qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

memory.h (111586B)


      1 /*
      2  * Physical memory management API
      3  *
      4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
      5  *
      6  * Authors:
      7  *  Avi Kivity <avi@redhat.com>
      8  *
      9  * This work is licensed under the terms of the GNU GPL, version 2.  See
     10  * the COPYING file in the top-level directory.
     11  *
     12  */
     13 
     14 #ifndef MEMORY_H
     15 #define MEMORY_H
     16 
     17 #ifndef CONFIG_USER_ONLY
     18 
     19 #include "exec/cpu-common.h"
     20 #include "exec/hwaddr.h"
     21 #include "exec/memattrs.h"
     22 #include "exec/memop.h"
     23 #include "exec/ramlist.h"
     24 #include "qemu/bswap.h"
     25 #include "qemu/queue.h"
     26 #include "qemu/int128.h"
     27 #include "qemu/notify.h"
     28 #include "qom/object.h"
     29 #include "qemu/rcu.h"
     30 
     31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
     32 
     33 #define MAX_PHYS_ADDR_SPACE_BITS 62
     34 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
     35 
     36 #define TYPE_MEMORY_REGION "memory-region"
     37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
     38                          TYPE_MEMORY_REGION)
     39 
     40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
     41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
     42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
     43                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
     44 
     45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
     46 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
     47 typedef struct RamDiscardManager RamDiscardManager;
     48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
     49                      RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
     50 
     51 #ifdef CONFIG_FUZZ
     52 void fuzz_dma_read_cb(size_t addr,
     53                       size_t len,
     54                       MemoryRegion *mr);
     55 #else
     56 static inline void fuzz_dma_read_cb(size_t addr,
     57                                     size_t len,
     58                                     MemoryRegion *mr)
     59 {
     60     /* Do Nothing */
     61 }
     62 #endif
     63 
     64 /* Possible bits for global_dirty_log_{start|stop} */
     65 
     66 /* Dirty tracking enabled because migration is running */
     67 #define GLOBAL_DIRTY_MIGRATION  (1U << 0)
     68 
     69 /* Dirty tracking enabled because measuring dirty rate */
     70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
     71 
     72 /* Dirty tracking enabled because dirty limit */
     73 #define GLOBAL_DIRTY_LIMIT      (1U << 2)
     74 
     75 #define GLOBAL_DIRTY_MASK  (0x7)
     76 
     77 extern unsigned int global_dirty_tracking;
     78 
     79 typedef struct MemoryRegionOps MemoryRegionOps;
     80 
     81 struct ReservedRegion {
     82     hwaddr low;
     83     hwaddr high;
     84     unsigned type;
     85 };
     86 
     87 /**
     88  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
     89  *
     90  * @mr: the region, or %NULL if empty
     91  * @fv: the flat view of the address space the region is mapped in
     92  * @offset_within_region: the beginning of the section, relative to @mr's start
     93  * @size: the size of the section; will not exceed @mr's boundaries
     94  * @offset_within_address_space: the address of the first byte of the section
     95  *     relative to the region's address space
     96  * @readonly: writes to this section are ignored
     97  * @nonvolatile: this section is non-volatile
     98  */
     99 struct MemoryRegionSection {
    100     Int128 size;
    101     MemoryRegion *mr;
    102     FlatView *fv;
    103     hwaddr offset_within_region;
    104     hwaddr offset_within_address_space;
    105     bool readonly;
    106     bool nonvolatile;
    107 };
    108 
    109 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
    110 
    111 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
    112 typedef enum {
    113     IOMMU_NONE = 0,
    114     IOMMU_RO   = 1,
    115     IOMMU_WO   = 2,
    116     IOMMU_RW   = 3,
    117 } IOMMUAccessFlags;
    118 
    119 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
    120 
    121 struct IOMMUTLBEntry {
    122     AddressSpace    *target_as;
    123     hwaddr           iova;
    124     hwaddr           translated_addr;
    125     hwaddr           addr_mask;  /* 0xfff = 4k translation */
    126     IOMMUAccessFlags perm;
    127 };
    128 
    129 /*
    130  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
    131  * register with one or multiple IOMMU Notifier capability bit(s).
    132  */
    133 typedef enum {
    134     IOMMU_NOTIFIER_NONE = 0,
    135     /* Notify cache invalidations */
    136     IOMMU_NOTIFIER_UNMAP = 0x1,
    137     /* Notify entry changes (newly created entries) */
    138     IOMMU_NOTIFIER_MAP = 0x2,
    139     /* Notify changes on device IOTLB entries */
    140     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
    141 } IOMMUNotifierFlag;
    142 
    143 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
    144 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
    145 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
    146                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
    147 
    148 struct IOMMUNotifier;
    149 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
    150                             IOMMUTLBEntry *data);
    151 
    152 struct IOMMUNotifier {
    153     IOMMUNotify notify;
    154     IOMMUNotifierFlag notifier_flags;
    155     /* Notify for address space range start <= addr <= end */
    156     hwaddr start;
    157     hwaddr end;
    158     int iommu_idx;
    159     QLIST_ENTRY(IOMMUNotifier) node;
    160 };
    161 typedef struct IOMMUNotifier IOMMUNotifier;
    162 
    163 typedef struct IOMMUTLBEvent {
    164     IOMMUNotifierFlag type;
    165     IOMMUTLBEntry entry;
    166 } IOMMUTLBEvent;
    167 
    168 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
    169 #define RAM_PREALLOC   (1 << 0)
    170 
    171 /* RAM is mmap-ed with MAP_SHARED */
    172 #define RAM_SHARED     (1 << 1)
    173 
    174 /* Only a portion of RAM (used_length) is actually used, and migrated.
    175  * Resizing RAM while migrating can result in the migration being canceled.
    176  */
    177 #define RAM_RESIZEABLE (1 << 2)
    178 
    179 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
    180  * zero the page and wake waiting processes.
    181  * (Set during postcopy)
    182  */
    183 #define RAM_UF_ZEROPAGE (1 << 3)
    184 
    185 /* RAM can be migrated */
    186 #define RAM_MIGRATABLE (1 << 4)
    187 
    188 /* RAM is a persistent kind memory */
    189 #define RAM_PMEM (1 << 5)
    190 
    191 
    192 /*
    193  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
    194  * support 'write-tracking' migration type.
    195  * Implies ram_state->ram_wt_enabled.
    196  */
    197 #define RAM_UF_WRITEPROTECT (1 << 6)
    198 
    199 /*
    200  * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
    201  * pages if applicable) is skipped: will bail out if not supported. When not
    202  * set, the OS will do the reservation, if supported for the memory type.
    203  */
    204 #define RAM_NORESERVE (1 << 7)
    205 
    206 /* RAM that isn't accessible through normal means. */
    207 #define RAM_PROTECTED (1 << 8)
    208 
    209 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
    210                                        IOMMUNotifierFlag flags,
    211                                        hwaddr start, hwaddr end,
    212                                        int iommu_idx)
    213 {
    214     n->notify = fn;
    215     n->notifier_flags = flags;
    216     n->start = start;
    217     n->end = end;
    218     n->iommu_idx = iommu_idx;
    219 }
    220 
    221 /*
    222  * Memory region callbacks
    223  */
    224 struct MemoryRegionOps {
    225     /* Read from the memory region. @addr is relative to @mr; @size is
    226      * in bytes. */
    227     uint64_t (*read)(void *opaque,
    228                      hwaddr addr,
    229                      unsigned size);
    230     /* Write to the memory region. @addr is relative to @mr; @size is
    231      * in bytes. */
    232     void (*write)(void *opaque,
    233                   hwaddr addr,
    234                   uint64_t data,
    235                   unsigned size);
    236 
    237     MemTxResult (*read_with_attrs)(void *opaque,
    238                                    hwaddr addr,
    239                                    uint64_t *data,
    240                                    unsigned size,
    241                                    MemTxAttrs attrs);
    242     MemTxResult (*write_with_attrs)(void *opaque,
    243                                     hwaddr addr,
    244                                     uint64_t data,
    245                                     unsigned size,
    246                                     MemTxAttrs attrs);
    247 
    248     enum device_endian endianness;
    249     /* Guest-visible constraints: */
    250     struct {
    251         /* If nonzero, specify bounds on access sizes beyond which a machine
    252          * check is thrown.
    253          */
    254         unsigned min_access_size;
    255         unsigned max_access_size;
    256         /* If true, unaligned accesses are supported.  Otherwise unaligned
    257          * accesses throw machine checks.
    258          */
    259          bool unaligned;
    260         /*
    261          * If present, and returns #false, the transaction is not accepted
    262          * by the device (and results in machine dependent behaviour such
    263          * as a machine check exception).
    264          */
    265         bool (*accepts)(void *opaque, hwaddr addr,
    266                         unsigned size, bool is_write,
    267                         MemTxAttrs attrs);
    268     } valid;
    269     /* Internal implementation constraints: */
    270     struct {
    271         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
    272          * will be rounded upwards and a partial result will be returned.
    273          */
    274         unsigned min_access_size;
    275         /* If nonzero, specifies the maximum size implemented.  Larger sizes
    276          * will be done as a series of accesses with smaller sizes.
    277          */
    278         unsigned max_access_size;
    279         /* If true, unaligned accesses are supported.  Otherwise all accesses
    280          * are converted to (possibly multiple) naturally aligned accesses.
    281          */
    282         bool unaligned;
    283     } impl;
    284 };
    285 
    286 typedef struct MemoryRegionClass {
    287     /* private */
    288     ObjectClass parent_class;
    289 } MemoryRegionClass;
    290 
    291 
    292 enum IOMMUMemoryRegionAttr {
    293     IOMMU_ATTR_SPAPR_TCE_FD
    294 };
    295 
    296 /*
    297  * IOMMUMemoryRegionClass:
    298  *
    299  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
    300  * and provide an implementation of at least the @translate method here
    301  * to handle requests to the memory region. Other methods are optional.
    302  *
    303  * The IOMMU implementation must use the IOMMU notifier infrastructure
    304  * to report whenever mappings are changed, by calling
    305  * memory_region_notify_iommu() (or, if necessary, by calling
    306  * memory_region_notify_iommu_one() for each registered notifier).
    307  *
    308  * Conceptually an IOMMU provides a mapping from input address
    309  * to an output TLB entry. If the IOMMU is aware of memory transaction
    310  * attributes and the output TLB entry depends on the transaction
    311  * attributes, we represent this using IOMMU indexes. Each index
    312  * selects a particular translation table that the IOMMU has:
    313  *
    314  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
    315  *
    316  *   @translate takes an input address and an IOMMU index
    317  *
    318  * and the mapping returned can only depend on the input address and the
    319  * IOMMU index.
    320  *
    321  * Most IOMMUs don't care about the transaction attributes and support
    322  * only a single IOMMU index. A more complex IOMMU might have one index
    323  * for secure transactions and one for non-secure transactions.
    324  */
    325 struct IOMMUMemoryRegionClass {
    326     /* private: */
    327     MemoryRegionClass parent_class;
    328 
    329     /* public: */
    330     /**
    331      * @translate:
    332      *
    333      * Return a TLB entry that contains a given address.
    334      *
    335      * The IOMMUAccessFlags indicated via @flag are optional and may
    336      * be specified as IOMMU_NONE to indicate that the caller needs
    337      * the full translation information for both reads and writes. If
    338      * the access flags are specified then the IOMMU implementation
    339      * may use this as an optimization, to stop doing a page table
    340      * walk as soon as it knows that the requested permissions are not
    341      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
    342      * full page table walk and report the permissions in the returned
    343      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
    344      * return different mappings for reads and writes.)
    345      *
    346      * The returned information remains valid while the caller is
    347      * holding the big QEMU lock or is inside an RCU critical section;
    348      * if the caller wishes to cache the mapping beyond that it must
    349      * register an IOMMU notifier so it can invalidate its cached
    350      * information when the IOMMU mapping changes.
    351      *
    352      * @iommu: the IOMMUMemoryRegion
    353      *
    354      * @hwaddr: address to be translated within the memory region
    355      *
    356      * @flag: requested access permission
    357      *
    358      * @iommu_idx: IOMMU index for the translation
    359      */
    360     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
    361                                IOMMUAccessFlags flag, int iommu_idx);
    362     /**
    363      * @get_min_page_size:
    364      *
    365      * Returns minimum supported page size in bytes.
    366      *
    367      * If this method is not provided then the minimum is assumed to
    368      * be TARGET_PAGE_SIZE.
    369      *
    370      * @iommu: the IOMMUMemoryRegion
    371      */
    372     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
    373     /**
    374      * @notify_flag_changed:
    375      *
    376      * Called when IOMMU Notifier flag changes (ie when the set of
    377      * events which IOMMU users are requesting notification for changes).
    378      * Optional method -- need not be provided if the IOMMU does not
    379      * need to know exactly which events must be notified.
    380      *
    381      * @iommu: the IOMMUMemoryRegion
    382      *
    383      * @old_flags: events which previously needed to be notified
    384      *
    385      * @new_flags: events which now need to be notified
    386      *
    387      * Returns 0 on success, or a negative errno; in particular
    388      * returns -EINVAL if the new flag bitmap is not supported by the
    389      * IOMMU memory region. In case of failure, the error object
    390      * must be created
    391      */
    392     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
    393                                IOMMUNotifierFlag old_flags,
    394                                IOMMUNotifierFlag new_flags,
    395                                Error **errp);
    396     /**
    397      * @replay:
    398      *
    399      * Called to handle memory_region_iommu_replay().
