qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

sse-timer.c (13505B)


      1 /*
      2  * Arm SSE Subsystem System Timer
      3  *
      4  * Copyright (c) 2020 Linaro Limited
      5  * Written by Peter Maydell
      6  *
      7  * This program is free software; you can redistribute it and/or modify
      8  * it under the terms of the GNU General Public License version 2 or
      9  * (at your option) any later version.
     10  */
     11 
     12 /*
     13  * This is a model of the "System timer" which is documented in
     14  * the Arm SSE-123 Example Subsystem Technical Reference Manual:
     15  * https://developer.arm.com/documentation/101370/latest/
     16  *
     17  * The timer is based around a simple 64-bit incrementing counter
     18  * (readable from CNTPCT_HI/LO). The timer fires when
     19  *  Counter - CompareValue >= 0.
     20  * The CompareValue is guest-writable, via CNTP_CVAL_HI/LO.
     21  * CNTP_TVAL is an alternative view of the CompareValue defined by
     22  *  TimerValue = CompareValue[31:0] - Counter[31:0]
     23  * which can be both read and written.
     24  * This part is similar to the generic timer in an Arm A-class CPU.
     25  *
     26  * The timer also has a separate auto-increment timer. When this
     27  * timer is enabled, then the AutoIncrValue is set to:
     28  *  AutoIncrValue = Reload + Counter
     29  * and this timer fires when
     30  *  Counter - AutoIncrValue >= 0
     31  * at which point, an interrupt is generated and the new AutoIncrValue
     32  * is calculated.
     33  * When the auto-increment timer is enabled, interrupt generation
     34  * via the compare/timervalue registers is disabled.
     35  */
     36 #include "qemu/osdep.h"
     37 #include "qemu/log.h"
     38 #include "qemu/timer.h"
     39 #include "qapi/error.h"
     40 #include "trace.h"
     41 #include "hw/timer/sse-timer.h"
     42 #include "hw/timer/sse-counter.h"
     43 #include "hw/sysbus.h"
     44 #include "hw/irq.h"
     45 #include "hw/registerfields.h"
     46 #include "hw/clock.h"
     47 #include "hw/qdev-clock.h"
     48 #include "hw/qdev-properties.h"
     49 #include "migration/vmstate.h"
     50 
     51 REG32(CNTPCT_LO, 0x0)
     52 REG32(CNTPCT_HI, 0x4)
     53 REG32(CNTFRQ, 0x10)
     54 REG32(CNTP_CVAL_LO, 0x20)
     55 REG32(CNTP_CVAL_HI, 0x24)
     56 REG32(CNTP_TVAL, 0x28)
     57 REG32(CNTP_CTL, 0x2c)
     58     FIELD(CNTP_CTL, ENABLE, 0, 1)
     59     FIELD(CNTP_CTL, IMASK, 1, 1)
     60     FIELD(CNTP_CTL, ISTATUS, 2, 1)
     61 REG32(CNTP_AIVAL_LO, 0x40)
     62 REG32(CNTP_AIVAL_HI, 0x44)
     63 REG32(CNTP_AIVAL_RELOAD, 0x48)
     64 REG32(CNTP_AIVAL_CTL, 0x4c)
     65     FIELD(CNTP_AIVAL_CTL, EN, 0, 1)
     66     FIELD(CNTP_AIVAL_CTL, CLR, 1, 1)
     67 REG32(CNTP_CFG, 0x50)
     68     FIELD(CNTP_CFG, AIVAL, 0, 4)
     69 #define R_CNTP_CFG_AIVAL_IMPLEMENTED 1
     70 REG32(PID4, 0xFD0)
     71 REG32(PID5, 0xFD4)
     72 REG32(PID6, 0xFD8)
     73 REG32(PID7, 0xFDC)
     74 REG32(PID0, 0xFE0)
     75 REG32(PID1, 0xFE4)
     76 REG32(PID2, 0xFE8)
     77 REG32(PID3, 0xFEC)
     78 REG32(CID0, 0xFF0)
     79 REG32(CID1, 0xFF4)
     80 REG32(CID2, 0xFF8)
     81 REG32(CID3, 0xFFC)
     82 
     83 /* PID/CID values */
     84 static const int timer_id[] = {
     85     0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
     86     0xb7, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
     87     0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
     88 };
     89 
     90 static bool sse_is_autoinc(SSETimer *s)
     91 {
     92     return (s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_EN_MASK) != 0;
     93 }
     94 
     95 static bool sse_enabled(SSETimer *s)
     96 {
     97     return (s->cntp_ctl & R_CNTP_CTL_ENABLE_MASK) != 0;
     98 }
     99 
    100 static uint64_t sse_cntpct(SSETimer *s)
    101 {
    102     /* Return the CNTPCT value for the current time */
    103     return sse_counter_for_timestamp(s->counter,
    104                                      qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
    105 }
    106 
    107 static bool sse_timer_status(SSETimer *s)
    108 {
    109     /*
    110      * Return true if timer condition is met. This is used for both
    111      * the CNTP_CTL.ISTATUS bit and for whether (unless masked) we
    112      * assert our IRQ.
