      8  * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin
      9  *
     10  * This program is free software; you can redistribute it and/or modify
     11  * it under the terms of the GNU General Public License as published by
     12  * the Free Software Foundation, either version 2 of the License, or
     13  * (at your option) any later version.
     14  *
     15  * This program is distributed in the hope that it will be useful,
     16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     18  * GNU General Public License for more details.
     19  *
     20  * You should have received a copy of the GNU General Public License along
     21  * with this program; if not, see <http://www.gnu.org/licenses/>.
     22  */
     23 
     24 #ifndef HW_ARM_GICV3_COMMON_H
     25 #define HW_ARM_GICV3_COMMON_H
     26 
     27 #include "hw/sysbus.h"
     28 #include "hw/intc/arm_gic_common.h"
     29 #include "qom/object.h"
     30 
     31 /*
     32  * Maximum number of possible interrupts, determined by the GIC architecture.
     33  * Note that this does not include LPIs. When implemented, these should be
     34  * dealt with separately.
     35  */
     36 #define GICV3_MAXIRQ 1020
     37 #define GICV3_MAXSPI (GICV3_MAXIRQ - GIC_INTERNAL)
     38 
     39 #define GICV3_LPI_INTID_START 8192
     40 
     41 /*
     42  * The redistributor in GICv3 has two 64KB frames per CPU; in
     43  * GICv4 it has four 64KB frames per CPU.
     44  */
     45 #define GICV3_REDIST_SIZE 0x20000
     46 #define GICV4_REDIST_SIZE 0x40000
     47 
     48 /* Number of SGI target-list bits */
     49 #define GICV3_TARGETLIST_BITS 16
     50 
     51 /* Maximum number of list registers (architectural limit) */
     52 #define GICV3_LR_MAX 16
     53 
     54 /* For some distributor fields we want to model the array of 32-bit
     55  * register values which hold various bitmaps corresponding to enabled,
     56  * pending, etc bits. These macros and functions facilitate that; the
     57  * APIs are generally modelled on the generic bitmap.h functions
     58  * (which are unsuitable here because they use 'unsigned long' as the
     59  * underlying storage type, which is very awkward when you need to
     60  * access the data as 32-bit values.)
     61  * Each bitmap contains a bit for each interrupt. Although there is
     62  * space for the PPIs and SGIs, those bits (the first 32) are never
     63  * used as that state lives in the redistributor. The unused bits are
     64  * provided purely so that interrupt X's state is always in bit X; this
     65  * avoids bugs where we forget to subtract GIC_INTERNAL from an
     66  * interrupt number.
     67  */
     68 #define GICV3_BMP_SIZE DIV_ROUND_UP(GICV3_MAXIRQ, 32)
     69 
     70 #define GIC_DECLARE_BITMAP(name) \
     71     uint32_t name[GICV3_BMP_SIZE]
     72 
     73 #define GIC_BIT_MASK(nr) (1U << ((nr) % 32))
     74 #define GIC_BIT_WORD(nr) ((nr) / 32)
     75 
     76 static inline void gic_bmp_set_bit(int nr, uint32_t *addr)
     77 {
     78     uint32_t mask = GIC_BIT_MASK(nr);
     79     uint32_t *p = addr + GIC_BIT_WORD(nr);
     80 
     81     *p |= mask;
     82 }
     83 
     84 static inline void gic_bmp_clear_bit(int nr, uint32_t *addr)
     85 {
     86     uint32_t mask = GIC_BIT_MASK(nr);
     87     uint32_t *p = addr + GIC_BIT_WORD(nr);
     88 
     89     *p &= ~mask;
     90 }
     91 
     92 static inline int gic_bmp_test_bit(int nr, const uint32_t *addr)
     93 {
     94     return 1U & (addr[GIC_BIT_WORD(nr)] >> (nr & 31));
     95 }
     96 
     97 static inline void gic_bmp_replace_bit(int nr, uint32_t *addr, int val)
     98 {
     99     uint32_t mask = GIC_BIT_MASK(nr);
    100     uint32_t *p = addr + GIC_BIT_WORD(nr);
    101 
    102     *p &= ~mask;
    103     *p |= (val & 1U) << (nr % 32);
    104 }
    105 
    106 /* Return a pointer to the 32-bit word containing the specified bit. */
    107 static inline uint32_t *gic_bmp_ptr32(uint32_t *addr, int nr)
    108 {
    109     return addr + GIC_BIT_WORD(nr);
    110 }
    111 
    112 typedef struct GICv3State GICv3State;
    113 typedef struct GICv3CPUState GICv3CPUState;
    114 
    115 /* Some CPU interface registers come in three flavours:
    116  * Group0, Group1 (Secure) and Group1 (NonSecure)
    117  * (where the latter two are exposed as a single banked system register).
    118  * In the state struct they are implemented as a 3-element array which
    119  * can be indexed into by the GICV3_G0, GICV3_G1 and GICV3_G1NS constants.