    400      *
    401      * The default implementation of memory_region_iommu_replay() is to
    402      * call the IOMMU translate method for every page in the address space
    403      * with flag == IOMMU_NONE and then call the notifier if translate
    404      * returns a valid mapping. If this method is implemented then it
    405      * overrides the default behaviour, and must provide the full semantics
    406      * of memory_region_iommu_replay(), by calling @notifier for every
    407      * translation present in the IOMMU.
    408      *
    409      * Optional method -- an IOMMU only needs to provide this method
    410      * if the default is inefficient or produces undesirable side effects.
    411      *
    412      * Note: this is not related to record-and-replay functionality.
    413      */
    414     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
    415 
    416     /**
    417      * @get_attr:
    418      *
    419      * Get IOMMU misc attributes. This is an optional method that
    420      * can be used to allow users of the IOMMU to get implementation-specific
    421      * information. The IOMMU implements this method to handle calls
    422      * by IOMMU users to memory_region_iommu_get_attr() by filling in
    423      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
    424      * the IOMMU supports. If the method is unimplemented then
    425      * memory_region_iommu_get_attr() will always return -EINVAL.
    426      *
    427      * @iommu: the IOMMUMemoryRegion
    428      *
    429      * @attr: attribute being queried
    430      *
    431      * @data: memory to fill in with the attribute data
    432      *
    433      * Returns 0 on success, or a negative errno; in particular
    434      * returns -EINVAL for unrecognized or unimplemented attribute types.
    435      */
    436     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
    437                     void *data);
    438 
    439     /**
    440      * @attrs_to_index:
    441      *
    442      * Return the IOMMU index to use for a given set of transaction attributes.
    443      *
    444      * Optional method: if an IOMMU only supports a single IOMMU index then
    445      * the default implementation of memory_region_iommu_attrs_to_index()
    446      * will return 0.
    447      *
    448      * The indexes supported by an IOMMU must be contiguous, starting at 0.
    449      *
    450      * @iommu: the IOMMUMemoryRegion
    451      * @attrs: memory transaction attributes
    452      */
    453     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
    454 
    455     /**
    456      * @num_indexes:
    457      *
    458      * Return the number of IOMMU indexes this IOMMU supports.
    459      *
    460      * Optional method: if this method is not provided, then
    461      * memory_region_iommu_num_indexes() will return 1, indicating that
    462      * only a single IOMMU index is supported.
    463      *
    464      * @iommu: the IOMMUMemoryRegion
    465      */
    466     int (*num_indexes)(IOMMUMemoryRegion *iommu);
    467 
    468     /**
    469      * @iommu_set_page_size_mask:
    470      *
    471      * Restrict the page size mask that can be supported with a given IOMMU
    472      * memory region. Used for example to propagate host physical IOMMU page
    473      * size mask limitations to the virtual IOMMU.
    474      *
    475      * Optional method: if this method is not provided, then the default global
    476      * page mask is used.
    477      *
    478      * @iommu: the IOMMUMemoryRegion
    479      *
    480      * @page_size_mask: a bitmask of supported page sizes. At least one bit,
    481      * representing the smallest page size, must be set. Additional set bits
    482      * represent supported block sizes. For example a host physical IOMMU that
    483      * uses page tables with a page size of 4kB, and supports 2MB and 4GB
    484      * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
    485      * block sizes is specified with mask 0xfffffffffffff000.
    486      *
    487      * Returns 0 on success, or a negative error. In case of failure, the error
    488      * object must be created.
    489      */
    490      int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
    491                                      uint64_t page_size_mask,
    492                                      Error **errp);
    493 };
    494 
    495 typedef struct RamDiscardListener RamDiscardListener;
    496 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
    497                                  MemoryRegionSection *section);
    498 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
    499                                  MemoryRegionSection *section);
    500 
    501 struct RamDiscardListener {
    502     /*
    503      * @notify_populate:
    504      *
    505      * Notification that previously discarded memory is about to get populated.
    506      * Listeners are able to object. If any listener objects, already
    507      * successfully notified listeners are notified about a discard again.
    508      *
    509      * @rdl: the #RamDiscardListener getting notified
    510      * @section: the #MemoryRegionSection to get populated. The section
    511      *           is aligned within the memory region to the minimum granularity
    512      *           unless it would exceed the registered section.
    513      *
    514      * Returns 0 on success. If the notification is rejected by the listener,
    515      * an error is returned.
    516      */
    517     NotifyRamPopulate notify_populate;
    518 
    519     /*
    520      * @notify_discard:
    521      *
    522      * Notification that previously populated memory was discarded successfully
    523      * and listeners should drop all references to such memory and prevent
    524      * new population (e.g., unmap).
    525      *
    526      * @rdl: the #RamDiscardListener getting notified
    527      * @section: the #MemoryRegionSection to get populated. The section
    528      *           is aligned within the memory region to the minimum granularity
    529      *           unless it would exceed the registered section.
    530      */
    531     NotifyRamDiscard notify_discard;
    532 
    533     /*
    534      * @double_discard_supported:
    535      *
    536      * The listener suppors getting @notify_discard notifications that span
    537      * already discarded parts.
    538      */
    539     bool double_discard_supported;
    540 
    541     MemoryRegionSection *section;
    542     QLIST_ENTRY(RamDiscardListener) next;
    543 };
    544 
    545 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
    546                                              NotifyRamPopulate populate_fn,
    547                                              NotifyRamDiscard discard_fn,
    548                                              bool double_discard_supported)
    549 {
    550     rdl->notify_populate = populate_fn;
    551     rdl->notify_discard = discard_fn;
    552     rdl->double_discard_supported = double_discard_supported;
    553 }
    554 
    555 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
    556 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
    557 
    558 /*
    559  * RamDiscardManagerClass:
    560  *
    561  * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
    562  * regions are currently populated to be used/accessed by the VM, notifying
    563  * after parts were discarded (freeing up memory) and before parts will be
    564  * populated (consuming memory), to be used/accessed by the VM.
    565  *
    566  * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
    567  * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
    568  * mapped.
    569  *
    570  * The #RamDiscardManager is intended to be used by technologies that are
    571  * incompatible with discarding of RAM (e.g., VFIO, which may pin all
    572  * memory inside a #MemoryRegion), and require proper coordination to only
    573  * map the currently populated parts, to hinder parts that are expected to
    574  * remain discarded from silently getting populated and consuming memory.
    575  * Technologies that support discarding of RAM don't have to bother and can
    576  * simply map the whole #MemoryRegion.
    577  *
    578  * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
    579  * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
    580  * Logically unplugging memory consists of discarding RAM. The VM agreed to not
    581  * access unplugged (discarded) memory - especially via DMA. virtio-mem will
    582  * properly coordinate with listeners before memory is plugged (populated),
    583  * and after memory is unplugged (discarded).
    584  *
    585  * Listeners are called in multiples of the minimum granularity (unless it
    586  * would exceed the registered range) and changes are aligned to the minimum
    587  * granularity within the #MemoryRegion. Listeners have to prepare for memory
    588  * becoming discarded in a different granularity than it was populated and the
    589  * other way around.
    590  */
    591 struct RamDiscardManagerClass {
    592     /* private */
    593     InterfaceClass parent_class;
    594 
    595     /* public */
    596 
    597     /**
    598      * @get_min_granularity:
    599      *
    600      * Get the minimum granularity in which listeners will get notified
    601      * about changes within the #MemoryRegion via the #RamDiscardManager.
    602      *
    603      * @rdm: the #RamDiscardManager
    604      * @mr: the #MemoryRegion
    605      *
    606      * Returns the minimum granularity.
    607      */
    608     uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
    609                                     const MemoryRegion *mr);
    610 
    611     /**
    612      * @is_populated:
    613      *
    614      * Check whether the given #MemoryRegionSection is completely populated
    615      * (i.e., no parts are currently discarded) via the #RamDiscardManager.
    616      * There are no alignment requirements.
    617      *
    618      * @rdm: the #RamDiscardManager
    619      * @section: the #MemoryRegionSection
    620      *
    621      * Returns whether the given range is completely populated.
    622      */
    623     bool (*is_populated)(const RamDiscardManager *rdm,
    624                          const MemoryRegionSection *section);
    625 
    626     /**
    627      * @replay_populated:
    628      *
    629      * Call the #ReplayRamPopulate callback for all populated parts within the
    630      * #MemoryRegionSection via the #RamDiscardManager.
    631      *
    632      * In case any call fails, no further calls are made.
    633      *
    634      * @rdm: the #RamDiscardManager
    635      * @section: the #MemoryRegionSection
    636      * @replay_fn: the #ReplayRamPopulate callback
    637      * @opaque: pointer to forward to the callback
    638      *
    639      * Returns 0 on success, or a negative error if any notification failed.
    640      */
    641     int (*replay_populated)(const RamDiscardManager *rdm,
    642                             MemoryRegionSection *section,
    643                             ReplayRamPopulate replay_fn, void *opaque);
    644 
    645     /**
    646      * @replay_discarded:
    647      *
    648      * Call the #ReplayRamDiscard callback for all discarded parts within the
    649      * #MemoryRegionSection via the #RamDiscardManager.
    650      *
    651      * @rdm: the #RamDiscardManager
    652      * @section: the #MemoryRegionSection
    653      * @replay_fn: the #ReplayRamDiscard callback
    654      * @opaque: pointer to forward to the callback
    655      */
    656     void (*replay_discarded)(const RamDiscardManager *rdm,
    657                              MemoryRegionSection *section,
    658                              ReplayRamDiscard replay_fn, void *opaque);
    659 
    660     /**
    661      * @register_listener:
    662      *
    663      * Register a #RamDiscardListener for the given #MemoryRegionSection and
    664      * immediately notify the #RamDiscardListener about all populated parts
    665      * within the #MemoryRegionSection via the #RamDiscardManager.
    666      *
    667      * In case any notification fails, no further notifications are triggered
    668      * and an error is logged.
    669      *
    670      * @rdm: the #RamDiscardManager
    671      * @rdl: the #RamDiscardListener
    672      * @section: the #MemoryRegionSection
    673      */
    674     void (*register_listener)(RamDiscardManager *rdm,
    675                               RamDiscardListener *rdl,
    676                               MemoryRegionSection *section);
    677 
    678     /**
    679      * @unregister_listener:
    680      *
    681      * Unregister a previously registered #RamDiscardListener via the
    682      * #RamDiscardManager after notifying the #RamDiscardListener about all
    683      * populated parts becoming unpopulated within the registered
    684      * #MemoryRegionSection.
    685      *
    686      * @rdm: the #RamDiscardManager
    687      * @rdl: the #RamDiscardListener
    688      */
    689     void (*unregister_listener)(RamDiscardManager *rdm,
    690                                 RamDiscardListener *rdl);
    691 };
    692 
    693 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
    694                                                  const MemoryRegion *mr);
    695 
    696 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
    697                                       const MemoryRegionSection *section);
    698 
    699 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
    700                                          MemoryRegionSection *section,
    701                                          ReplayRamPopulate replay_fn,
    702                                          void *opaque);
    703 
    704 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
    705                                           MemoryRegionSection *section,
    706                                           ReplayRamDiscard replay_fn,
    707                                           void *opaque);
    708 
    709 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
    710                                            RamDiscardListener *rdl,
    711                                            MemoryRegionSection *section);
    712 
    713 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
    714                                              RamDiscardListener *rdl);
    715 
    716 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
    717                           ram_addr_t *ram_addr, bool *read_only,
    718                           bool *mr_has_discard_manager);
    719 
    720 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
    721 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
    722 
    723 /** MemoryRegion:
    724  *
    725  * A struct representing a memory region.
    726  */
    727 struct MemoryRegion {
    728     Object parent_obj;
    729 
    730     /* private: */
    731 
    732     /* The following fields should fit in a cache line */
    733     bool romd_mode;
    734     bool ram;
    735     bool subpage;
    736     bool readonly; /* For RAM regions */
    737     bool nonvolatile;
    738     bool rom_device;
    739     bool flush_coalesced_mmio;
    740     uint8_t dirty_log_mask;
    741     bool is_iommu;
    742     RAMBlock *ram_block;
    743     Object *owner;
    744 
    745     const MemoryRegionOps *ops;
    746     void *opaque;
    747     MemoryRegion *container;
    748     int mapped_via_alias; /* Mapped via an alias, container might be NULL */
    749     Int128 size;
    750     hwaddr addr;
    751     void (*destructor)(MemoryRegion *mr);
    752     uint64_t align;
    753     bool terminates;
    754     bool ram_device;
    755     bool enabled;
    756     bool warning_printed; /* For reservations */
    757     uint8_t vga_logging_count;
    758     MemoryRegion *alias;
    759     hwaddr alias_offset;
    760     int32_t priority;
    761     QTAILQ_HEAD(, MemoryRegion) subregions;
    762     QTAILQ_ENTRY(MemoryRegion) subregions_link;
    763     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
    764     const char *name;
    765     unsigned ioeventfd_nb;
    766     MemoryRegionIoeventfd *ioeventfds;
    767     RamDiscardManager *rdm; /* Only for RAM */
    768 };
    769 
    770 struct IOMMUMemoryRegion {
    771     MemoryRegion parent_obj;
    772 
    773     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
    774     IOMMUNotifierFlag iommu_notify_flags;
    775 };
    776 
    777 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
    778     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
    779 
    780 /**
    781  * struct MemoryListener: callbacks structure for updates to the physical memory map
    782  *
    783  * Allows a component to adjust to changes in the guest-visible memory map.
    784  * Use with memory_listener_register() and memory_listener_unregister().