    113      * The documentation is unclear about the behaviour of ISTATUS when
    114      * in autoincrement mode; we assume that it follows CNTP_AIVAL_CTL.CLR
    115      * (ie whether the autoincrement timer is asserting the interrupt).
    116      */
    117     if (!sse_enabled(s)) {
    118         return false;
    119     }
    120 
    121     if (sse_is_autoinc(s)) {
    122         return s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_CLR_MASK;
    123     } else {
    124         return sse_cntpct(s) >= s->cntp_cval;
    125     }
    126 }
    127 
    128 static void sse_update_irq(SSETimer *s)
    129 {
    130     bool irqstate = (!(s->cntp_ctl & R_CNTP_CTL_IMASK_MASK) &&
    131                      sse_timer_status(s));
    132 
    133     qemu_set_irq(s->irq, irqstate);
    134 }
    135 
    136 static void sse_set_timer(SSETimer *s, uint64_t nexttick)
    137 {
    138     /* Set the timer to expire at nexttick */
    139     uint64_t expiry = sse_counter_tick_to_time(s->counter, nexttick);
    140 
    141     if (expiry <= INT64_MAX) {
    142         timer_mod_ns(&s->timer, expiry);
    143     } else {
    144         /*
    145          * nexttick is so far in the future that it would overflow the
    146          * signed 64-bit range of a QEMUTimer. Since timer_mod_ns()
    147          * expiry times are absolute, not relative, we are never going
    148          * to be able to set the timer to this value, so we must just
    149          * assume that guest execution can never run so long that it
    150          * reaches the theoretical point when the timer fires.
    151          * This is also the code path for "counter is not running",
    152          * which is signalled by expiry == UINT64_MAX.
    153          */
    154         timer_del(&s->timer);
    155     }
    156 }
    157 
    158 static void sse_recalc_timer(SSETimer *s)
    159 {
    160     /* Recalculate the normal timer */
    161     uint64_t count, nexttick;
    162 
    163     if (sse_is_autoinc(s)) {
    164         return;
    165     }
    166 
    167     if (!sse_enabled(s)) {
    168         timer_del(&s->timer);
    169         return;
    170     }
    171 
    172     count = sse_cntpct(s);
    173 
    174     if (count >= s->cntp_cval) {
    175         /*
    176          * Timer condition already met. In theory we have a transition when
    177          * the count rolls back over to 0, but that is so far in the future
    178          * that it is not representable as a timer_mod() expiry, so in
    179          * fact sse_set_timer() will always just delete the timer.