    120  * If the CPU doesn't support EL3 then the G1 element is unused.
    121  *
    122  * These constants are also used to communicate the group to use for
    123  * an interrupt or SGI when it is passed between the cpu interface and
    124  * the redistributor or distributor. For those purposes the receiving end
    125  * must be prepared to cope with a Group 1 Secure interrupt even if it does
    126  * not have security support enabled, because security can be disabled
    127  * independently in the CPU and in the GIC. In that case the receiver should
    128  * treat an incoming Group 1 Secure interrupt as if it were Group 0.
    129  * (This architectural requirement is why the _G1 element is the unused one
    130  * in a no-EL3 CPU:  we would otherwise have to translate back and forth
    131  * between (G0, G1NS) from the distributor and (G0, G1) in the CPU i/f.)
    132  */
    133 #define GICV3_G0 0
    134 #define GICV3_G1 1
    135 #define GICV3_G1NS 2
    136 
    137 /* ICC_CTLR_EL1, GICD_STATUSR and GICR_STATUSR are banked but not
    138  * group-related, so those indices are just 0 for S and 1 for NS.
    139  * (If the CPU or the GIC, respectively, don't support the Security
    140  * extensions then the S element is unused.)
    141  */
    142 #define GICV3_S 0
    143 #define GICV3_NS 1
    144 
    145 typedef struct {
    146     int irq;
    147     uint8_t prio;
    148     int grp;
    149 } PendingIrq;
    150 
    151 struct GICv3CPUState {
    152     GICv3State *gic;
    153     CPUState *cpu;
    154     qemu_irq parent_irq;
    155     qemu_irq parent_fiq;
    156     qemu_irq parent_virq;
    157     qemu_irq parent_vfiq;
    158 
    159     /* Redistributor */
    160     uint32_t level;                  /* Current IRQ level */
    161     /* RD_base page registers */
    162     uint32_t gicr_ctlr;
    163     uint64_t gicr_typer;
    164     uint32_t gicr_statusr[2];
    165     uint32_t gicr_waker;
    166     uint64_t gicr_propbaser;
    167     uint64_t gicr_pendbaser;
    168     /* SGI_base page registers */
    169     uint32_t gicr_igroupr0;
    170     uint32_t gicr_ienabler0;
    171     uint32_t gicr_ipendr0;
    172     uint32_t gicr_iactiver0;
    173     uint32_t edge_trigger; /* ICFGR0 and ICFGR1 even bits */
    174     uint32_t gicr_igrpmodr0;
    175     uint32_t gicr_nsacr;
    176     uint8_t gicr_ipriorityr[GIC_INTERNAL];
    177     /* VLPI_base page registers */
    178     uint64_t gicr_vpropbaser;
    179     uint64_t gicr_vpendbaser;
    180 
    181     /* CPU interface */
    182     uint64_t icc_sre_el1;
    183     uint64_t icc_ctlr_el1[2];
    184     uint64_t icc_pmr_el1;
    185     uint64_t icc_bpr[3];
    186     uint64_t icc_apr[3][4];
    187     uint64_t icc_igrpen[3];
    188     uint64_t icc_ctlr_el3;
    189 
    190     /* Virtualization control interface */
    191     uint64_t ich_apr[3][4]; /* ich_apr[GICV3_G1][x] never used */
    192     uint64_t ich_hcr_el2;
    193     uint64_t ich_lr_el2[GICV3_LR_MAX];
    194     uint64_t ich_vmcr_el2;
    195 
    196     /* Properties of the CPU interface. These are initialized from
    197      * the settings in the CPU proper.
    198      * If the number of implemented list registers is 0 then the
    199      * virtualization support is not implemented.
    200      */
    201     int num_list_regs;
    202     int vpribits; /* number of virtual priority bits */
    203     int vprebits; /* number of virtual preemption bits */
    204     int pribits; /* number of physical priority bits */
    205     int prebits; /* number of physical preemption bits */
    206 
    207     /* Current highest priority pending interrupt for this CPU.
    208      * This is cached information that can be recalculated from the
    209      * real state above; it doesn't need to be migrated.
    210      */
    211     PendingIrq hppi;
    212 
    213     /*
    214      * Cached information recalculated from LPI tables
    215      * in guest memory
    216      */
    217     PendingIrq hpplpi;
    218 
    219     /* Cached information recalculated from vLPI tables in guest memory */
    220     PendingIrq hppvlpi;
    221 
    222     /* This is temporary working state, to avoid a malloc in gicv3_update() */
    223     bool seenbetter;
    224 };
    225 
    226 /*
    227  * The redistributor pages might be split into more than one region
    228  * on some machine types if there are many CPUs.
