qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

clock.h (11517B)


      1 /*
      2  * Hardware Clocks
      3  *
      4  * Copyright GreenSocs 2016-2020
      5  *
      6  * Authors:
      7  *  Frederic Konrad
      8  *  Damien Hedde
      9  *
     10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
     11  * See the COPYING file in the top-level directory.
     12  */
     13 
     14 #ifndef QEMU_HW_CLOCK_H
     15 #define QEMU_HW_CLOCK_H
     16 
     17 #include "qom/object.h"
     18 #include "qemu/queue.h"
     19 #include "qemu/host-utils.h"
     20 #include "qemu/bitops.h"
     21 
     22 #define TYPE_CLOCK "clock"
     23 OBJECT_DECLARE_SIMPLE_TYPE(Clock, CLOCK)
     24 
     25 /*
     26  * Argument to ClockCallback functions indicating why the callback
     27  * has been called. A mask of these values logically ORed together
     28  * is used to specify which events are interesting when the callback
     29  * is registered, so these values must all be different bit values.
     30  */
     31 typedef enum ClockEvent {
     32     ClockUpdate = 1, /* Clock period has just updated */
     33     ClockPreUpdate = 2, /* Clock period is about to update */
     34 } ClockEvent;
     35 
     36 typedef void ClockCallback(void *opaque, ClockEvent event);
     37 
     38 /*
     39  * clock store a value representing the clock's period in 2^-32ns unit.
     40  * It can represent:
     41  *  + periods from 2^-32ns up to 4seconds
     42  *  + frequency from ~0.25Hz 2e10Ghz
     43  * Resolution of frequency representation decreases with frequency:
     44  * + at 100MHz, resolution is ~2mHz
     45  * + at 1Ghz,   resolution is ~0.2Hz
     46  * + at 10Ghz,  resolution is ~20Hz
     47  */
     48 #define CLOCK_PERIOD_1SEC (1000000000llu << 32)
     49 
     50 /*
     51  * macro helpers to convert to hertz / nanosecond
     52  */
     53 #define CLOCK_PERIOD_FROM_NS(ns) ((ns) * (CLOCK_PERIOD_1SEC / 1000000000llu))
     54 #define CLOCK_PERIOD_FROM_HZ(hz) (((hz) != 0) ? CLOCK_PERIOD_1SEC / (hz) : 0u)
     55 #define CLOCK_PERIOD_TO_HZ(per) (((per) != 0) ? CLOCK_PERIOD_1SEC / (per) : 0u)
     56 
     57 /**
     58  * Clock:
     59  * @parent_obj: parent class
     60  * @period: unsigned integer representing the period of the clock
     61  * @canonical_path: clock path string cache (used for trace purpose)
     62  * @callback: called when clock changes
     63  * @callback_opaque: argument for @callback
     64  * @callback_events: mask of events when callback should be called
     65  * @source: source (or parent in clock tree) of the clock
     66  * @children: list of clocks connected to this one (it is their source)
     67  * @sibling: structure used to form a clock list
     68  */
     69 
     70 
     71 struct Clock {
     72     /*< private >*/
     73     Object parent_obj;
     74 
     75     /* all fields are private and should not be modified directly */
     76 
     77     /* fields */
     78     uint64_t period;
     79     char *canonical_path;
     80     ClockCallback *callback;
     81     void *callback_opaque;
     82     unsigned int callback_events;
     83 
     84     /* Ratio of the parent clock to run the child clocks at */
     85     uint32_t multiplier;
     86     uint32_t divider;
     87 
     88     /* Clocks are organized in a clock tree */
     89     Clock *source;
     90     QLIST_HEAD(, Clock) children;
     91     QLIST_ENTRY(Clock) sibling;
     92 };
     93 
     94 /*
     95  * vmstate description entry to be added in device vmsd.
     96  */
     97 extern const VMStateDescription vmstate_clock;
     98 #define VMSTATE_CLOCK(field, state) \
     99     VMSTATE_CLOCK_V(field, state, 0)
    100 #define VMSTATE_CLOCK_V(field, state, version) \
    101     VMSTATE_STRUCT_POINTER_V(field, state, version, vmstate_clock, Clock)
    102 #define VMSTATE_ARRAY_CLOCK(field, state, num) \
    103     VMSTATE_ARRAY_CLOCK_V(field, state, num, 0)
    104 #define VMSTATE_ARRAY_CLOCK_V(field, state, num, version)          \
    105     VMSTATE_ARRAY_OF_POINTER_TO_STRUCT(field, state, num, version, \
    106                                        vmstate_clock, Clock)
    107 
    108 /**
    109  * clock_setup_canonical_path:
    110  * @clk: clock
    111  *
    112  * compute the canonical path of the clock (used by log messages)
    113  */
    114 void clock_setup_canonical_path(Clock *clk);
    115 
    116 /**
    117  * clock_new:
    118  * @parent: the clock parent
    119  * @name: the clock object name
    120  *
    121  * Helper function to create a new clock and parent it to @parent. There is no
    122  * need to call clock_setup_canonical_path on the returned clock as it is done
    123  * by this function.