    785  */
    786 struct MemoryListener {
    787     /**
    788      * @begin:
    789      *
    790      * Called at the beginning of an address space update transaction.
    791      * Followed by calls to #MemoryListener.region_add(),
    792      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
    793      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
    794      * increasing address order.
    795      *
    796      * @listener: The #MemoryListener.
    797      */
    798     void (*begin)(MemoryListener *listener);
    799 
    800     /**
    801      * @commit:
    802      *
    803      * Called at the end of an address space update transaction,
    804      * after the last call to #MemoryListener.region_add(),
    805      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
    806      * #MemoryListener.log_start() and #MemoryListener.log_stop().
    807      *
    808      * @listener: The #MemoryListener.
    809      */
    810     void (*commit)(MemoryListener *listener);
    811 
    812     /**
    813      * @region_add:
    814      *
    815      * Called during an address space update transaction,
    816      * for a section of the address space that is new in this address space
    817      * space since the last transaction.
    818      *
    819      * @listener: The #MemoryListener.
    820      * @section: The new #MemoryRegionSection.
    821      */
    822     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
    823 
    824     /**
    825      * @region_del:
    826      *
    827      * Called during an address space update transaction,
    828      * for a section of the address space that has disappeared in the address
    829      * space since the last transaction.
    830      *
    831      * @listener: The #MemoryListener.
    832      * @section: The old #MemoryRegionSection.
    833      */
    834     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
    835 
    836     /**
    837      * @region_nop:
    838      *
    839      * Called during an address space update transaction,
    840      * for a section of the address space that is in the same place in the address
    841      * space as in the last transaction.
    842      *
    843      * @listener: The #MemoryListener.
    844      * @section: The #MemoryRegionSection.
    845      */
    846     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
    847 
    848     /**
    849      * @log_start:
    850      *
    851      * Called during an address space update transaction, after
    852      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
    853      * #MemoryListener.region_nop(), if dirty memory logging clients have
    854      * become active since the last transaction.
    855      *
    856      * @listener: The #MemoryListener.
    857      * @section: The #MemoryRegionSection.
    858      * @old: A bitmap of dirty memory logging clients that were active in
    859      * the previous transaction.
    860      * @new: A bitmap of dirty memory logging clients that are active in
    861      * the current transaction.
    862      */
    863     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
    864                       int old, int new);
    865 
    866     /**
    867      * @log_stop:
    868      *
    869      * Called during an address space update transaction, after
    870      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
    871      * #MemoryListener.region_nop() and possibly after
    872      * #MemoryListener.log_start(), if dirty memory logging clients have
    873      * become inactive since the last transaction.
    874      *
    875      * @listener: The #MemoryListener.
    876      * @section: The #MemoryRegionSection.
    877      * @old: A bitmap of dirty memory logging clients that were active in
    878      * the previous transaction.
    879      * @new: A bitmap of dirty memory logging clients that are active in
    880      * the current transaction.
    881      */
    882     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
    883                      int old, int new);
    884 
    885     /**
    886      * @log_sync:
    887      *
    888      * Called by memory_region_snapshot_and_clear_dirty() and
    889      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
    890      * copy of the dirty memory bitmap for a #MemoryRegionSection.
    891      *
    892      * @listener: The #MemoryListener.
    893      * @section: The #MemoryRegionSection.
    894      */
    895     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
    896 
    897     /**
    898      * @log_sync_global:
    899      *
    900      * This is the global version of @log_sync when the listener does
    901      * not have a way to synchronize the log with finer granularity.
    902      * When the listener registers with @log_sync_global defined, then
    903      * its @log_sync must be NULL.  Vice versa.
    904      *
    905      * @listener: The #MemoryListener.
    906      */
    907     void (*log_sync_global)(MemoryListener *listener);
    908 
    909     /**
    910      * @log_clear:
    911      *
    912      * Called before reading the dirty memory bitmap for a
    913      * #MemoryRegionSection.
    914      *
    915      * @listener: The #MemoryListener.
    916      * @section: The #MemoryRegionSection.
    917      */
    918     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
    919 
    920     /**
    921      * @log_global_start:
    922      *
    923      * Called by memory_global_dirty_log_start(), which
    924      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
    925      * the address space.  #MemoryListener.log_global_start() is also
    926      * called when a #MemoryListener is added, if global dirty logging is
    927      * active at that time.
    928      *
    929      * @listener: The #MemoryListener.
    930      */
    931     void (*log_global_start)(MemoryListener *listener);
    932 
    933     /**
    934      * @log_global_stop:
    935      *
    936      * Called by memory_global_dirty_log_stop(), which
    937      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
    938      * the address space.
    939      *
    940      * @listener: The #MemoryListener.
    941      */
    942     void (*log_global_stop)(MemoryListener *listener);
    943 
    944     /**
    945      * @log_global_after_sync:
    946      *
    947      * Called after reading the dirty memory bitmap
    948      * for any #MemoryRegionSection.
    949      *
    950      * @listener: The #MemoryListener.
    951      */
    952     void (*log_global_after_sync)(MemoryListener *listener);
    953 
    954     /**
    955      * @eventfd_add:
    956      *
    957      * Called during an address space update transaction,
    958      * for a section of the address space that has had a new ioeventfd
    959      * registration since the last transaction.
    960      *
    961      * @listener: The #MemoryListener.
    962      * @section: The new #MemoryRegionSection.
    963      * @match_data: The @match_data parameter for the new ioeventfd.
    964      * @data: The @data parameter for the new ioeventfd.
    965      * @e: The #EventNotifier parameter for the new ioeventfd.
    966      */
    967     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
    968                         bool match_data, uint64_t data, EventNotifier *e);
    969 
    970     /**
    971      * @eventfd_del:
    972      *
    973      * Called during an address space update transaction,
    974      * for a section of the address space that has dropped an ioeventfd
    975      * registration since the last transaction.
    976      *
    977      * @listener: The #MemoryListener.
    978      * @section: The new #MemoryRegionSection.
    979      * @match_data: The @match_data parameter for the dropped ioeventfd.
    980      * @data: The @data parameter for the dropped ioeventfd.
    981      * @e: The #EventNotifier parameter for the dropped ioeventfd.
    982      */
    983     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
    984                         bool match_data, uint64_t data, EventNotifier *e);
    985 
    986     /**
    987      * @coalesced_io_add:
    988      *
    989      * Called during an address space update transaction,
    990      * for a section of the address space that has had a new coalesced
    991      * MMIO range registration since the last transaction.
    992      *
    993      * @listener: The #MemoryListener.
    994      * @section: The new #MemoryRegionSection.
    995      * @addr: The starting address for the coalesced MMIO range.
    996      * @len: The length of the coalesced MMIO range.
    997      */
    998     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
    999                                hwaddr addr, hwaddr len);
   1000 
   1001     /**
   1002      * @coalesced_io_del:
   1003      *
   1004      * Called during an address space update transaction,
   1005      * for a section of the address space that has dropped a coalesced
   1006      * MMIO range since the last transaction.
   1007      *
   1008      * @listener: The #MemoryListener.
   1009      * @section: The new #MemoryRegionSection.
   1010      * @addr: The starting address for the coalesced MMIO range.
   1011      * @len: The length of the coalesced MMIO range.
   1012      */
   1013     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
   1014                                hwaddr addr, hwaddr len);
   1015     /**
   1016      * @priority:
   1017      *
   1018      * Govern the order in which memory listeners are invoked. Lower priorities
   1019      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
   1020      * or "stop" callbacks.
   1021      */
   1022     unsigned priority;
   1023 
   1024     /**
   1025      * @name:
   1026      *
   1027      * Name of the listener.  It can be used in contexts where we'd like to
   1028      * identify one memory listener with the rest.
   1029      */
   1030     const char *name;
   1031 
   1032     /* private: */
   1033     AddressSpace *address_space;
   1034     QTAILQ_ENTRY(MemoryListener) link;
   1035     QTAILQ_ENTRY(MemoryListener) link_as;
   1036 };
   1037 
   1038 /**
   1039  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
   1040  */
   1041 struct AddressSpace {
   1042     /* private: */
   1043     struct rcu_head rcu;
   1044     char *name;
   1045     MemoryRegion *root;
   1046 
   1047     /* Accessed via RCU.  */
   1048     struct FlatView *current_map;
   1049 
   1050     int ioeventfd_nb;
   1051     struct MemoryRegionIoeventfd *ioeventfds;
   1052     QTAILQ_HEAD(, MemoryListener) listeners;
   1053     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
   1054 };
   1055 
   1056 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
   1057 typedef struct FlatRange FlatRange;
   1058 
   1059 /* Flattened global view of current active memory hierarchy.  Kept in sorted
   1060  * order.
   1061  */
   1062 struct FlatView {
   1063     struct rcu_head rcu;
   1064     unsigned ref;
   1065     FlatRange *ranges;
   1066     unsigned nr;
   1067     unsigned nr_allocated;
   1068     struct AddressSpaceDispatch *dispatch;
   1069     MemoryRegion *root;
   1070 };
   1071 
   1072 static inline FlatView *address_space_to_flatview(AddressSpace *as)
   1073 {
   1074     return qatomic_rcu_read(&as->current_map);
   1075 }
   1076 
   1077 /**
   1078  * typedef flatview_cb: callback for flatview_for_each_range()
   1079  *
   1080  * @start: start address of the range within the FlatView
   1081  * @len: length of the range in bytes
   1082  * @mr: MemoryRegion covering this range
   1083  * @offset_in_region: offset of the first byte of the range within @mr
   1084  * @opaque: data pointer passed to flatview_for_each_range()
   1085  *
   1086  * Returns: true to stop the iteration, false to keep going.
   1087  */
   1088 typedef bool (*flatview_cb)(Int128 start,
   1089                             Int128 len,
   1090                             const MemoryRegion *mr,
   1091                             hwaddr offset_in_region,
   1092                             void *opaque);
   1093 
   1094 /**
   1095  * flatview_for_each_range: Iterate through a FlatView
   1096  * @fv: the FlatView to iterate through
   1097  * @cb: function to call for each range
   1098  * @opaque: opaque data pointer to pass to @cb
   1099  *
   1100  * A FlatView is made up of a list of non-overlapping ranges, each of
   1101  * which is a slice of a MemoryRegion. This function iterates through
   1102  * each range in @fv, calling @cb. The callback function can terminate
   1103  * iteration early by returning 'true'.
   1104  */
   1105 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
   1106 
   1107 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
   1108                                           MemoryRegionSection *b)
   1109 {
   1110     return a->mr == b->mr &&
   1111            a->fv == b->fv &&
   1112            a->offset_within_region == b->offset_within_region &&
   1113            a->offset_within_address_space == b->offset_within_address_space &&
   1114            int128_eq(a->size, b->size) &&
   1115            a->readonly == b->readonly &&
   1116            a->nonvolatile == b->nonvolatile;
   1117 }
   1118 
   1119 /**
   1120  * memory_region_section_new_copy: Copy a memory region section
   1121  *
   1122  * Allocate memory for a new copy, copy the memory region section, and
   1123  * properly take a reference on all relevant members.
   1124  *
   1125  * @s: the #MemoryRegionSection to copy
   1126  */
   1127 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
   1128 
   1129 /**
   1130  * memory_region_section_new_copy: Free a copied memory region section
   1131  *
   1132  * Free a copy of a memory section created via memory_region_section_new_copy().
   1133  * properly dropping references on all relevant members.
   1134  *
   1135  * @s: the #MemoryRegionSection to copy
   1136  */
   1137 void memory_region_section_free_copy(MemoryRegionSection *s);
   1138 
   1139 /**
   1140  * memory_region_init: Initialize a memory region
   1141  *
   1142  * The region typically acts as a container for other memory regions.  Use
   1143  * memory_region_add_subregion() to add subregions.
   1144  *
   1145  * @mr: the #MemoryRegion to be initialized
   1146  * @owner: the object that tracks the region's reference count
   1147  * @name: used for debugging; not visible to the user or ABI
   1148  * @size: size of the region; any subregions beyond this size will be clipped
   1149  */
   1150 void memory_region_init(MemoryRegion *mr,
   1151                         Object *owner,
   1152                         const char *name,
   1153                         uint64_t size);
   1154 
   1155 /**
   1156  * memory_region_ref: Add 1 to a memory region's reference count
   1157  *
   1158  * Whenever memory regions are accessed outside the BQL, they need to be
   1159  * preserved against hot-unplug.  MemoryRegions actually do not have their
   1160  * own reference count; they piggyback on a QOM object, their "owner".
   1161  * This function adds a reference to the owner.
   1162  *
   1163  * All MemoryRegions must have an owner if they can disappear, even if the
   1164  * device they belong to operates exclusively under the BQL.  This is because
   1165  * the region could be returned at any time by memory_region_find, and this
   1166  * is usually under guest control.
   1167  *
   1168  * @mr: the #MemoryRegion
   1169  */
   1170 void memory_region_ref(MemoryRegion *mr);
   1171 
   1172 /**
   1173  * memory_region_unref: Remove 1 to a memory region's reference count
   1174  *
   1175  * Whenever memory regions are accessed outside the BQL, they need to be
   1176  * preserved against hot-unplug.  MemoryRegions actually do not have their
   1177  * own reference count; they piggyback on a QOM object, their "owner".
   1178  * This function removes a reference to the owner and possibly destroys it.
   1179  *
   1180  * @mr: the #MemoryRegion
   1181  */
   1182 void memory_region_unref(MemoryRegion *mr);
   1183 
   1184 /**
   1185  * memory_region_init_io: Initialize an I/O memory region.
   1186  *
   1187  * Accesses into the region will cause the callbacks in @ops to be called.
