qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

elf_ops.h (21304B)


      1 static void glue(bswap_ehdr, SZ)(struct elfhdr *ehdr)
      2 {
      3     bswap16s(&ehdr->e_type);			/* Object file type */
      4     bswap16s(&ehdr->e_machine);		/* Architecture */
      5     bswap32s(&ehdr->e_version);		/* Object file version */
      6     bswapSZs(&ehdr->e_entry);		/* Entry point virtual address */
      7     bswapSZs(&ehdr->e_phoff);		/* Program header table file offset */
      8     bswapSZs(&ehdr->e_shoff);		/* Section header table file offset */
      9     bswap32s(&ehdr->e_flags);		/* Processor-specific flags */
     10     bswap16s(&ehdr->e_ehsize);		/* ELF header size in bytes */
     11     bswap16s(&ehdr->e_phentsize);		/* Program header table entry size */
     12     bswap16s(&ehdr->e_phnum);		/* Program header table entry count */
     13     bswap16s(&ehdr->e_shentsize);		/* Section header table entry size */
     14     bswap16s(&ehdr->e_shnum);		/* Section header table entry count */
     15     bswap16s(&ehdr->e_shstrndx);		/* Section header string table index */
     16 }
     17 
     18 static void glue(bswap_phdr, SZ)(struct elf_phdr *phdr)
     19 {
     20     bswap32s(&phdr->p_type);			/* Segment type */
     21     bswapSZs(&phdr->p_offset);		/* Segment file offset */
     22     bswapSZs(&phdr->p_vaddr);		/* Segment virtual address */
     23     bswapSZs(&phdr->p_paddr);		/* Segment physical address */
     24     bswapSZs(&phdr->p_filesz);		/* Segment size in file */
     25     bswapSZs(&phdr->p_memsz);		/* Segment size in memory */
     26     bswap32s(&phdr->p_flags);		/* Segment flags */
     27     bswapSZs(&phdr->p_align);		/* Segment alignment */
     28 }
     29 
     30 static void glue(bswap_shdr, SZ)(struct elf_shdr *shdr)
     31 {
     32     bswap32s(&shdr->sh_name);
     33     bswap32s(&shdr->sh_type);
     34     bswapSZs(&shdr->sh_flags);
     35     bswapSZs(&shdr->sh_addr);
     36     bswapSZs(&shdr->sh_offset);
     37     bswapSZs(&shdr->sh_size);
     38     bswap32s(&shdr->sh_link);
     39     bswap32s(&shdr->sh_info);
     40     bswapSZs(&shdr->sh_addralign);
     41     bswapSZs(&shdr->sh_entsize);
     42 }
     43 
     44 static void glue(bswap_sym, SZ)(struct elf_sym *sym)
     45 {
     46     bswap32s(&sym->st_name);
     47     bswapSZs(&sym->st_value);
     48     bswapSZs(&sym->st_size);
     49     bswap16s(&sym->st_shndx);
     50 }
     51 
     52 static void glue(bswap_rela, SZ)(struct elf_rela *rela)
     53 {
     54     bswapSZs(&rela->r_offset);
     55     bswapSZs(&rela->r_info);
     56     bswapSZs((elf_word *)&rela->r_addend);
     57 }
     58 
     59 static struct elf_shdr *glue(find_section, SZ)(struct elf_shdr *shdr_table,
     60                                                int n, int type)
     61 {
     62     int i;
     63     for(i=0;i<n;i++) {
     64         if (shdr_table[i].sh_type == type)
     65             return shdr_table + i;
     66     }
     67     return NULL;
     68 }
     69 
     70 static int glue(symfind, SZ)(const void *s0, const void *s1)
     71 {
     72     hwaddr addr = *(hwaddr *)s0;
     73     struct elf_sym *sym = (struct elf_sym *)s1;
     74     int result = 0;
     75     if (addr < sym->st_value) {
     76         result = -1;
     77     } else if (addr >= sym->st_value + sym->st_size) {
     78         result = 1;
     79     }
     80     return result;
     81 }
     82 
     83 static const char *glue(lookup_symbol, SZ)(struct syminfo *s,
     84                                            hwaddr orig_addr)
     85 {
     86     struct elf_sym *syms = glue(s->disas_symtab.elf, SZ);
     87     struct elf_sym *sym;
     88 
     89     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms),
     90                   glue(symfind, SZ));
     91     if (sym != NULL) {