    124  *
    125  * @return the newly created clock
    126  */
    127 Clock *clock_new(Object *parent, const char *name);
    128 
    129 /**
    130  * clock_set_callback:
    131  * @clk: the clock to register the callback into
    132  * @cb: the callback function
    133  * @opaque: the argument to the callback
    134  * @events: the events the callback should be called for
    135  *          (logical OR of ClockEvent enum values)
    136  *
    137  * Register a callback called on every clock update.
    138  * Note that a clock has only one callback: you cannot register
    139  * different callback functions for different events.
    140  */
    141 void clock_set_callback(Clock *clk, ClockCallback *cb,
    142                         void *opaque, unsigned int events);
    143 
    144 /**
    145  * clock_clear_callback:
    146  * @clk: the clock to delete the callback from
    147  *
    148  * Unregister the callback registered with clock_set_callback.
    149  */
    150 void clock_clear_callback(Clock *clk);
    151 
    152 /**
    153  * clock_set_source:
    154  * @clk: the clock.
    155  * @src: the source clock
    156  *
    157  * Setup @src as the clock source of @clk. The current @src period
    158  * value is also copied to @clk and its subtree but no callback is
    159  * called.
    160  * Further @src update will be propagated to @clk and its subtree.
    161  */
    162 void clock_set_source(Clock *clk, Clock *src);
    163 
    164 /**
    165  * clock_has_source:
    166  * @clk: the clock
    167  *
    168  * Returns true if the clock has a source clock connected to it.
    169  * This is useful for devices which have input clocks which must
    170  * be connected by the board/SoC code which creates them. The
    171  * device code can use this to check in its realize method that
    172  * the clock has been connected.
    173  */
    174 static inline bool clock_has_source(const Clock *clk)
    175 {
    176     return clk->source != NULL;
    177 }
    178 
    179 /**
    180  * clock_set:
    181  * @clk: the clock to initialize.
    182  * @value: the clock's value, 0 means unclocked
    183  *
    184  * Set the local cached period value of @clk to @value.
    185  *
    186  * @return: true if the clock is changed.
    187  */
    188 bool clock_set(Clock *clk, uint64_t value);
    189 
    190 static inline bool clock_set_hz(Clock *clk, unsigned hz)
    191 {
    192     return clock_set(clk, CLOCK_PERIOD_FROM_HZ(hz));
    193 }
    194 
    195 static inline bool clock_set_ns(Clock *clk, unsigned ns)
    196 {
    197     return clock_set(clk, CLOCK_PERIOD_FROM_NS(ns));
    198 }
    199 
    200 /**
    201  * clock_propagate:
    202  * @clk: the clock
    203  *
    204  * Propagate the clock period that has been previously configured using
    205  * @clock_set(). This will update recursively all connected clocks.
    206  * It is an error to call this function on a clock which has a source.
    207  * Note: this function must not be called during device inititialization
    208  * or migration.
    209  */
    210 void clock_propagate(Clock *clk);
    211 
    212 /**
    213  * clock_update:
    214  * @clk: the clock to update.
    215  * @value: the new clock's value, 0 means unclocked
    216  *
    217  * Update the @clk to the new @value. All connected clocks will be informed
    218  * of this update. This is equivalent to call @clock_set() then
    219  * @clock_propagate().
    220  */
    221 static inline void clock_update(Clock *clk, uint64_t value)
    222 {
    223     if (clock_set(clk, value)) {
    224         clock_propagate(clk);
    225     }
    226 }
    227 
    228 static inline void clock_update_hz(Clock *clk, unsigned hz)
    229 {
    230     clock_update(clk, CLOCK_PERIOD_FROM_HZ(hz));
    231 }
    232 
    233 static inline void clock_update_ns(Clock *clk, unsigned ns)
    234 {
    235     clock_update(clk, CLOCK_PERIOD_FROM_NS(ns));
    236 }
    237 
    238 /**
    239  * clock_get:
    240  * @clk: the clk to fetch the clock
    241  *
    242  * @return: the current period.
    243  */
    244 static inline uint64_t clock_get(const Clock *clk)
    245 {
    246     return clk->period;
    247 }
    248 
    249 static inline unsigned clock_get_hz(Clock *clk)
    250 {
    251     return CLOCK_PERIOD_TO_HZ(clock_get(clk));
    252 }
    253 
    254 /**
    255  * clock_ticks_to_ns:
    256  * @clk: the clock to query
    257  * @ticks: number of ticks
    258  *
    259  * Returns the length of time in nanoseconds for this clock
    260  * to tick @ticks times. Because a clock can have a period
    261  * which is not a whole number of nanoseconds, it is important
    262  * to use this function when calculating things like timer
    263  * expiry deadlines, rather than attempting to obtain a "period
    264  * in nanoseconds" value and then multiplying that by a number
    265  * of ticks.