   1188  * if @size is nonzero, subregions will be clipped to @size.
   1189  *
   1190  * @mr: the #MemoryRegion to be initialized.
   1191  * @owner: the object that tracks the region's reference count
   1192  * @ops: a structure containing read and write callbacks to be used when
   1193  *       I/O is performed on the region.
   1194  * @opaque: passed to the read and write callbacks of the @ops structure.
   1195  * @name: used for debugging; not visible to the user or ABI
   1196  * @size: size of the region.
   1197  */
   1198 void memory_region_init_io(MemoryRegion *mr,
   1199                            Object *owner,
   1200                            const MemoryRegionOps *ops,
   1201                            void *opaque,
   1202                            const char *name,
   1203                            uint64_t size);
   1204 
   1205 /**
   1206  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
   1207  *                                    into the region will modify memory
   1208  *                                    directly.
   1209  *
   1210  * @mr: the #MemoryRegion to be initialized.
   1211  * @owner: the object that tracks the region's reference count
   1212  * @name: Region name, becomes part of RAMBlock name used in migration stream
   1213  *        must be unique within any device
   1214  * @size: size of the region.
   1215  * @errp: pointer to Error*, to store an error if it happens.
   1216  *
   1217  * Note that this function does not do anything to cause the data in the
   1218  * RAM memory region to be migrated; that is the responsibility of the caller.
   1219  */
   1220 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
   1221                                       Object *owner,
   1222                                       const char *name,
   1223                                       uint64_t size,
   1224                                       Error **errp);
   1225 
   1226 /**
   1227  * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
   1228  *                                          Accesses into the region will
   1229  *                                          modify memory directly.
   1230  *
   1231  * @mr: the #MemoryRegion to be initialized.
   1232  * @owner: the object that tracks the region's reference count
   1233  * @name: Region name, becomes part of RAMBlock name used in migration stream
   1234  *        must be unique within any device
   1235  * @size: size of the region.
   1236  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
   1237  * @errp: pointer to Error*, to store an error if it happens.
   1238  *
   1239  * Note that this function does not do anything to cause the data in the
   1240  * RAM memory region to be migrated; that is the responsibility of the caller.
   1241  */
   1242 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
   1243                                             Object *owner,
   1244                                             const char *name,
   1245                                             uint64_t size,
   1246                                             uint32_t ram_flags,
   1247                                             Error **errp);
   1248 
   1249 /**
   1250  * memory_region_init_resizeable_ram:  Initialize memory region with resizable
   1251  *                                     RAM.  Accesses into the region will
   1252  *                                     modify memory directly.  Only an initial
   1253  *                                     portion of this RAM is actually used.
   1254  *                                     Changing the size while migrating
   1255  *                                     can result in the migration being
   1256  *                                     canceled.
   1257  *
   1258  * @mr: the #MemoryRegion to be initialized.
   1259  * @owner: the object that tracks the region's reference count
   1260  * @name: Region name, becomes part of RAMBlock name used in migration stream
   1261  *        must be unique within any device
   1262  * @size: used size of the region.
   1263  * @max_size: max size of the region.
   1264  * @resized: callback to notify owner about used size change.
   1265  * @errp: pointer to Error*, to store an error if it happens.
   1266  *
   1267  * Note that this function does not do anything to cause the data in the
   1268  * RAM memory region to be migrated; that is the responsibility of the caller.
   1269  */
   1270 void memory_region_init_resizeable_ram(MemoryRegion *mr,
   1271                                        Object *owner,
   1272                                        const char *name,
   1273                                        uint64_t size,
   1274                                        uint64_t max_size,
   1275                                        void (*resized)(const char*,
   1276                                                        uint64_t length,
   1277                                                        void *host),
   1278                                        Error **errp);
   1279 #ifdef CONFIG_POSIX
   1280 
   1281 /**
   1282  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
   1283  *                                    mmap-ed backend.
   1284  *
   1285  * @mr: the #MemoryRegion to be initialized.
   1286  * @owner: the object that tracks the region's reference count
   1287  * @name: Region name, becomes part of RAMBlock name used in migration stream
   1288  *        must be unique within any device
   1289  * @size: size of the region.
   1290  * @align: alignment of the region base address; if 0, the default alignment
   1291  *         (getpagesize()) will be used.
   1292  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
   1293  *             RAM_NORESERVE,
   1294  * @path: the path in which to allocate the RAM.
   1295  * @readonly: true to open @path for reading, false for read/write.
   1296  * @errp: pointer to Error*, to store an error if it happens.
   1297  *
   1298  * Note that this function does not do anything to cause the data in the
   1299  * RAM memory region to be migrated; that is the responsibility of the caller.
   1300  */
   1301 void memory_region_init_ram_from_file(MemoryRegion *mr,
   1302                                       Object *owner,
   1303                                       const char *name,
   1304                                       uint64_t size,
   1305                                       uint64_t align,
   1306                                       uint32_t ram_flags,
   1307                                       const char *path,
   1308                                       bool readonly,
   1309                                       Error **errp);
   1310 
   1311 /**
   1312  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
   1313  *                                  mmap-ed backend.
   1314  *
   1315  * @mr: the #MemoryRegion to be initialized.
   1316  * @owner: the object that tracks the region's reference count
   1317  * @name: the name of the region.
   1318  * @size: size of the region.
   1319  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
   1320  *             RAM_NORESERVE, RAM_PROTECTED.
   1321  * @fd: the fd to mmap.
   1322  * @offset: offset within the file referenced by fd
   1323  * @errp: pointer to Error*, to store an error if it happens.
   1324  *
   1325  * Note that this function does not do anything to cause the data in the
   1326  * RAM memory region to be migrated; that is the responsibility of the caller.
   1327  */
   1328 void memory_region_init_ram_from_fd(MemoryRegion *mr,
   1329                                     Object *owner,
   1330                                     const char *name,
   1331                                     uint64_t size,
   1332                                     uint32_t ram_flags,
   1333                                     int fd,
   1334                                     ram_addr_t offset,
   1335                                     Error **errp);
   1336 #endif
   1337 
   1338 /**
   1339  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
   1340  *                              user-provided pointer.  Accesses into the
   1341  *                              region will modify memory directly.
   1342  *
   1343  * @mr: the #MemoryRegion to be initialized.
   1344  * @owner: the object that tracks the region's reference count
   1345  * @name: Region name, becomes part of RAMBlock name used in migration stream
   1346  *        must be unique within any device
   1347  * @size: size of the region.
   1348  * @ptr: memory to be mapped; must contain at least @size bytes.
   1349  *
   1350  * Note that this function does not do anything to cause the data in the
   1351  * RAM memory region to be migrated; that is the responsibility of the caller.
   1352  */
   1353 void memory_region_init_ram_ptr(MemoryRegion *mr,
   1354                                 Object *owner,
   1355                                 const char *name,
   1356                                 uint64_t size,
   1357                                 void *ptr);
   1358 
   1359 /**
   1360  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
   1361  *                                     a user-provided pointer.
   1362  *
   1363  * A RAM device represents a mapping to a physical device, such as to a PCI
   1364  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
   1365  * into the VM address space and access to the region will modify memory
   1366  * directly.  However, the memory region should not be included in a memory
   1367  * dump (device may not be enabled/mapped at the time of the dump), and
   1368  * operations incompatible with manipulating MMIO should be avoided.  Replaces
   1369  * skip_dump flag.
   1370  *
   1371  * @mr: the #MemoryRegion to be initialized.
   1372  * @owner: the object that tracks the region's reference count
   1373  * @name: the name of the region.
   1374  * @size: size of the region.
   1375  * @ptr: memory to be mapped; must contain at least @size bytes.
   1376  *
   1377  * Note that this function does not do anything to cause the data in the
   1378  * RAM memory region to be migrated; that is the responsibility of the caller.
   1379  * (For RAM device memory regions, migrating the contents rarely makes sense.)
   1380  */
   1381 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
   1382                                        Object *owner,
   1383                                        const char *name,
   1384                                        uint64_t size,
   1385                                        void *ptr);
   1386 
   1387 /**
   1388  * memory_region_init_alias: Initialize a memory region that aliases all or a
   1389  *                           part of another memory region.
   1390  *
   1391  * @mr: the #MemoryRegion to be initialized.
   1392  * @owner: the object that tracks the region's reference count
   1393  * @name: used for debugging; not visible to the user or ABI
   1394  * @orig: the region to be referenced; @mr will be equivalent to
   1395  *        @orig between @offset and @offset + @size - 1.
   1396  * @offset: start of the section in @orig to be referenced.
   1397  * @size: size of the region.
   1398  */
   1399 void memory_region_init_alias(MemoryRegion *mr,
   1400                               Object *owner,
   1401                               const char *name,
   1402                               MemoryRegion *orig,
   1403                               hwaddr offset,
   1404                               uint64_t size);
   1405 
   1406 /**
   1407  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
   1408  *
   1409  * This has the same effect as calling memory_region_init_ram_nomigrate()
   1410  * and then marking the resulting region read-only with
   1411  * memory_region_set_readonly().
   1412  *
   1413  * Note that this function does not do anything to cause the data in the
   1414  * RAM side of the memory region to be migrated; that is the responsibility
   1415  * of the caller.
   1416  *
   1417  * @mr: the #MemoryRegion to be initialized.
   1418  * @owner: the object that tracks the region's reference count
   1419  * @name: Region name, becomes part of RAMBlock name used in migration stream
   1420  *        must be unique within any device
   1421  * @size: size of the region.
   1422  * @errp: pointer to Error*, to store an error if it happens.
   1423  */
   1424 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
   1425                                       Object *owner,
   1426                                       const char *name,
   1427                                       uint64_t size,
   1428                                       Error **errp);
   1429 
   1430 /**
   1431  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
   1432  *                                 Writes are handled via callbacks.
   1433  *
   1434  * Note that this function does not do anything to cause the data in the
   1435  * RAM side of the memory region to be migrated; that is the responsibility
   1436  * of the caller.
   1437  *
   1438  * @mr: the #MemoryRegion to be initialized.
   1439  * @owner: the object that tracks the region's reference count
   1440  * @ops: callbacks for write access handling (must not be NULL).
   1441  * @opaque: passed to the read and write callbacks of the @ops structure.
   1442  * @name: Region name, becomes part of RAMBlock name used in migration stream
   1443  *        must be unique within any device
   1444  * @size: size of the region.
   1445  * @errp: pointer to Error*, to store an error if it happens.
   1446  */
   1447 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
   1448                                              Object *owner,
   1449                                              const MemoryRegionOps *ops,
   1450                                              void *opaque,
   1451                                              const char *name,
   1452                                              uint64_t size,
   1453                                              Error **errp);
   1454 
   1455 /**
   1456  * memory_region_init_iommu: Initialize a memory region of a custom type
   1457  * that translates addresses
   1458  *
   1459  * An IOMMU region translates addresses and forwards accesses to a target
   1460  * memory region.
   1461  *
   1462  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
   1463  * @_iommu_mr should be a pointer to enough memory for an instance of
   1464  * that subclass, @instance_size is the size of that subclass, and
   1465  * @mrtypename is its name. This function will initialize @_iommu_mr as an
   1466  * instance of the subclass, and its methods will then be called to handle
   1467  * accesses to the memory region. See the documentation of
   1468  * #IOMMUMemoryRegionClass for further details.
   1469  *
   1470  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
   1471  * @instance_size: the IOMMUMemoryRegion subclass instance size
   1472  * @mrtypename: the type name of the #IOMMUMemoryRegion
   1473  * @owner: the object that tracks the region's reference count
   1474  * @name: used for debugging; not visible to the user or ABI
   1475  * @size: size of the region.
   1476  */
   1477 void memory_region_init_iommu(void *_iommu_mr,
   1478                               size_t instance_size,
   1479                               const char *mrtypename,
   1480                               Object *owner,
   1481                               const char *name,
   1482                               uint64_t size);
   1483 
   1484 /**
   1485  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
   1486  *                          region will modify memory directly.
   1487  *
   1488  * @mr: the #MemoryRegion to be initialized
   1489  * @owner: the object that tracks the region's reference count (must be
   1490  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
   1491  * @name: name of the memory region
   1492  * @size: size of the region in bytes
   1493  * @errp: pointer to Error*, to store an error if it happens.
   1494  *
   1495  * This function allocates RAM for a board model or device, and
   1496  * arranges for it to be migrated (by calling vmstate_register_ram()
   1497  * if @owner is a DeviceState, or vmstate_register_ram_global() if
   1498  * @owner is NULL).
   1499  *
   1500  * TODO: Currently we restrict @owner to being either NULL (for
   1501  * global RAM regions with no owner) or devices, so that we can
   1502  * give the RAM block a unique name for migration purposes.
   1503  * We should lift this restriction and allow arbitrary Objects.
   1504  * If you pass a non-NULL non-device @owner then we will assert.
   1505  */
   1506 void memory_region_init_ram(MemoryRegion *mr,
   1507                             Object *owner,
   1508                             const char *name,
   1509                             uint64_t size,
   1510                             Error **errp);
   1511 
   1512 /**
   1513  * memory_region_init_rom: Initialize a ROM memory region.
   1514  *
   1515  * This has the same effect as calling memory_region_init_ram()
   1516  * and then marking the resulting region read-only with
   1517  * memory_region_set_readonly(). This includes arranging for the
   1518  * contents to be migrated.
   1519  *
   1520  * TODO: Currently we restrict @owner to being either NULL (for
   1521  * global RAM regions with no owner) or devices, so that we can
   1522  * give the RAM block a unique name for migration purposes.