     92         return s->disas_strtab + sym->st_name;
     93     }
     94 
     95     return "";
     96 }
     97 
     98 static int glue(symcmp, SZ)(const void *s0, const void *s1)
     99 {
    100     struct elf_sym *sym0 = (struct elf_sym *)s0;
    101     struct elf_sym *sym1 = (struct elf_sym *)s1;
    102     return (sym0->st_value < sym1->st_value)
    103         ? -1
    104         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
    105 }
    106 
    107 static void glue(load_symbols, SZ)(struct elfhdr *ehdr, int fd, int must_swab,
    108                                    int clear_lsb, symbol_fn_t sym_cb)
    109 {
    110     struct elf_shdr *symtab, *strtab;
    111     g_autofree struct elf_shdr *shdr_table = NULL;
    112     g_autofree struct elf_sym *syms = NULL;
    113     g_autofree char *str = NULL;
    114     struct syminfo *s;
    115     int nsyms, i;
    116 
    117     shdr_table = load_at(fd, ehdr->e_shoff,
    118                          sizeof(struct elf_shdr) * ehdr->e_shnum);
    119     if (!shdr_table) {
    120         return;
    121     }
    122 
    123     if (must_swab) {
    124         for (i = 0; i < ehdr->e_shnum; i++) {
    125             glue(bswap_shdr, SZ)(shdr_table + i);
    126         }
    127     }
    128 
    129     symtab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_SYMTAB);
    130     if (!symtab) {
    131         return;
    132     }
    133     syms = load_at(fd, symtab->sh_offset, symtab->sh_size);
    134     if (!syms) {
    135         return;
    136     }
    137 
    138     nsyms = symtab->sh_size / sizeof(struct elf_sym);
    139 
    140     /* String table */
    141     if (symtab->sh_link >= ehdr->e_shnum) {
    142         return;
    143     }
    144     strtab = &shdr_table[symtab->sh_link];
    145 
    146     str = load_at(fd, strtab->sh_offset, strtab->sh_size);
    147     if (!str) {
    148         return;
    149     }
    150 
    151     i = 0;
    152     while (i < nsyms) {
    153         if (must_swab) {
    154             glue(bswap_sym, SZ)(&syms[i]);
    155         }
    156         if (sym_cb) {
    157             sym_cb(str + syms[i].st_name, syms[i].st_info,
    158                    syms[i].st_value, syms[i].st_size);
    159         }
    160         /* We are only interested in function symbols.
    161            Throw everything else away.  */
    162         if (syms[i].st_shndx == SHN_UNDEF ||
    163                 syms[i].st_shndx >= SHN_LORESERVE ||
    164                 ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
    165             nsyms--;
    166             if (i < nsyms) {
    167                 syms[i] = syms[nsyms];
    168             }
    169             continue;
    170         }
    171         if (clear_lsb) {
    172             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
    173             syms[i].st_value &= ~(glue(glue(Elf, SZ), _Addr))1;
    174         }
    175         i++;
    176     }
    177 
    178     /* check we have symbols left */
    179     if (nsyms == 0) {
    180         return;
    181     }
    182 
    183     syms = g_realloc(syms, nsyms * sizeof(*syms));
    184     qsort(syms, nsyms, sizeof(*syms), glue(symcmp, SZ));
    185     for (i = 0; i < nsyms - 1; i++) {
    186         if (syms[i].st_size == 0) {
    187             syms[i].st_size = syms[i + 1].st_value - syms[i].st_value;
    188         }
    189     }
    190 
    191     /* Commit */
    192     s = g_malloc0(sizeof(*s));
    193     s->lookup_symbol = glue(lookup_symbol, SZ);
    194     glue(s->disas_symtab.elf, SZ) = g_steal_pointer(&syms);
    195     s->disas_num_syms = nsyms;
    196     s->disas_strtab = g_steal_pointer(&str);
    197     s->next = syminfos;
    198     syminfos = s;
    199 }
    200 
    201 static int glue(elf_reloc, SZ)(struct elfhdr *ehdr, int fd, int must_swab,