    180          */
    181         nexttick = UINT64_MAX;
    182     } else {
    183         /* Next transition is when count hits cval */
    184         nexttick = s->cntp_cval;
    185     }
    186     sse_set_timer(s, nexttick);
    187     sse_update_irq(s);
    188 }
    189 
    190 static void sse_autoinc(SSETimer *s)
    191 {
    192     /* Auto-increment the AIVAL, and set the timer accordingly */
    193     s->cntp_aival = sse_cntpct(s) + s->cntp_aival_reload;
    194     sse_set_timer(s, s->cntp_aival);
    195 }
    196 
    197 static void sse_timer_cb(void *opaque)
    198 {
    199     SSETimer *s = SSE_TIMER(opaque);
    200 
    201     if (sse_is_autoinc(s)) {
    202         uint64_t count = sse_cntpct(s);
    203 
    204         if (count >= s->cntp_aival) {
    205             /* Timer condition met, set CLR and do another autoinc */
    206             s->cntp_aival_ctl |= R_CNTP_AIVAL_CTL_CLR_MASK;
    207             s->cntp_aival = count + s->cntp_aival_reload;
    208         }
    209         sse_set_timer(s, s->cntp_aival);
    210         sse_update_irq(s);
    211     } else {
    212         sse_recalc_timer(s);
    213     }
    214 }
    215 
    216 static uint64_t sse_timer_read(void *opaque, hwaddr offset, unsigned size)
    217 {
    218     SSETimer *s = SSE_TIMER(opaque);
    219     uint64_t r;
    220 
    221     switch (offset) {
    222     case A_CNTPCT_LO:
    223         r = extract64(sse_cntpct(s), 0, 32);
    224         break;
    225     case A_CNTPCT_HI:
    226         r = extract64(sse_cntpct(s), 32, 32);
    227         break;
    228     case A_CNTFRQ:
    229         r = s->cntfrq;
    230         break;
    231     case A_CNTP_CVAL_LO:
    232         r = extract64(s->cntp_cval, 0, 32);
    233         break;
    234     case A_CNTP_CVAL_HI:
    235         r = extract64(s->cntp_cval, 32, 32);
    236         break;
    237     case A_CNTP_TVAL:
    238         r = extract64(s->cntp_cval - sse_cntpct(s), 0, 32);
    239         break;
    240     case A_CNTP_CTL:
    241         r = s->cntp_ctl;
    242         if (sse_timer_status(s)) {
    243             r |= R_CNTP_CTL_ISTATUS_MASK;
    244         }
    245         break;
    246     case A_CNTP_AIVAL_LO:
    247         r = extract64(s->cntp_aival, 0, 32);
    248         break;
    249     case A_CNTP_AIVAL_HI:
    250         r = extract64(s->cntp_aival, 32, 32);
    251         break;
    252     case A_CNTP_AIVAL_RELOAD:
    253         r = s->cntp_aival_reload;
    254         break;
    255     case A_CNTP_AIVAL_CTL:
    256         /*
    257          * All the bits of AIVAL_CTL are documented as WO, but this is probably
    258          * a documentation error. We implement them as readable.
    259          */
    260         r = s->cntp_aival_ctl;
    261         break;
    262     case A_CNTP_CFG:
    263         r = R_CNTP_CFG_AIVAL_IMPLEMENTED << R_CNTP_CFG_AIVAL_SHIFT;
    264         break;
    265     case A_PID4 ... A_CID3:
    266         r = timer_id[(offset - A_PID4) / 4];
    267         break;
    268     default:
    269         qemu_log_mask(LOG_GUEST_ERROR,
    270                       "SSE System Timer read: bad offset 0x%x",
    271                       (unsigned) offset);
    272         r = 0;
    273         break;
    274     }
    275 
    276     trace_sse_timer_read(offset, r, size);
    277     return r;
    278 }
    279 
    280 static void sse_timer_write(void *opaque, hwaddr offset, uint64_t value,
    281                             unsigned size)
    282 {
    283     SSETimer *s = SSE_TIMER(opaque);
    284 
    285     trace_sse_timer_write(offset, value, size);
    286 
    287     switch (offset) {
    288     case A_CNTFRQ:
    289         s->cntfrq = value;
    290         break;
    291     case A_CNTP_CVAL_LO:
    292         s->cntp_cval = deposit64(s->cntp_cval, 0, 32, value);
    293         sse_recalc_timer(s);
    294         break;
    295     case A_CNTP_CVAL_HI:
    296         s->cntp_cval = deposit64(s->cntp_cval, 32, 32, value);
    297         sse_recalc_timer(s);
    298         break;
    299     case A_CNTP_TVAL:
    300         s->cntp_cval = sse_cntpct(s) + sextract64(value, 0, 32);