   1523  * We should lift this restriction and allow arbitrary Objects.
   1524  * If you pass a non-NULL non-device @owner then we will assert.
   1525  *
   1526  * @mr: the #MemoryRegion to be initialized.
   1527  * @owner: the object that tracks the region's reference count
   1528  * @name: Region name, becomes part of RAMBlock name used in migration stream
   1529  *        must be unique within any device
   1530  * @size: size of the region.
   1531  * @errp: pointer to Error*, to store an error if it happens.
   1532  */
   1533 void memory_region_init_rom(MemoryRegion *mr,
   1534                             Object *owner,
   1535                             const char *name,
   1536                             uint64_t size,
   1537                             Error **errp);
   1538 
   1539 /**
   1540  * memory_region_init_rom_device:  Initialize a ROM memory region.
   1541  *                                 Writes are handled via callbacks.
   1542  *
   1543  * This function initializes a memory region backed by RAM for reads
   1544  * and callbacks for writes, and arranges for the RAM backing to
   1545  * be migrated (by calling vmstate_register_ram()
   1546  * if @owner is a DeviceState, or vmstate_register_ram_global() if
   1547  * @owner is NULL).
   1548  *
   1549  * TODO: Currently we restrict @owner to being either NULL (for
   1550  * global RAM regions with no owner) or devices, so that we can
   1551  * give the RAM block a unique name for migration purposes.
   1552  * We should lift this restriction and allow arbitrary Objects.
   1553  * If you pass a non-NULL non-device @owner then we will assert.
   1554  *
   1555  * @mr: the #MemoryRegion to be initialized.
   1556  * @owner: the object that tracks the region's reference count
   1557  * @ops: callbacks for write access handling (must not be NULL).
   1558  * @opaque: passed to the read and write callbacks of the @ops structure.
   1559  * @name: Region name, becomes part of RAMBlock name used in migration stream
   1560  *        must be unique within any device
   1561  * @size: size of the region.
   1562  * @errp: pointer to Error*, to store an error if it happens.
   1563  */
   1564 void memory_region_init_rom_device(MemoryRegion *mr,
   1565                                    Object *owner,
   1566                                    const MemoryRegionOps *ops,
   1567                                    void *opaque,
   1568                                    const char *name,
   1569                                    uint64_t size,
   1570                                    Error **errp);
   1571 
   1572 
   1573 /**
   1574  * memory_region_owner: get a memory region's owner.
   1575  *
   1576  * @mr: the memory region being queried.
   1577  */
   1578 Object *memory_region_owner(MemoryRegion *mr);
   1579 
   1580 /**
   1581  * memory_region_size: get a memory region's size.
   1582  *
   1583  * @mr: the memory region being queried.
   1584  */
   1585 uint64_t memory_region_size(MemoryRegion *mr);
   1586 
   1587 /**
   1588  * memory_region_is_ram: check whether a memory region is random access
   1589  *
   1590  * Returns %true if a memory region is random access.
   1591  *
   1592  * @mr: the memory region being queried
   1593  */
   1594 static inline bool memory_region_is_ram(MemoryRegion *mr)
   1595 {
   1596     return mr->ram;
   1597 }
   1598 
   1599 /**
   1600  * memory_region_is_ram_device: check whether a memory region is a ram device
   1601  *
   1602  * Returns %true if a memory region is a device backed ram region
   1603  *
   1604  * @mr: the memory region being queried
   1605  */
   1606 bool memory_region_is_ram_device(MemoryRegion *mr);
   1607 
   1608 /**
   1609  * memory_region_is_romd: check whether a memory region is in ROMD mode
   1610  *
   1611  * Returns %true if a memory region is a ROM device and currently set to allow
   1612  * direct reads.
   1613  *
   1614  * @mr: the memory region being queried
   1615  */
   1616 static inline bool memory_region_is_romd(MemoryRegion *mr)
   1617 {
   1618     return mr->rom_device && mr->romd_mode;
   1619 }
   1620 
   1621 /**
   1622  * memory_region_is_protected: check whether a memory region is protected
   1623  *
   1624  * Returns %true if a memory region is protected RAM and cannot be accessed
   1625  * via standard mechanisms, e.g. DMA.
   1626  *
   1627  * @mr: the memory region being queried
   1628  */
   1629 bool memory_region_is_protected(MemoryRegion *mr);
   1630 
   1631 /**
   1632  * memory_region_get_iommu: check whether a memory region is an iommu
   1633  *
   1634  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
   1635  * otherwise NULL.
   1636  *
   1637  * @mr: the memory region being queried
   1638  */
   1639 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
   1640 {
   1641     if (mr->alias) {
   1642         return memory_region_get_iommu(mr->alias);
   1643     }
   1644     if (mr->is_iommu) {
   1645         return (IOMMUMemoryRegion *) mr;
   1646     }
   1647     return NULL;
   1648 }
   1649 
   1650 /**
   1651  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
   1652  *   if an iommu or NULL if not
   1653  *
   1654  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
   1655  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
   1656  *
   1657  * @iommu_mr: the memory region being queried
   1658  */
   1659 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
   1660         IOMMUMemoryRegion *iommu_mr)
   1661 {
   1662     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
   1663 }
   1664 
   1665 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
   1666 
   1667 /**
   1668  * memory_region_iommu_get_min_page_size: get minimum supported page size
   1669  * for an iommu
   1670  *
   1671  * Returns minimum supported page size for an iommu.
   1672  *
   1673  * @iommu_mr: the memory region being queried
   1674  */
   1675 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
   1676 
   1677 /**
   1678  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
   1679  *
   1680  * Note: for any IOMMU implementation, an in-place mapping change
   1681  * should be notified with an UNMAP followed by a MAP.
   1682  *
   1683  * @iommu_mr: the memory region that was changed
   1684  * @iommu_idx: the IOMMU index for the translation table which has changed
   1685  * @event: TLB event with the new entry in the IOMMU translation table.
   1686  *         The entry replaces all old entries for the same virtual I/O address
   1687  *         range.
   1688  */
   1689 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
   1690                                 int iommu_idx,
   1691                                 IOMMUTLBEvent event);
   1692 
   1693 /**
   1694  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
   1695  *                           entry to a single notifier
   1696  *
   1697  * This works just like memory_region_notify_iommu(), but it only
   1698  * notifies a specific notifier, not all of them.
   1699  *
   1700  * @notifier: the notifier to be notified
   1701  * @event: TLB event with the new entry in the IOMMU translation table.
   1702  *         The entry replaces all old entries for the same virtual I/O address
   1703  *         range.
   1704  */
   1705 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
   1706                                     IOMMUTLBEvent *event);
   1707 
   1708 /**
   1709  * memory_region_register_iommu_notifier: register a notifier for changes to
   1710  * IOMMU translation entries.
   1711  *
   1712  * Returns 0 on success, or a negative errno otherwise. In particular,
   1713  * -EINVAL indicates that at least one of the attributes of the notifier
   1714  * is not supported (flag/range) by the IOMMU memory region. In case of error
   1715  * the error object must be created.
   1716  *
   1717  * @mr: the memory region to observe
   1718  * @n: the IOMMUNotifier to be added; the notify callback receives a
   1719  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
   1720  *     ceases to be valid on exit from the notifier.
   1721  * @errp: pointer to Error*, to store an error if it happens.
   1722  */
   1723 int memory_region_register_iommu_notifier(MemoryRegion *mr,
   1724                                           IOMMUNotifier *n, Error **errp);
   1725 
   1726 /**
   1727  * memory_region_iommu_replay: replay existing IOMMU translations to
   1728  * a notifier with the minimum page granularity returned by
   1729  * mr->iommu_ops->get_page_size().
   1730  *
   1731  * Note: this is not related to record-and-replay functionality.
   1732  *
   1733  * @iommu_mr: the memory region to observe
   1734  * @n: the notifier to which to replay iommu mappings
   1735  */
   1736 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
   1737 
   1738 /**
   1739  * memory_region_unregister_iommu_notifier: unregister a notifier for
   1740  * changes to IOMMU translation entries.
   1741  *
   1742  * @mr: the memory region which was observed and for which notity_stopped()
   1743  *      needs to be called
   1744  * @n: the notifier to be removed.
   1745  */
   1746 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
   1747                                              IOMMUNotifier *n);
   1748 
   1749 /**
   1750  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
   1751  * defined on the IOMMU.
   1752  *
   1753  * Returns 0 on success, or a negative errno otherwise. In particular,
   1754  * -EINVAL indicates that the IOMMU does not support the requested
   1755  * attribute.
   1756  *
   1757  * @iommu_mr: the memory region
   1758  * @attr: the requested attribute
   1759  * @data: a pointer to the requested attribute data
   1760  */
   1761 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
   1762                                  enum IOMMUMemoryRegionAttr attr,
   1763                                  void *data);
   1764 
   1765 /**
   1766  * memory_region_iommu_attrs_to_index: return the IOMMU index to
   1767  * use for translations with the given memory transaction attributes.
   1768  *
   1769  * @iommu_mr: the memory region
   1770  * @attrs: the memory transaction attributes
   1771  */
   1772 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
   1773                                        MemTxAttrs attrs);
   1774 
   1775 /**
   1776  * memory_region_iommu_num_indexes: return the total number of IOMMU
   1777  * indexes that this IOMMU supports.
   1778  *
   1779  * @iommu_mr: the memory region
   1780  */
   1781 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
   1782 
   1783 /**
   1784  * memory_region_iommu_set_page_size_mask: set the supported page
   1785  * sizes for a given IOMMU memory region
   1786  *
   1787  * @iommu_mr: IOMMU memory region
   1788  * @page_size_mask: supported page size mask
   1789  * @errp: pointer to Error*, to store an error if it happens.
   1790  */
   1791 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
   1792                                            uint64_t page_size_mask,
   1793                                            Error **errp);
   1794 
   1795 /**
   1796  * memory_region_name: get a memory region's name
   1797  *
   1798  * Returns the string that was used to initialize the memory region.
   1799  *
   1800  * @mr: the memory region being queried
   1801  */
   1802 const char *memory_region_name(const MemoryRegion *mr);
   1803 
   1804 /**
   1805  * memory_region_is_logging: return whether a memory region is logging writes
   1806  *
   1807  * Returns %true if the memory region is logging writes for the given client
   1808  *
   1809  * @mr: the memory region being queried
   1810  * @client: the client being queried
   1811  */
   1812 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
   1813 
   1814 /**
   1815  * memory_region_get_dirty_log_mask: return the clients for which a
   1816  * memory region is logging writes.
   1817  *
   1818  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
   1819  * are the bit indices.
   1820  *
   1821  * @mr: the memory region being queried
   1822  */
   1823 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
   1824 
   1825 /**
   1826  * memory_region_is_rom: check whether a memory region is ROM
   1827  *
   1828  * Returns %true if a memory region is read-only memory.
   1829  *
   1830  * @mr: the memory region being queried
   1831  */
   1832 static inline bool memory_region_is_rom(MemoryRegion *mr)
   1833 {
   1834     return mr->ram && mr->readonly;
   1835 }
   1836 
   1837 /**
   1838  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
   1839  *
   1840  * Returns %true is a memory region is non-volatile memory.
   1841  *
   1842  * @mr: the memory region being queried
   1843  */
   1844 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
   1845 {
   1846     return mr->nonvolatile;
   1847 }
   1848 
   1849 /**
   1850  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
   1851  *
   1852  * Returns a file descriptor backing a file-based RAM memory region,
   1853  * or -1 if the region is not a file-based RAM memory region.
   1854  *
   1855  * @mr: the RAM or alias memory region being queried.
   1856  */
   1857 int memory_region_get_fd(MemoryRegion *mr);
   1858 
   1859 /**
   1860  * memory_region_from_host: Convert a pointer into a RAM memory region
   1861  * and an offset within it.
   1862  *
   1863  * Given a host pointer inside a RAM memory region (created with
   1864  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
   1865  * the MemoryRegion and the offset within it.
   1866  *
   1867  * Use with care; by the time this function returns, the returned pointer is
   1868  * not protected by RCU anymore.  If the caller is not within an RCU critical
   1869  * section and does not hold the iothread lock, it must have other means of
   1870  * protecting the pointer, such as a reference to the region that includes
   1871  * the incoming ram_addr_t.
   1872  *
   1873  * @ptr: the host pointer to be converted
   1874  * @offset: the offset within memory region
   1875  */
   1876 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
   1877 
   1878 /**
   1879  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
   1880  *
   1881  * Returns a host pointer to a RAM memory region (created with
   1882  * memory_region_init_ram() or memory_region_init_ram_ptr()).
   1883  *
   1884  * Use with care; by the time this function returns, the returned pointer is
   1885  * not protected by RCU anymore.  If the caller is not within an RCU critical
   1886  * section and does not hold the iothread lock, it must have other means of
   1887  * protecting the pointer, such as a reference to the region that includes
   1888  * the incoming ram_addr_t.
   1889  *
   1890  * @mr: the memory region being queried.
   1891  */
   1892 void *memory_region_get_ram_ptr(MemoryRegion *mr);
   1893 
   1894 /* memory_region_ram_resize: Resize a RAM region.
   1895  *
   1896  * Resizing RAM while migrating can result in the migration being canceled.
   1897  * Care has to be taken if the guest might have already detected the memory.
   1898  *
   1899  * @mr: a memory region created with @memory_region_init_resizeable_ram.
   1900  * @newsize: the new size the region
   1901  * @errp: pointer to Error*, to store an error if it happens.