    202                                uint64_t (*translate_fn)(void *, uint64_t),
    203                                void *translate_opaque, uint8_t *data,
    204                                struct elf_phdr *ph, int elf_machine)
    205 {
    206     struct elf_shdr *reltab, *shdr_table = NULL;
    207     struct elf_rela *rels = NULL;
    208     int nrels, i, ret = -1;
    209     elf_word wordval;
    210     void *addr;
    211 
    212     shdr_table = load_at(fd, ehdr->e_shoff,
    213                          sizeof(struct elf_shdr) * ehdr->e_shnum);
    214     if (!shdr_table) {
    215         return -1;
    216     }
    217     if (must_swab) {
    218         for (i = 0; i < ehdr->e_shnum; i++) {
    219             glue(bswap_shdr, SZ)(&shdr_table[i]);
    220         }
    221     }
    222 
    223     reltab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_RELA);
    224     if (!reltab) {
    225         goto fail;
    226     }
    227     rels = load_at(fd, reltab->sh_offset, reltab->sh_size);
    228     if (!rels) {
    229         goto fail;
    230     }
    231     nrels = reltab->sh_size / sizeof(struct elf_rela);
    232 
    233     for (i = 0; i < nrels; i++) {
    234         if (must_swab) {
    235             glue(bswap_rela, SZ)(&rels[i]);
    236         }
    237         if (rels[i].r_offset < ph->p_vaddr ||
    238             rels[i].r_offset >= ph->p_vaddr + ph->p_filesz) {
    239             continue;
    240         }
    241         addr = &data[rels[i].r_offset - ph->p_vaddr];
    242         switch (elf_machine) {
    243         case EM_S390:
    244             switch (rels[i].r_info) {
    245             case R_390_RELATIVE:
    246                 wordval = *(elf_word *)addr;
    247                 if (must_swab) {
    248                     bswapSZs(&wordval);
    249                 }
    250                 wordval = translate_fn(translate_opaque, wordval);
    251                 if (must_swab) {
    252                     bswapSZs(&wordval);
    253                 }
    254                 *(elf_word *)addr = wordval;
    255                 break;
    256             default:
    257                 fprintf(stderr, "Unsupported relocation type %i!\n",
    258                         (int)rels[i].r_info);
    259             }
    260         }
    261     }
    262 
    263     ret = 0;
    264 fail:
    265     g_free(rels);
    266     g_free(shdr_table);
    267     return ret;
    268 }
    269 
    270 /*
    271  * Given 'nhdr', a pointer to a range of ELF Notes, search through them
    272  * for a note matching type 'elf_note_type' and return a pointer to
    273  * the matching ELF note.
    274  */
    275 static struct elf_note *glue(get_elf_note_type, SZ)(struct elf_note *nhdr,
    276                                                     elf_word note_size,
    277                                                     elf_word phdr_align,
    278                                                     elf_word elf_note_type)
    279 {
    280     elf_word nhdr_size = sizeof(struct elf_note);
    281     elf_word elf_note_entry_offset = 0;
    282     elf_word note_type;
    283     elf_word nhdr_namesz;
    284     elf_word nhdr_descsz;
    285 
    286     if (nhdr == NULL) {
    287         return NULL;
    288     }
    289 
    290     note_type = nhdr->n_type;
    291     while (note_type != elf_note_type) {
    292         nhdr_namesz = nhdr->n_namesz;
    293         nhdr_descsz = nhdr->n_descsz;
    294 
    295         elf_note_entry_offset = nhdr_size +
    296             QEMU_ALIGN_UP(nhdr_namesz, phdr_align) +
    297             QEMU_ALIGN_UP(nhdr_descsz, phdr_align);
    298 
    299         /*
    300          * If the offset calculated in this iteration exceeds the
    301          * supplied size, we are done and no matching note was found.