    229  */
    230 typedef struct GICv3RedistRegion {
    231     GICv3State *gic;
    232     MemoryRegion iomem;
    233     uint32_t cpuidx; /* index of first CPU this region covers */
    234 } GICv3RedistRegion;
    235 
    236 struct GICv3State {
    237     /*< private >*/
    238     SysBusDevice parent_obj;
    239     /*< public >*/
    240 
    241     MemoryRegion iomem_dist; /* Distributor */
    242     GICv3RedistRegion *redist_regions; /* Redistributor Regions */
    243     uint32_t *redist_region_count; /* redistributor count within each region */
    244     uint32_t nb_redist_regions; /* number of redist regions */
    245 
    246     uint32_t num_cpu;
    247     uint32_t num_irq;
    248     uint32_t revision;
    249     bool lpi_enable;
    250     bool security_extn;
    251     bool force_8bit_prio;
    252     bool irq_reset_nonsecure;
    253     bool gicd_no_migration_shift_bug;
    254 
    255     int dev_fd; /* kvm device fd if backed by kvm vgic support */
    256     Error *migration_blocker;
    257 
    258     MemoryRegion *dma;
    259     AddressSpace dma_as;
    260 
    261     /* Distributor */
    262 
    263     /* for a GIC with the security extensions the NS banked version of this
    264      * register is just an alias of bit 1 of the S banked version.
    265      */
    266     uint32_t gicd_ctlr;
    267     uint32_t gicd_statusr[2];
    268     GIC_DECLARE_BITMAP(group);        /* GICD_IGROUPR */
    269     GIC_DECLARE_BITMAP(grpmod);       /* GICD_IGRPMODR */
    270     GIC_DECLARE_BITMAP(enabled);      /* GICD_ISENABLER */
    271     GIC_DECLARE_BITMAP(pending);      /* GICD_ISPENDR */
    272     GIC_DECLARE_BITMAP(active);       /* GICD_ISACTIVER */
    273     GIC_DECLARE_BITMAP(level);        /* Current level */
    274     GIC_DECLARE_BITMAP(edge_trigger); /* GICD_ICFGR even bits */
    275     uint8_t gicd_ipriority[GICV3_MAXIRQ];
    276     uint64_t gicd_irouter[GICV3_MAXIRQ];
    277     /* Cached information: pointer to the cpu i/f for the CPUs specified
    278      * in the IROUTER registers
    279      */
    280     GICv3CPUState *gicd_irouter_target[GICV3_MAXIRQ];
    281     uint32_t gicd_nsacr[DIV_ROUND_UP(GICV3_MAXIRQ, 16)];
    282 
    283     GICv3CPUState *cpu;
    284     /* List of all ITSes connected to this GIC */
    285     GPtrArray *itslist;
    286 };
    287 
    288 #define GICV3_BITMAP_ACCESSORS(BMP)                                     \
    289     static inline void gicv3_gicd_##BMP##_set(GICv3State *s, int irq)   \
    290     {                                                                   \
    291         gic_bmp_set_bit(irq, s->BMP);                                   \
    292     }                                                                   \
    293     static inline int gicv3_gicd_##BMP##_test(GICv3State *s, int irq)   \
    294     {                                                                   \
    295         return gic_bmp_test_bit(irq, s->BMP);                           \
    296     }                                                                   \
    297     static inline void gicv3_gicd_##BMP##_clear(GICv3State *s, int irq) \
    298     {                                                                   \
    299         gic_bmp_clear_bit(irq, s->BMP);                                 \
    300     }                                                                   \
    301     static inline void gicv3_gicd_##BMP##_replace(GICv3State *s,        \
    302                                                   int irq, int value)   \
    303     {                                                                   \
    304         gic_bmp_replace_bit(irq, s->BMP, value);                        \
    305     }
    306 
    307 GICV3_BITMAP_ACCESSORS(group)
    308 GICV3_BITMAP_ACCESSORS(grpmod)
    309 GICV3_BITMAP_ACCESSORS(enabled)
    310 GICV3_BITMAP_ACCESSORS(pending)
    311 GICV3_BITMAP_ACCESSORS(active)
    312 GICV3_BITMAP_ACCESSORS(level)
    313 GICV3_BITMAP_ACCESSORS(edge_trigger)
    314 
    315 #define TYPE_ARM_GICV3_COMMON "arm-gicv3-common"
    316 typedef struct ARMGICv3CommonClass ARMGICv3CommonClass;
    317 DECLARE_OBJ_CHECKERS(GICv3State, ARMGICv3CommonClass,
    318                      ARM_GICV3_COMMON, TYPE_ARM_GICV3_COMMON)
    319 
    320 struct ARMGICv3CommonClass {
    321     /*< private >*/
    322     SysBusDeviceClass parent_class;
    323     /*< public >*/
    324 
    325     void (*pre_save)(GICv3State *s);
    326     void (*post_load)(GICv3State *s);
    327 };
    328 
    329 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
    330                               const MemoryRegionOps *ops);
    331 
    332 #endif