   1902  */
   1903 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
   1904                               Error **errp);
   1905 
   1906 /**
   1907  * memory_region_msync: Synchronize selected address range of
   1908  * a memory mapped region
   1909  *
   1910  * @mr: the memory region to be msync
   1911  * @addr: the initial address of the range to be sync
   1912  * @size: the size of the range to be sync
   1913  */
   1914 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
   1915 
   1916 /**
   1917  * memory_region_writeback: Trigger cache writeback for
   1918  * selected address range
   1919  *
   1920  * @mr: the memory region to be updated
   1921  * @addr: the initial address of the range to be written back
   1922  * @size: the size of the range to be written back
   1923  */
   1924 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
   1925 
   1926 /**
   1927  * memory_region_set_log: Turn dirty logging on or off for a region.
   1928  *
   1929  * Turns dirty logging on or off for a specified client (display, migration).
   1930  * Only meaningful for RAM regions.
   1931  *
   1932  * @mr: the memory region being updated.
   1933  * @log: whether dirty logging is to be enabled or disabled.
   1934  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
   1935  */
   1936 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
   1937 
   1938 /**
   1939  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
   1940  *
   1941  * Marks a range of bytes as dirty, after it has been dirtied outside
   1942  * guest code.
   1943  *
   1944  * @mr: the memory region being dirtied.
   1945  * @addr: the address (relative to the start of the region) being dirtied.
   1946  * @size: size of the range being dirtied.
   1947  */
   1948 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
   1949                              hwaddr size);
   1950 
   1951 /**
   1952  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
   1953  *
   1954  * This function is called when the caller wants to clear the remote
   1955  * dirty bitmap of a memory range within the memory region.  This can
   1956  * be used by e.g. KVM to manually clear dirty log when
   1957  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
   1958  * kernel.
   1959  *
   1960  * @mr:     the memory region to clear the dirty log upon
   1961  * @start:  start address offset within the memory region
   1962  * @len:    length of the memory region to clear dirty bitmap
   1963  */
   1964 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
   1965                                       hwaddr len);
   1966 
   1967 /**
   1968  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
   1969  *                                         bitmap and clear it.
   1970  *
   1971  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
   1972  * returns the snapshot.  The snapshot can then be used to query dirty
   1973  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
   1974  * querying the same page multiple times, which is especially useful for
   1975  * display updates where the scanlines often are not page aligned.
   1976  *
   1977  * The dirty bitmap region which gets copied into the snapshot (and
   1978  * cleared afterwards) can be larger than requested.  The boundaries
   1979  * are rounded up/down so complete bitmap longs (covering 64 pages on
   1980  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
   1981  * isn't a problem for display updates as the extra pages are outside
   1982  * the visible area, and in case the visible area changes a full
   1983  * display redraw is due anyway.  Should other use cases for this
   1984  * function emerge we might have to revisit this implementation
   1985  * detail.
   1986  *
   1987  * Use g_free to release DirtyBitmapSnapshot.
   1988  *
   1989  * @mr: the memory region being queried.
   1990  * @addr: the address (relative to the start of the region) being queried.
   1991  * @size: the size of the range being queried.
   1992  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
   1993  */
   1994 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
   1995                                                             hwaddr addr,
   1996                                                             hwaddr size,
   1997                                                             unsigned client);
   1998 
   1999 /**
   2000  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
   2001  *                                   in the specified dirty bitmap snapshot.
   2002  *
   2003  * @mr: the memory region being queried.
   2004  * @snap: the dirty bitmap snapshot
   2005  * @addr: the address (relative to the start of the region) being queried.
   2006  * @size: the size of the range being queried.
   2007  */
   2008 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
   2009                                       DirtyBitmapSnapshot *snap,
   2010                                       hwaddr addr, hwaddr size);
   2011 
   2012 /**
   2013  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
   2014  *                            client.
   2015  *
   2016  * Marks a range of pages as no longer dirty.
   2017  *
   2018  * @mr: the region being updated.
   2019  * @addr: the start of the subrange being cleaned.
   2020  * @size: the size of the subrange being cleaned.
   2021  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
   2022  *          %DIRTY_MEMORY_VGA.
   2023  */
   2024 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
   2025                                hwaddr size, unsigned client);
   2026 
   2027 /**
   2028  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
   2029  *                                 TBs (for self-modifying code).
   2030  *
   2031  * The MemoryRegionOps->write() callback of a ROM device must use this function
   2032  * to mark byte ranges that have been modified internally, such as by directly
   2033  * accessing the memory returned by memory_region_get_ram_ptr().
   2034  *
   2035  * This function marks the range dirty and invalidates TBs so that TCG can
   2036  * detect self-modifying code.
   2037  *
   2038  * @mr: the region being flushed.
   2039  * @addr: the start, relative to the start of the region, of the range being
   2040  *        flushed.
   2041  * @size: the size, in bytes, of the range being flushed.
   2042  */
   2043 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
   2044 
   2045 /**
   2046  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
   2047  *
   2048  * Allows a memory region to be marked as read-only (turning it into a ROM).
   2049  * only useful on RAM regions.
   2050  *
   2051  * @mr: the region being updated.
   2052  * @readonly: whether rhe region is to be ROM or RAM.
   2053  */
   2054 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
   2055 
   2056 /**
   2057  * memory_region_set_nonvolatile: Turn a memory region non-volatile
   2058  *
   2059  * Allows a memory region to be marked as non-volatile.
   2060  * only useful on RAM regions.
   2061  *
   2062  * @mr: the region being updated.
   2063  * @nonvolatile: whether rhe region is to be non-volatile.
   2064  */
   2065 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
   2066 
   2067 /**
   2068  * memory_region_rom_device_set_romd: enable/disable ROMD mode
   2069  *
   2070  * Allows a ROM device (initialized with memory_region_init_rom_device() to
   2071  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
   2072  * device is mapped to guest memory and satisfies read access directly.
   2073  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
   2074  * Writes are always handled by the #MemoryRegion.write function.
   2075  *
   2076  * @mr: the memory region to be updated
   2077  * @romd_mode: %true to put the region into ROMD mode
   2078  */
   2079 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
   2080 
   2081 /**
   2082  * memory_region_set_coalescing: Enable memory coalescing for the region.
   2083  *
   2084  * Enabled writes to a region to be queued for later processing. MMIO ->write
   2085  * callbacks may be delayed until a non-coalesced MMIO is issued.
   2086  * Only useful for IO regions.  Roughly similar to write-combining hardware.
   2087  *
   2088  * @mr: the memory region to be write coalesced
   2089  */
   2090 void memory_region_set_coalescing(MemoryRegion *mr);
   2091 
   2092 /**
   2093  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
   2094  *                               a region.
   2095  *
   2096  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
   2097  * Multiple calls can be issued coalesced disjoint ranges.
   2098  *
   2099  * @mr: the memory region to be updated.
   2100  * @offset: the start of the range within the region to be coalesced.
   2101  * @size: the size of the subrange to be coalesced.
   2102  */
   2103 void memory_region_add_coalescing(MemoryRegion *mr,
   2104                                   hwaddr offset,
   2105                                   uint64_t size);
   2106 
   2107 /**
   2108  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
   2109  *
   2110  * Disables any coalescing caused by memory_region_set_coalescing() or
   2111  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
   2112  * hardware.
   2113  *
   2114  * @mr: the memory region to be updated.
   2115  */
   2116 void memory_region_clear_coalescing(MemoryRegion *mr);
   2117 
   2118 /**
   2119  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
   2120  *                                    accesses.
   2121  *
   2122  * Ensure that pending coalesced MMIO request are flushed before the memory
   2123  * region is accessed. This property is automatically enabled for all regions
   2124  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
   2125  *
   2126  * @mr: the memory region to be updated.
   2127  */
   2128 void memory_region_set_flush_coalesced(MemoryRegion *mr);
   2129 
   2130 /**
   2131  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
   2132  *                                      accesses.
   2133  *
   2134  * Clear the automatic coalesced MMIO flushing enabled via
   2135  * memory_region_set_flush_coalesced. Note that this service has no effect on
   2136  * memory regions that have MMIO coalescing enabled for themselves. For them,
   2137  * automatic flushing will stop once coalescing is disabled.
   2138  *
   2139  * @mr: the memory region to be updated.
   2140  */
   2141 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
   2142 
   2143 /**
   2144  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
   2145  *                            is written to a location.
   2146  *
   2147  * Marks a word in an IO region (initialized with memory_region_init_io())
   2148  * as a trigger for an eventfd event.  The I/O callback will not be called.
   2149  * The caller must be prepared to handle failure (that is, take the required
   2150  * action if the callback _is_ called).
   2151  *
   2152  * @mr: the memory region being updated.
   2153  * @addr: the address within @mr that is to be monitored
   2154  * @size: the size of the access to trigger the eventfd
   2155  * @match_data: whether to match against @data, instead of just @addr
   2156  * @data: the data to match against the guest write
   2157  * @e: event notifier to be triggered when @addr, @size, and @data all match.
   2158  **/
   2159 void memory_region_add_eventfd(MemoryRegion *mr,
   2160                                hwaddr addr,
   2161                                unsigned size,
   2162                                bool match_data,
   2163                                uint64_t data,
   2164                                EventNotifier *e);
   2165 
   2166 /**
   2167  * memory_region_del_eventfd: Cancel an eventfd.
   2168  *
   2169  * Cancels an eventfd trigger requested by a previous
   2170  * memory_region_add_eventfd() call.
   2171  *
   2172  * @mr: the memory region being updated.
   2173  * @addr: the address within @mr that is to be monitored
   2174  * @size: the size of the access to trigger the eventfd
   2175  * @match_data: whether to match against @data, instead of just @addr
   2176  * @data: the data to match against the guest write
   2177  * @e: event notifier to be triggered when @addr, @size, and @data all match.
   2178  */
   2179 void memory_region_del_eventfd(MemoryRegion *mr,
   2180                                hwaddr addr,
   2181                                unsigned size,
   2182                                bool match_data,
   2183                                uint64_t data,
   2184                                EventNotifier *e);
   2185 
   2186 /**
   2187  * memory_region_add_subregion: Add a subregion to a container.
   2188  *
   2189  * Adds a subregion at @offset.  The subregion may not overlap with other
   2190  * subregions (except for those explicitly marked as overlapping).  A region
   2191  * may only be added once as a subregion (unless removed with
   2192  * memory_region_del_subregion()); use memory_region_init_alias() if you
   2193  * want a region to be a subregion in multiple locations.
   2194  *
   2195  * @mr: the region to contain the new subregion; must be a container
   2196  *      initialized with memory_region_init().
   2197  * @offset: the offset relative to @mr where @subregion is added.
   2198  * @subregion: the subregion to be added.
   2199  */
   2200 void memory_region_add_subregion(MemoryRegion *mr,
   2201                                  hwaddr offset,
   2202                                  MemoryRegion *subregion);
   2203 /**
   2204  * memory_region_add_subregion_overlap: Add a subregion to a container
   2205  *                                      with overlap.
   2206  *
   2207  * Adds a subregion at @offset.  The subregion may overlap with other
   2208  * subregions.  Conflicts are resolved by having a higher @priority hide a
   2209  * lower @priority. Subregions without priority are taken as @priority 0.
   2210  * A region may only be added once as a subregion (unless removed with
   2211  * memory_region_del_subregion()); use memory_region_init_alias() if you
   2212  * want a region to be a subregion in multiple locations.
   2213  *
   2214  * @mr: the region to contain the new subregion; must be a container
   2215  *      initialized with memory_region_init().
   2216  * @offset: the offset relative to @mr where @subregion is added.
   2217  * @subregion: the subregion to be added.
   2218  * @priority: used for resolving overlaps; highest priority wins.
   2219  */
   2220 void memory_region_add_subregion_overlap(MemoryRegion *mr,
   2221                                          hwaddr offset,
   2222                                          MemoryRegion *subregion,
   2223                                          int priority);
   2224 
   2225 /**
   2226  * memory_region_get_ram_addr: Get the ram address associated with a memory
   2227  *                             region
   2228  *
   2229  * @mr: the region to be queried
   2230  */
   2231 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
   2232 
   2233 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
   2234 /**
   2235  * memory_region_del_subregion: Remove a subregion.
   2236  *
   2237  * Removes a subregion from its container.
   2238  *
   2239  * @mr: the container to be updated.
   2240  * @subregion: the region being removed; must be a current subregion of @mr.
   2241  */
   2242 void memory_region_del_subregion(MemoryRegion *mr,
   2243                                  MemoryRegion *subregion);
   2244 
   2245 /*
   2246  * memory_region_set_enabled: dynamically enable or disable a region
   2247  *
   2248  * Enables or disables a memory region.  A disabled memory region
   2249  * ignores all accesses to itself and its subregions.  It does not
   2250  * obscure sibling subregions with lower priority - it simply behaves as
   2251  * if it was removed from the hierarchy.
   2252  *
   2253  * Regions default to being enabled.
   2254  *
   2255  * @mr: the region to be updated
   2256  * @enabled: whether to enable or disable the region
   2257  */
   2258 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
   2259 
   2260 /*
   2261  * memory_region_set_address: dynamically update the address of a region
   2262  *
   2263  * Dynamically updates the address of a region, relative to its container.
   2264  * May be used on regions are currently part of a memory hierarchy.
   2265  *
   2266  * @mr: the region to be updated
   2267  * @addr: new address, relative to container region
   2268  */
   2269 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
   2270 
   2271 /*
   2272  * memory_region_set_size: dynamically update the size of a region.
   2273  *
   2274  * Dynamically updates the size of a region.
   2275  *
   2276  * @mr: the region to be updated
   2277  * @size: used size of the region.