    302          */
    303         if (elf_note_entry_offset > note_size) {
    304             return NULL;
    305         }
    306 
    307         /* skip to the next ELF Note entry */
    308         nhdr = (void *)nhdr + elf_note_entry_offset;
    309         note_type = nhdr->n_type;
    310     }
    311 
    312     return nhdr;
    313 }
    314 
    315 static ssize_t glue(load_elf, SZ)(const char *name, int fd,
    316                                   uint64_t (*elf_note_fn)(void *, void *, bool),
    317                                   uint64_t (*translate_fn)(void *, uint64_t),
    318                                   void *translate_opaque,
    319                                   int must_swab, uint64_t *pentry,
    320                                   uint64_t *lowaddr, uint64_t *highaddr,
    321                                   uint32_t *pflags, int elf_machine,
    322                                   int clear_lsb, int data_swab,
    323                                   AddressSpace *as, bool load_rom,
    324                                   symbol_fn_t sym_cb)
    325 {
    326     struct elfhdr ehdr;
    327     struct elf_phdr *phdr = NULL, *ph;
    328     int size, i;
    329     ssize_t total_size;
    330     elf_word mem_size, file_size, data_offset;
    331     uint64_t addr, low = (uint64_t)-1, high = 0;
    332     GMappedFile *mapped_file = NULL;
    333     uint8_t *data = NULL;
    334     ssize_t ret = ELF_LOAD_FAILED;
    335 
    336     if (read(fd, &ehdr, sizeof(ehdr)) != sizeof(ehdr))
    337         goto fail;
    338     if (must_swab) {
    339         glue(bswap_ehdr, SZ)(&ehdr);
    340     }
    341 
    342     if (elf_machine <= EM_NONE) {
    343         /* The caller didn't specify an ARCH, we can figure it out */
    344         elf_machine = ehdr.e_machine;
    345     }
    346 
    347     switch (elf_machine) {
    348         case EM_PPC64:
    349             if (ehdr.e_machine != EM_PPC64) {
    350                 if (ehdr.e_machine != EM_PPC) {
    351                     ret = ELF_LOAD_WRONG_ARCH;
    352                     goto fail;
    353                 }
    354             }
    355             break;
    356         case EM_X86_64:
    357             if (ehdr.e_machine != EM_X86_64) {
    358                 if (ehdr.e_machine != EM_386) {
    359                     ret = ELF_LOAD_WRONG_ARCH;
    360                     goto fail;
    361                 }
    362             }
    363             break;
    364         case EM_MICROBLAZE:
    365             if (ehdr.e_machine != EM_MICROBLAZE) {
    366                 if (ehdr.e_machine != EM_MICROBLAZE_OLD) {
    367                     ret = ELF_LOAD_WRONG_ARCH;
    368                     goto fail;
    369                 }
    370             }
    371             break;
    372         case EM_MIPS:
    373         case EM_NANOMIPS:
    374             if ((ehdr.e_machine != EM_MIPS) &&
    375                 (ehdr.e_machine != EM_NANOMIPS)) {
    376                 ret = ELF_LOAD_WRONG_ARCH;
    377                 goto fail;
    378             }
    379             break;
    380         default:
    381             if (elf_machine != ehdr.e_machine) {
    382                 ret = ELF_LOAD_WRONG_ARCH;
    383                 goto fail;
    384             }
    385     }
    386 
    387     if (pflags) {
    388         *pflags = (elf_word)ehdr.e_flags;
    389     }
    390     if (pentry)
    391         *pentry = (uint64_t)(elf_sword)ehdr.e_entry;
    392 
    393     glue(load_symbols, SZ)(&ehdr, fd, must_swab, clear_lsb, sym_cb);
    394 
    395     size = ehdr.e_phnum * sizeof(phdr[0]);
    396     if (lseek(fd, ehdr.e_phoff, SEEK_SET) != ehdr.e_phoff) {
    397         goto fail;
    398     }
    399     phdr = g_malloc0(size);
    400     if (!phdr)
    401         goto fail;
    402     if (read(fd, phdr, size) != size)
    403         goto fail;
    404     if (must_swab) {
    405         for(i = 0; i < ehdr.e_phnum; i++) {
    406             ph = &phdr[i];
    407             glue(bswap_phdr, SZ)(ph);
    408         }
    409     }
    410 
    411     /*
    412      * Since we want to be able to modify the mapped buffer, we set the
    413      * 'writable' parameter to 'true'. Modifications to the buffer are not
    414      * written back to the file.