    266  *
    267  * The result could in theory be too large to fit in a 64-bit
    268  * value if the number of ticks and the clock period are both
    269  * large; to avoid overflow the result will be saturated to INT64_MAX
    270  * (because this is the largest valid input to the QEMUTimer APIs).
    271  * Since INT64_MAX nanoseconds is almost 300 years, anything with
    272  * an expiry later than that is in the "will never happen" category
    273  * and callers can reasonably not special-case the saturated result.
    274  */
    275 static inline uint64_t clock_ticks_to_ns(const Clock *clk, uint64_t ticks)
    276 {
    277     uint64_t ns_low, ns_high;
    278 
    279     /*
    280      * clk->period is the period in units of 2^-32 ns, so
    281      * (clk->period * ticks) is the required length of time in those
    282      * units, and we can convert to nanoseconds by multiplying by
    283      * 2^32, which is the same as shifting the 128-bit multiplication
    284      * result right by 32.
    285      */
    286     mulu64(&ns_low, &ns_high, clk->period, ticks);
    287     if (ns_high & MAKE_64BIT_MASK(31, 33)) {
    288         return INT64_MAX;
    289     }
    290     return ns_low >> 32 | ns_high << 32;
    291 }
    292 
    293 /**
    294  * clock_ns_to_ticks:
    295  * @clk: the clock to query
    296  * @ns: duration in nanoseconds
    297  *
    298  * Returns the number of ticks this clock would make in the given
    299  * number of nanoseconds. Because a clock can have a period which
    300  * is not a whole number of nanoseconds, it is important to use this
    301  * function rather than attempting to obtain a "period in nanoseconds"
    302  * value and then dividing the duration by that value.
    303  *
    304  * If the clock is stopped (ie it has period zero), returns 0.
    305  *
    306  * For some inputs the result could overflow a 64-bit value (because
    307  * the clock's period is short and the duration is long). In these
    308  * cases we truncate the result to a 64-bit value. This is on the
    309  * assumption that generally the result is going to be used to report
    310  * a 32-bit or 64-bit guest register value, so wrapping either cannot
    311  * happen or is the desired behaviour.
    312  */
    313 static inline uint64_t clock_ns_to_ticks(const Clock *clk, uint64_t ns)
    314 {
    315     /*
    316      * ticks = duration_in_ns / period_in_ns
    317      *       = ns / (period / 2^32)
    318      *       = (ns * 2^32) / period
    319      * The hi, lo inputs to divu128() are (ns << 32) as a 128 bit value.
    320      */
    321     uint64_t lo = ns << 32;
    322     uint64_t hi = ns >> 32;
    323     if (clk->period == 0) {
    324         return 0;
    325     }
    326 
    327     divu128(&lo, &hi, clk->period);
    328     return lo;
    329 }
    330 
    331 /**
    332  * clock_is_enabled:
    333  * @clk: a clock
    334  *
    335  * @return: true if the clock is running.
    336  */
    337 static inline bool clock_is_enabled(const Clock *clk)
    338 {
    339     return clock_get(clk) != 0;
    340 }
    341 
    342 /**
    343  * clock_display_freq: return human-readable representation of clock frequency
    344  * @clk: clock
    345  *
    346  * Return a string which has a human-readable representation of the
    347  * clock's frequency, e.g. "33.3 MHz". This is intended for debug
    348  * and display purposes.
    349  *
    350  * The caller is responsible for freeing the string with g_free().
    351  */
    352 char *clock_display_freq(Clock *clk);
    353 
    354 /**
    355  * clock_set_mul_div: set multiplier/divider for child clocks
    356  * @clk: clock
    357  * @multiplier: multiplier value
    358  * @divider: divider value
    359  *
    360  * By default, a Clock's children will all run with the same period
    361  * as their parent. This function allows you to adjust the multiplier
    362  * and divider used to derive the child clock frequency.
    363  * For example, setting a multiplier of 2 and a divider of 3
    364  * will run child clocks with a period 2/3 of the parent clock,
    365  * so if the parent clock is an 8MHz clock the children will
    366  * be 12MHz.
    367  *
    368  * Setting the multiplier to 0 will stop the child clocks.
    369  * Setting the divider to 0 is a programming error (diagnosed with
    370  * an assertion failure).
    371  * Setting a multiplier value that results in the child period
    372  * overflowing is not diagnosed.
    373  *
    374  * Note that this function does not call clock_propagate(); the
    375  * caller should do that if necessary.
    376  */
    377 void clock_set_mul_div(Clock *clk, uint32_t multiplier, uint32_t divider);
    378 
    379 #endif /* QEMU_HW_CLOCK_H */