   2278  */
   2279 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
   2280 
   2281 /*
   2282  * memory_region_set_alias_offset: dynamically update a memory alias's offset
   2283  *
   2284  * Dynamically updates the offset into the target region that an alias points
   2285  * to, as if the fourth argument to memory_region_init_alias() has changed.
   2286  *
   2287  * @mr: the #MemoryRegion to be updated; should be an alias.
   2288  * @offset: the new offset into the target memory region
   2289  */
   2290 void memory_region_set_alias_offset(MemoryRegion *mr,
   2291                                     hwaddr offset);
   2292 
   2293 /**
   2294  * memory_region_present: checks if an address relative to a @container
   2295  * translates into #MemoryRegion within @container
   2296  *
   2297  * Answer whether a #MemoryRegion within @container covers the address
   2298  * @addr.
   2299  *
   2300  * @container: a #MemoryRegion within which @addr is a relative address
   2301  * @addr: the area within @container to be searched
   2302  */
   2303 bool memory_region_present(MemoryRegion *container, hwaddr addr);
   2304 
   2305 /**
   2306  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
   2307  * into another memory region, which does not necessarily imply that it is
   2308  * mapped into an address space.
   2309  *
   2310  * @mr: a #MemoryRegion which should be checked if it's mapped
   2311  */
   2312 bool memory_region_is_mapped(MemoryRegion *mr);
   2313 
   2314 /**
   2315  * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
   2316  * #MemoryRegion
   2317  *
   2318  * The #RamDiscardManager cannot change while a memory region is mapped.
   2319  *
   2320  * @mr: the #MemoryRegion
   2321  */
   2322 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
   2323 
   2324 /**
   2325  * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
   2326  * #RamDiscardManager assigned
   2327  *
   2328  * @mr: the #MemoryRegion
   2329  */
   2330 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
   2331 {
   2332     return !!memory_region_get_ram_discard_manager(mr);
   2333 }
   2334 
   2335 /**
   2336  * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
   2337  * #MemoryRegion
   2338  *
   2339  * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
   2340  * that does not cover RAM, or a #MemoryRegion that already has a
   2341  * #RamDiscardManager assigned.
   2342  *
   2343  * @mr: the #MemoryRegion
   2344  * @rdm: #RamDiscardManager to set
   2345  */
   2346 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
   2347                                            RamDiscardManager *rdm);
   2348 
   2349 /**
   2350  * memory_region_find: translate an address/size relative to a
   2351  * MemoryRegion into a #MemoryRegionSection.
   2352  *
   2353  * Locates the first #MemoryRegion within @mr that overlaps the range
   2354  * given by @addr and @size.
   2355  *
   2356  * Returns a #MemoryRegionSection that describes a contiguous overlap.
   2357  * It will have the following characteristics:
   2358  * - @size = 0 iff no overlap was found
   2359  * - @mr is non-%NULL iff an overlap was found
   2360  *
   2361  * Remember that in the return value the @offset_within_region is
   2362  * relative to the returned region (in the .@mr field), not to the
   2363  * @mr argument.
   2364  *
   2365  * Similarly, the .@offset_within_address_space is relative to the
   2366  * address space that contains both regions, the passed and the
   2367  * returned one.  However, in the special case where the @mr argument
   2368  * has no container (and thus is the root of the address space), the
   2369  * following will hold:
   2370  * - @offset_within_address_space >= @addr
   2371  * - @offset_within_address_space + .@size <= @addr + @size
   2372  *
   2373  * @mr: a MemoryRegion within which @addr is a relative address
   2374  * @addr: start of the area within @as to be searched
   2375  * @size: size of the area to be searched
   2376  */
   2377 MemoryRegionSection memory_region_find(MemoryRegion *mr,
   2378                                        hwaddr addr, uint64_t size);
   2379 
   2380 /**
   2381  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
   2382  *
   2383  * Synchronizes the dirty page log for all address spaces.
   2384  */
   2385 void memory_global_dirty_log_sync(void);
   2386 
   2387 /**
   2388  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
   2389  *
   2390  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
   2391  * This function must be called after the dirty log bitmap is cleared, and
   2392  * before dirty guest memory pages are read.  If you are using
   2393  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
   2394  * care of doing this.
   2395  */
   2396 void memory_global_after_dirty_log_sync(void);
   2397 
   2398 /**
   2399  * memory_region_transaction_begin: Start a transaction.
   2400  *
   2401  * During a transaction, changes will be accumulated and made visible
   2402  * only when the transaction ends (is committed).
   2403  */
   2404 void memory_region_transaction_begin(void);
   2405 
   2406 /**
   2407  * memory_region_transaction_commit: Commit a transaction and make changes
   2408  *                                   visible to the guest.
   2409  */
   2410 void memory_region_transaction_commit(void);
   2411 
   2412 /**
   2413  * memory_listener_register: register callbacks to be called when memory
   2414  *                           sections are mapped or unmapped into an address
   2415  *                           space
   2416  *
   2417  * @listener: an object containing the callbacks to be called
   2418  * @filter: if non-%NULL, only regions in this address space will be observed
   2419  */
   2420 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
   2421 
   2422 /**
   2423  * memory_listener_unregister: undo the effect of memory_listener_register()
   2424  *
   2425  * @listener: an object containing the callbacks to be removed
   2426  */
   2427 void memory_listener_unregister(MemoryListener *listener);
   2428 
   2429 /**
   2430  * memory_global_dirty_log_start: begin dirty logging for all regions
   2431  *
   2432  * @flags: purpose of starting dirty log, migration or dirty rate
   2433  */
   2434 void memory_global_dirty_log_start(unsigned int flags);
   2435 
   2436 /**
   2437  * memory_global_dirty_log_stop: end dirty logging for all regions
   2438  *
   2439  * @flags: purpose of stopping dirty log, migration or dirty rate
   2440  */
   2441 void memory_global_dirty_log_stop(unsigned int flags);
   2442 
   2443 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
   2444 
   2445 /**
   2446  * memory_region_dispatch_read: perform a read directly to the specified
   2447  * MemoryRegion.
   2448  *
   2449  * @mr: #MemoryRegion to access
   2450  * @addr: address within that region
   2451  * @pval: pointer to uint64_t which the data is written to
   2452  * @op: size, sign, and endianness of the memory operation
   2453  * @attrs: memory transaction attributes to use for the access
   2454  */
   2455 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
   2456                                         hwaddr addr,
   2457                                         uint64_t *pval,
   2458                                         MemOp op,
   2459                                         MemTxAttrs attrs);
   2460 /**
   2461  * memory_region_dispatch_write: perform a write directly to the specified
   2462  * MemoryRegion.
   2463  *
   2464  * @mr: #MemoryRegion to access
   2465  * @addr: address within that region
   2466  * @data: data to write
   2467  * @op: size, sign, and endianness of the memory operation
   2468  * @attrs: memory transaction attributes to use for the access
   2469  */
   2470 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
   2471                                          hwaddr addr,
   2472                                          uint64_t data,
   2473                                          MemOp op,
   2474                                          MemTxAttrs attrs);
   2475 
   2476 /**
   2477  * address_space_init: initializes an address space
   2478  *
   2479  * @as: an uninitialized #AddressSpace
   2480  * @root: a #MemoryRegion that routes addresses for the address space
   2481  * @name: an address space name.  The name is only used for debugging
   2482  *        output.
   2483  */
   2484 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
   2485 
   2486 /**
   2487  * address_space_destroy: destroy an address space
   2488  *
   2489  * Releases all resources associated with an address space.  After an address space
   2490  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
   2491  * as well.
   2492  *
   2493  * @as: address space to be destroyed
   2494  */
   2495 void address_space_destroy(AddressSpace *as);
   2496 
   2497 /**
   2498  * address_space_remove_listeners: unregister all listeners of an address space
   2499  *
   2500  * Removes all callbacks previously registered with memory_listener_register()
   2501  * for @as.
   2502  *
   2503  * @as: an initialized #AddressSpace
   2504  */
   2505 void address_space_remove_listeners(AddressSpace *as);
   2506 
   2507 /**
   2508  * address_space_rw: read from or write to an address space.
   2509  *
   2510  * Return a MemTxResult indicating whether the operation succeeded
   2511  * or failed (eg unassigned memory, device rejected the transaction,
   2512  * IOMMU fault).
   2513  *
   2514  * @as: #AddressSpace to be accessed
   2515  * @addr: address within that address space
   2516  * @attrs: memory transaction attributes
   2517  * @buf: buffer with the data transferred
   2518  * @len: the number of bytes to read or write
   2519  * @is_write: indicates the transfer direction
   2520  */
   2521 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
   2522                              MemTxAttrs attrs, void *buf,
   2523                              hwaddr len, bool is_write);
   2524 
   2525 /**
   2526  * address_space_write: write to address space.
   2527  *
   2528  * Return a MemTxResult indicating whether the operation succeeded
   2529  * or failed (eg unassigned memory, device rejected the transaction,
   2530  * IOMMU fault).
   2531  *
   2532  * @as: #AddressSpace to be accessed
   2533  * @addr: address within that address space
   2534  * @attrs: memory transaction attributes
   2535  * @buf: buffer with the data transferred
   2536  * @len: the number of bytes to write
   2537  */
   2538 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
   2539                                 MemTxAttrs attrs,
   2540                                 const void *buf, hwaddr len);
   2541 
   2542 /**
   2543  * address_space_write_rom: write to address space, including ROM.
   2544  *
   2545  * This function writes to the specified address space, but will
   2546  * write data to both ROM and RAM. This is used for non-guest
   2547  * writes like writes from the gdb debug stub or initial loading
   2548  * of ROM contents.
   2549  *
   2550  * Note that portions of the write which attempt to write data to
   2551  * a device will be silently ignored -- only real RAM and ROM will
   2552  * be written to.
   2553  *
   2554  * Return a MemTxResult indicating whether the operation succeeded
   2555  * or failed (eg unassigned memory, device rejected the transaction,
   2556  * IOMMU fault).
   2557  *
   2558  * @as: #AddressSpace to be accessed
   2559  * @addr: address within that address space
   2560  * @attrs: memory transaction attributes
   2561  * @buf: buffer with the data transferred
   2562  * @len: the number of bytes to write
   2563  */
   2564 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
   2565                                     MemTxAttrs attrs,
   2566                                     const void *buf, hwaddr len);
   2567 
   2568 /* address_space_ld*: load from an address space
   2569  * address_space_st*: store to an address space
   2570  *
   2571  * These functions perform a load or store of the byte, word,
   2572  * longword or quad to the specified address within the AddressSpace.
   2573  * The _le suffixed functions treat the data as little endian;
   2574  * _be indicates big endian; no suffix indicates "same endianness
   2575  * as guest CPU".
   2576  *
   2577  * The "guest CPU endianness" accessors are deprecated for use outside
   2578  * target-* code; devices should be CPU-agnostic and use either the LE
   2579  * or the BE accessors.
   2580  *
   2581  * @as #AddressSpace to be accessed
   2582  * @addr: address within that address space
   2583  * @val: data value, for stores
   2584  * @attrs: memory transaction attributes
   2585  * @result: location to write the success/failure of the transaction;
   2586  *   if NULL, this information is discarded
   2587  */
   2588 
   2589 #define SUFFIX
   2590 #define ARG1         as
   2591 #define ARG1_DECL    AddressSpace *as
   2592 #include "exec/memory_ldst.h.inc"
   2593 
   2594 #define SUFFIX
   2595 #define ARG1         as
   2596 #define ARG1_DECL    AddressSpace *as
   2597 #include "exec/memory_ldst_phys.h.inc"
   2598 
   2599 struct MemoryRegionCache {
   2600     void *ptr;
   2601     hwaddr xlat;
   2602     hwaddr len;
   2603     FlatView *fv;
   2604     MemoryRegionSection mrs;
   2605     bool is_write;
   2606 };
   2607 
   2608 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
   2609 
   2610 
   2611 /* address_space_ld*_cached: load from a cached #MemoryRegion
   2612  * address_space_st*_cached: store into a cached #MemoryRegion
   2613  *
   2614  * These functions perform a load or store of the byte, word,
   2615  * longword or quad to the specified address.  The address is
   2616  * a physical address in the AddressSpace, but it must lie within
   2617  * a #MemoryRegion that was mapped with address_space_cache_init.
   2618  *
   2619  * The _le suffixed functions treat the data as little endian;
   2620  * _be indicates big endian; no suffix indicates "same endianness
   2621  * as guest CPU".
   2622  *
   2623  * The "guest CPU endianness" accessors are deprecated for use outside
   2624  * target-* code; devices should be CPU-agnostic and use either the LE
   2625  * or the BE accessors.