    415      */
    416     mapped_file = g_mapped_file_new_from_fd(fd, true, NULL);
    417     if (!mapped_file) {
    418         goto fail;
    419     }
    420 
    421     total_size = 0;
    422     for(i = 0; i < ehdr.e_phnum; i++) {
    423         ph = &phdr[i];
    424         if (ph->p_type == PT_LOAD) {
    425             mem_size = ph->p_memsz; /* Size of the ROM */
    426             file_size = ph->p_filesz; /* Size of the allocated data */
    427             data_offset = ph->p_offset; /* Offset where the data is located */
    428 
    429             if (file_size > 0) {
    430                 if (g_mapped_file_get_length(mapped_file) <
    431                     file_size + data_offset) {
    432                     goto fail;
    433                 }
    434 
    435                 data = (uint8_t *)g_mapped_file_get_contents(mapped_file);
    436                 data += data_offset;
    437             }
    438 
    439             /* The ELF spec is somewhat vague about the purpose of the
    440              * physical address field. One common use in the embedded world
    441              * is that physical address field specifies the load address
    442              * and the virtual address field specifies the execution address.
    443              * Segments are packed into ROM or flash, and the relocation
    444              * and zero-initialization of data is done at runtime. This
    445              * means that the memsz header represents the runtime size of the
    446              * segment, but the filesz represents the loadtime size. If
    447              * we try to honour the memsz value for an ELF file like this
    448              * we will end up with overlapping segments (which the
    449              * loader.c code will later reject).
    450              * We support ELF files using this scheme by by checking whether
    451              * paddr + memsz for this segment would overlap with any other
    452              * segment. If so, then we assume it's using this scheme and
    453              * truncate the loaded segment to the filesz size.
    454              * If the segment considered as being memsz size doesn't overlap
    455              * then we use memsz for the segment length, to handle ELF files
    456              * which assume that the loader will do the zero-initialization.
    457              */
    458             if (mem_size > file_size) {
    459                 /* If this segment's zero-init portion overlaps another
    460                  * segment's data or zero-init portion, then truncate this one.
    461                  * Invalid ELF files where the segments overlap even when
    462                  * only file_size bytes are loaded will be rejected by
    463                  * the ROM overlap check in loader.c, so we don't try to
    464                  * explicitly detect those here.
    465                  */
    466                 int j;
    467                 elf_word zero_start = ph->p_paddr + file_size;
    468                 elf_word zero_end = ph->p_paddr + mem_size;
    469 
    470                 for (j = 0; j < ehdr.e_phnum; j++) {
    471                     struct elf_phdr *jph = &phdr[j];
    472 
    473                     if (i != j && jph->p_type == PT_LOAD) {
    474                         elf_word other_start = jph->p_paddr;
    475                         elf_word other_end = jph->p_paddr + jph->p_memsz;
    476 
    477                         if (!(other_start >= zero_end ||
    478                               zero_start >= other_end)) {
    479                             mem_size = file_size;
    480                             break;
    481                         }
    482                     }
    483                 }
    484             }
    485 
    486             if (mem_size > SSIZE_MAX - total_size) {
    487                 ret = ELF_LOAD_TOO_BIG;
    488                 goto fail;
    489             }
    490 
    491             /* address_offset is hack for kernel images that are
    492                linked at the wrong physical address.  */
    493             if (translate_fn) {
    494                 addr = translate_fn(translate_opaque, ph->p_paddr);
    495                 glue(elf_reloc, SZ)(&ehdr, fd, must_swab,  translate_fn,
    496                                     translate_opaque, data, ph, elf_machine);
    497             } else {
    498                 addr = ph->p_paddr;
    499             }
    500 
    501             if (data_swab) {
    502                 int j;
    503                 for (j = 0; j < file_size; j += (1 << data_swab)) {
    504                     uint8_t *dp = data + j;
    505                     switch (data_swab) {
    506                     case (1):
    507                         *(uint16_t *)dp = bswap16(*(uint16_t *)dp);
    508                         break;
    509                     case (2):
    510                         *(uint32_t *)dp = bswap32(*(uint32_t *)dp);
    511                         break;
    512                     case (3):
    513                         *(uint64_t *)dp = bswap64(*(uint64_t *)dp);
    514                         break;
    515                     default:
    516                         g_assert_not_reached();
    517                     }
    518                 }
    519             }
    520 
    521             /* the entry pointer in the ELF header is a virtual
    522              * address, if the text segments paddr and vaddr differ
    523              * we need to adjust the entry */
    524             if (pentry && !translate_fn &&
    525                     ph->p_vaddr != ph->p_paddr &&
    526                     ehdr.e_entry >= ph->p_vaddr &&
    527                     ehdr.e_entry < ph->p_vaddr + ph->p_filesz &&
    528                     ph->p_flags & PF_X) {
    529                 *pentry = ehdr.e_entry - ph->p_vaddr + ph->p_paddr;
    530             }
    531 
    532             /* Some ELF files really do have segments of zero size;
    533              * just ignore them rather than trying to create empty
    534              * ROM blobs, because the zero-length blob can falsely
    535              * trigger the overlapping-ROM-blobs check.
    536              */
    537             if (mem_size != 0) {
    538                 if (load_rom) {
    539                     g_autofree char *label =
    540                         g_strdup_printf("%s ELF program header segment %d",
    541                                         name, i);
    542 
    543                     /*
    544                      * rom_add_elf_program() takes its own reference to
    545                      * 'mapped_file'.
    546                      */
    547                     rom_add_elf_program(label, mapped_file, data, file_size,
    548                                         mem_size, addr, as);
    549                 } else {
    550                     MemTxResult res;
    551 
    552                     res = address_space_write(as ? as : &address_space_memory,
    553                                               addr, MEMTXATTRS_UNSPECIFIED,
    554                                               data, file_size);
    555                     if (res != MEMTX_OK) {
    556                         goto fail;
    557                     }
    558                     /*
    559                      * We need to zero'ify the space that is not copied
    560                      * from file
    561                      */
    562                     if (file_size < mem_size) {
    563                         res = address_space_set(as ? as : &address_space_memory,
    564                                                 addr + file_size, 0,
    565                                                 mem_size - file_size,
    566                                                 MEMTXATTRS_UNSPECIFIED);
    567                         if (res != MEMTX_OK) {
    568                             goto fail;
    569                         }
    570                     }
    571                 }
    572             }
    573 
    574             total_size += mem_size;
    575             if (addr < low)
    576                 low = addr;
    577             if ((addr + mem_size) > high)
    578                 high = addr + mem_size;
    579 
    580             data = NULL;
    581 
    582         } else if (ph->p_type == PT_NOTE && elf_note_fn) {
    583             struct elf_note *nhdr = NULL;
    584 
    585             file_size = ph->p_filesz; /* Size of the range of ELF notes */
    586             data_offset = ph->p_offset; /* Offset where the notes are located */
    587 
    588             if (file_size > 0) {
    589                 if (g_mapped_file_get_length(mapped_file) <
    590                     file_size + data_offset) {
    591                     goto fail;
    592                 }
    593 
    594                 data = (uint8_t *)g_mapped_file_get_contents(mapped_file);
    595                 data += data_offset;
    596             }
    597 
    598             /*
    599              * Search the ELF notes to find one with a type matching the
    600              * value passed in via 'translate_opaque'
    601              */
    602             nhdr = (struct elf_note *)data;
    603             assert(translate_opaque != NULL);
    604             nhdr = glue(get_elf_note_type, SZ)(nhdr, file_size, ph->p_align,
    605                                                *(uint64_t *)translate_opaque);
    606             if (nhdr != NULL) {
    607                 elf_note_fn((void *)nhdr, (void *)&ph->p_align, SZ == 64);
    608             }
    609             data = NULL;
    610         }
    611     }
    612 
    613     if (lowaddr)
    614         *lowaddr = (uint64_t)(elf_sword)low;
    615     if (highaddr)
    616         *highaddr = (uint64_t)(elf_sword)high;
    617     ret = total_size;
    618  fail:
    619     if (mapped_file) {
    620         g_mapped_file_unref(mapped_file);
    621     }
    622     g_free(phdr);
    623     return ret;
    624 }