   2626  *
   2627  * @cache: previously initialized #MemoryRegionCache to be accessed
   2628  * @addr: address within the address space
   2629  * @val: data value, for stores
   2630  * @attrs: memory transaction attributes
   2631  * @result: location to write the success/failure of the transaction;
   2632  *   if NULL, this information is discarded
   2633  */
   2634 
   2635 #define SUFFIX       _cached_slow
   2636 #define ARG1         cache
   2637 #define ARG1_DECL    MemoryRegionCache *cache
   2638 #include "exec/memory_ldst.h.inc"
   2639 
   2640 /* Inline fast path for direct RAM access.  */
   2641 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
   2642     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
   2643 {
   2644     assert(addr < cache->len);
   2645     if (likely(cache->ptr)) {
   2646         return ldub_p(cache->ptr + addr);
   2647     } else {
   2648         return address_space_ldub_cached_slow(cache, addr, attrs, result);
   2649     }
   2650 }
   2651 
   2652 static inline void address_space_stb_cached(MemoryRegionCache *cache,
   2653     hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
   2654 {
   2655     assert(addr < cache->len);
   2656     if (likely(cache->ptr)) {
   2657         stb_p(cache->ptr + addr, val);
   2658     } else {
   2659         address_space_stb_cached_slow(cache, addr, val, attrs, result);
   2660     }
   2661 }
   2662 
   2663 #define ENDIANNESS   _le
   2664 #include "exec/memory_ldst_cached.h.inc"
   2665 
   2666 #define ENDIANNESS   _be
   2667 #include "exec/memory_ldst_cached.h.inc"
   2668 
   2669 #define SUFFIX       _cached
   2670 #define ARG1         cache
   2671 #define ARG1_DECL    MemoryRegionCache *cache
   2672 #include "exec/memory_ldst_phys.h.inc"
   2673 
   2674 /* address_space_cache_init: prepare for repeated access to a physical
   2675  * memory region
   2676  *
   2677  * @cache: #MemoryRegionCache to be filled
   2678  * @as: #AddressSpace to be accessed
   2679  * @addr: address within that address space
   2680  * @len: length of buffer
   2681  * @is_write: indicates the transfer direction
   2682  *
   2683  * Will only work with RAM, and may map a subset of the requested range by
   2684  * returning a value that is less than @len.  On failure, return a negative
   2685  * errno value.
   2686  *
   2687  * Because it only works with RAM, this function can be used for
   2688  * read-modify-write operations.  In this case, is_write should be %true.
   2689  *
   2690  * Note that addresses passed to the address_space_*_cached functions
   2691  * are relative to @addr.
   2692  */
   2693 int64_t address_space_cache_init(MemoryRegionCache *cache,
   2694                                  AddressSpace *as,
   2695                                  hwaddr addr,
   2696                                  hwaddr len,
   2697                                  bool is_write);
   2698 
   2699 /**
   2700  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
   2701  *
   2702  * @cache: The #MemoryRegionCache to operate on.
   2703  * @addr: The first physical address that was written, relative to the
   2704  * address that was passed to @address_space_cache_init.
   2705  * @access_len: The number of bytes that were written starting at @addr.
   2706  */
   2707 void address_space_cache_invalidate(MemoryRegionCache *cache,
   2708                                     hwaddr addr,
   2709                                     hwaddr access_len);
   2710 
   2711 /**
   2712  * address_space_cache_destroy: free a #MemoryRegionCache
   2713  *
   2714  * @cache: The #MemoryRegionCache whose memory should be released.
   2715  */
   2716 void address_space_cache_destroy(MemoryRegionCache *cache);
   2717 
   2718 /* address_space_get_iotlb_entry: translate an address into an IOTLB
   2719  * entry. Should be called from an RCU critical section.
   2720  */
   2721 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
   2722                                             bool is_write, MemTxAttrs attrs);
   2723 
   2724 /* address_space_translate: translate an address range into an address space
   2725  * into a MemoryRegion and an address range into that section.  Should be
   2726  * called from an RCU critical section, to avoid that the last reference
   2727  * to the returned region disappears after address_space_translate returns.
   2728  *
   2729  * @fv: #FlatView to be accessed
   2730  * @addr: address within that address space
   2731  * @xlat: pointer to address within the returned memory region section's
   2732  * #MemoryRegion.
   2733  * @len: pointer to length
   2734  * @is_write: indicates the transfer direction
   2735  * @attrs: memory attributes
   2736  */
   2737 MemoryRegion *flatview_translate(FlatView *fv,
   2738                                  hwaddr addr, hwaddr *xlat,
   2739                                  hwaddr *len, bool is_write,
   2740                                  MemTxAttrs attrs);
   2741 
   2742 static inline MemoryRegion *address_space_translate(AddressSpace *as,
   2743                                                     hwaddr addr, hwaddr *xlat,
   2744                                                     hwaddr *len, bool is_write,
   2745                                                     MemTxAttrs attrs)
   2746 {
   2747     return flatview_translate(address_space_to_flatview(as),
   2748                               addr, xlat, len, is_write, attrs);
   2749 }
   2750 
   2751 /* address_space_access_valid: check for validity of accessing an address
   2752  * space range
   2753  *
   2754  * Check whether memory is assigned to the given address space range, and
   2755  * access is permitted by any IOMMU regions that are active for the address
   2756  * space.
   2757  *
   2758  * For now, addr and len should be aligned to a page size.  This limitation
   2759  * will be lifted in the future.
   2760  *
   2761  * @as: #AddressSpace to be accessed
   2762  * @addr: address within that address space
   2763  * @len: length of the area to be checked
   2764  * @is_write: indicates the transfer direction
   2765  * @attrs: memory attributes
   2766  */
   2767 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
   2768                                 bool is_write, MemTxAttrs attrs);
   2769 
   2770 /* address_space_map: map a physical memory region into a host virtual address
   2771  *
   2772  * May map a subset of the requested range, given by and returned in @plen.
   2773  * May return %NULL and set *@plen to zero(0), if resources needed to perform
   2774  * the mapping are exhausted.
   2775  * Use only for reads OR writes - not for read-modify-write operations.
   2776  * Use cpu_register_map_client() to know when retrying the map operation is
   2777  * likely to succeed.
   2778  *
   2779  * @as: #AddressSpace to be accessed
   2780  * @addr: address within that address space
   2781  * @plen: pointer to length of buffer; updated on return
   2782  * @is_write: indicates the transfer direction
   2783  * @attrs: memory attributes
   2784  */
   2785 void *address_space_map(AddressSpace *as, hwaddr addr,
   2786                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
   2787 
   2788 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
   2789  *
   2790  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
   2791  * the amount of memory that was actually read or written by the caller.
   2792  *
   2793  * @as: #AddressSpace used
   2794  * @buffer: host pointer as returned by address_space_map()
   2795  * @len: buffer length as returned by address_space_map()
   2796  * @access_len: amount of data actually transferred
   2797  * @is_write: indicates the transfer direction
   2798  */
   2799 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
   2800                          bool is_write, hwaddr access_len);
   2801 
   2802 
   2803 /* Internal functions, part of the implementation of address_space_read.  */
   2804 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
   2805                                     MemTxAttrs attrs, void *buf, hwaddr len);
   2806 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
   2807                                    MemTxAttrs attrs, void *buf,
   2808                                    hwaddr len, hwaddr addr1, hwaddr l,
   2809                                    MemoryRegion *mr);
   2810 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
   2811 
   2812 /* Internal functions, part of the implementation of address_space_read_cached
   2813  * and address_space_write_cached.  */
   2814 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
   2815                                            hwaddr addr, void *buf, hwaddr len);
   2816 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
   2817                                             hwaddr addr, const void *buf,
   2818                                             hwaddr len);
   2819 
   2820 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
   2821 bool prepare_mmio_access(MemoryRegion *mr);
   2822 
   2823 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
   2824 {
   2825     if (is_write) {
   2826         return memory_region_is_ram(mr) && !mr->readonly &&
   2827                !mr->rom_device && !memory_region_is_ram_device(mr);
   2828     } else {
   2829         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
   2830                memory_region_is_romd(mr);
   2831     }
   2832 }
   2833 
   2834 /**
   2835  * address_space_read: read from an address space.
   2836  *
   2837  * Return a MemTxResult indicating whether the operation succeeded
   2838  * or failed (eg unassigned memory, device rejected the transaction,
   2839  * IOMMU fault).  Called within RCU critical section.
   2840  *
   2841  * @as: #AddressSpace to be accessed
   2842  * @addr: address within that address space
   2843  * @attrs: memory transaction attributes
   2844  * @buf: buffer with the data transferred
   2845  * @len: length of the data transferred
   2846  */
   2847 static inline __attribute__((__always_inline__))
   2848 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
   2849                                MemTxAttrs attrs, void *buf,
   2850                                hwaddr len)
   2851 {
   2852     MemTxResult result = MEMTX_OK;
   2853     hwaddr l, addr1;
   2854     void *ptr;
   2855     MemoryRegion *mr;
   2856     FlatView *fv;
   2857 
   2858     if (__builtin_constant_p(len)) {
   2859         if (len) {
   2860             RCU_READ_LOCK_GUARD();
   2861             fv = address_space_to_flatview(as);
   2862             l = len;
   2863             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
   2864             if (len == l && memory_access_is_direct(mr, false)) {
   2865                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
   2866                 memcpy(buf, ptr, len);
   2867             } else {
   2868                 result = flatview_read_continue(fv, addr, attrs, buf, len,
   2869                                                 addr1, l, mr);
   2870             }
   2871         }
   2872     } else {
   2873         result = address_space_read_full(as, addr, attrs, buf, len);
   2874     }
   2875     return result;
   2876 }
   2877 
   2878 /**
   2879  * address_space_read_cached: read from a cached RAM region
   2880  *
   2881  * @cache: Cached region to be addressed
   2882  * @addr: address relative to the base of the RAM region
   2883  * @buf: buffer with the data transferred
   2884  * @len: length of the data transferred
   2885  */
   2886 static inline MemTxResult
   2887 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
   2888                           void *buf, hwaddr len)
   2889 {
   2890     assert(addr < cache->len && len <= cache->len - addr);
   2891     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
   2892     if (likely(cache->ptr)) {
   2893         memcpy(buf, cache->ptr + addr, len);
   2894         return MEMTX_OK;
   2895     } else {
   2896         return address_space_read_cached_slow(cache, addr, buf, len);
   2897     }
   2898 }
   2899 
   2900 /**
   2901  * address_space_write_cached: write to a cached RAM region
   2902  *
   2903  * @cache: Cached region to be addressed
   2904  * @addr: address relative to the base of the RAM region
   2905  * @buf: buffer with the data transferred
   2906  * @len: length of the data transferred
   2907  */
   2908 static inline MemTxResult
   2909 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
   2910                            const void *buf, hwaddr len)
   2911 {
   2912     assert(addr < cache->len && len <= cache->len - addr);
   2913     if (likely(cache->ptr)) {
   2914         memcpy(cache->ptr + addr, buf, len);
   2915         return MEMTX_OK;
   2916     } else {
   2917         return address_space_write_cached_slow(cache, addr, buf, len);
   2918     }
   2919 }
   2920 
   2921 /**
   2922  * address_space_set: Fill address space with a constant byte.
   2923  *
   2924  * Return a MemTxResult indicating whether the operation succeeded
   2925  * or failed (eg unassigned memory, device rejected the transaction,
   2926  * IOMMU fault).
   2927  *
   2928  * @as: #AddressSpace to be accessed
   2929  * @addr: address within that address space
   2930  * @c: constant byte to fill the memory
   2931  * @len: the number of bytes to fill with the constant byte
   2932  * @attrs: memory transaction attributes
   2933  */
   2934 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
   2935                               uint8_t c, hwaddr len, MemTxAttrs attrs);
   2936 
   2937 #ifdef NEED_CPU_H
   2938 /* enum device_endian to MemOp.  */
   2939 static inline MemOp devend_memop(enum device_endian end)
   2940 {
   2941     QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
   2942                       DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
   2943 
   2944 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
   2945     /* Swap if non-host endianness or native (target) endianness */
   2946     return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
   2947 #else
   2948     const int non_host_endianness =
   2949         DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
   2950 
   2951     /* In this case, native (target) endianness needs no swap.  */
   2952     return (end == non_host_endianness) ? MO_BSWAP : 0;
   2953 #endif
   2954 }
   2955 #endif
   2956 
   2957 /*
   2958  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
   2959  * to manage the actual amount of memory consumed by the VM (then, the memory
   2960  * provided by RAM blocks might be bigger than the desired memory consumption).
   2961  * This *must* be set if:
   2962  * - Discarding parts of a RAM blocks does not result in the change being
   2963  *   reflected in the VM and the pages getting freed.
   2964  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
   2965  *   discards blindly.
   2966  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
   2967  *   encrypted VMs).
   2968  * Technologies that only temporarily pin the current working set of a
   2969  * driver are fine, because we don't expect such pages to be discarded
   2970  * (esp. based on guest action like balloon inflation).
   2971  *
   2972  * This is *not* to be used to protect from concurrent discards (esp.,
   2973  * postcopy).
   2974  *
   2975  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
   2976  * discards to work reliably is active.
   2977  */
   2978 int ram_block_discard_disable(bool state);
   2979 
   2980 /*
   2981  * See ram_block_discard_disable(): only disable uncoordinated discards,
   2982  * keeping coordinated discards (via the RamDiscardManager) enabled.
   2983  */
   2984 int ram_block_uncoordinated_discard_disable(bool state);
   2985 
   2986 /*
   2987  * Inhibit technologies that disable discarding of pages in RAM blocks.
   2988  *
   2989  * Returns 0 if successful. Returns -EBUSY if discards are already set to
   2990  * broken.
   2991  */
   2992 int ram_block_discard_require(bool state);
   2993 
   2994 /*
   2995  * See ram_block_discard_require(): only inhibit technologies that disable
   2996  * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
   2997  * technologies that only inhibit uncoordinated discards (via the
   2998  * RamDiscardManager).
   2999  */
   3000 int ram_block_coordinated_discard_require(bool state);
   3001 
   3002 /*
   3003  * Test if any discarding of memory in ram blocks is disabled.
   3004  */
   3005 bool ram_block_discard_is_disabled(void);
   3006 
   3007 /*
   3008  * Test if any discarding of memory in ram blocks is required to work reliably.
   3009  */
   3010 bool ram_block_discard_is_required(void);
   3011 
   3012 #endif
   3013 
   3014 #endif