    301         sse_recalc_timer(s);
    302         break;
    303     case A_CNTP_CTL:
    304     {
    305         uint32_t old_ctl = s->cntp_ctl;
    306         value &= R_CNTP_CTL_ENABLE_MASK | R_CNTP_CTL_IMASK_MASK;
    307         s->cntp_ctl = value;
    308         if ((old_ctl ^ s->cntp_ctl) & R_CNTP_CTL_ENABLE_MASK) {
    309             if (sse_enabled(s)) {
    310                 if (sse_is_autoinc(s)) {
    311                     sse_autoinc(s);
    312                 } else {
    313                     sse_recalc_timer(s);
    314                 }
    315             }
    316         }
    317         sse_update_irq(s);
    318         break;
    319     }
    320     case A_CNTP_AIVAL_RELOAD:
    321         s->cntp_aival_reload = value;
    322         break;
    323     case A_CNTP_AIVAL_CTL:
    324     {
    325         uint32_t old_ctl = s->cntp_aival_ctl;
    326 
    327         /* EN bit is writable; CLR bit is write-0-to-clear, write-1-ignored */
    328         s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_EN_MASK;
    329         s->cntp_aival_ctl |= value & R_CNTP_AIVAL_CTL_EN_MASK;
    330         if (!(value & R_CNTP_AIVAL_CTL_CLR_MASK)) {
    331             s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_CLR_MASK;
    332         }
    333         if ((old_ctl ^ s->cntp_aival_ctl) & R_CNTP_AIVAL_CTL_EN_MASK) {
    334             /* Auto-increment toggled on/off */
    335             if (sse_enabled(s)) {
    336                 if (sse_is_autoinc(s)) {
    337                     sse_autoinc(s);
    338                 } else {
    339                     sse_recalc_timer(s);
    340                 }
    341             }
    342         }
    343         sse_update_irq(s);
    344         break;
    345     }
    346     case A_CNTPCT_LO:
    347     case A_CNTPCT_HI:
    348     case A_CNTP_CFG:
    349     case A_CNTP_AIVAL_LO:
    350     case A_CNTP_AIVAL_HI:
    351     case A_PID4 ... A_CID3:
    352         qemu_log_mask(LOG_GUEST_ERROR,
    353                       "SSE System Timer write: write to RO offset 0x%x\n",
    354                       (unsigned)offset);
    355         break;
    356     default:
    357         qemu_log_mask(LOG_GUEST_ERROR,
    358                       "SSE System Timer write: bad offset 0x%x\n",
    359                       (unsigned)offset);
    360         break;
    361     }
    362 }
    363 
    364 static const MemoryRegionOps sse_timer_ops = {
    365     .read = sse_timer_read,
    366     .write = sse_timer_write,
    367     .endianness = DEVICE_LITTLE_ENDIAN,
    368     .valid.min_access_size = 4,
    369     .valid.max_access_size = 4,
    370 };
    371 
    372 static void sse_timer_reset(DeviceState *dev)
    373 {
    374     SSETimer *s = SSE_TIMER(dev);
    375 
    376     trace_sse_timer_reset();
    377 
    378     timer_del(&s->timer);
    379     s->cntfrq = 0;
    380     s->cntp_ctl = 0;
    381     s->cntp_cval = 0;
    382     s->cntp_aival = 0;
    383     s->cntp_aival_ctl = 0;
    384     s->cntp_aival_reload = 0;
    385 }
    386 
    387 static void sse_timer_counter_callback(Notifier *notifier, void *data)
    388 {
    389     SSETimer *s = container_of(notifier, SSETimer, counter_notifier);
    390 
    391     /* System counter told us we need to recalculate */
    392     if (sse_enabled(s)) {
    393         if (sse_is_autoinc(s)) {
    394             sse_set_timer(s, s->cntp_aival);
    395         } else {
    396             sse_recalc_timer(s);
    397         }
    398     }
    399 }
    400 
    401 static void sse_timer_init(Object *obj)
    402 {
    403     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    404     SSETimer *s = SSE_TIMER(obj);
    405 
    406     memory_region_init_io(&s->iomem, obj, &sse_timer_ops,
    407                           s, "sse-timer", 0x1000);
    408     sysbus_init_mmio(sbd, &s->iomem);
    409     sysbus_init_irq(sbd, &s->irq);
    410 }
    411 
    412 static void sse_timer_realize(DeviceState *dev, Error **errp)
    413 {
    414     SSETimer *s = SSE_TIMER(dev);
    415 
    416     if (!s->counter) {
    417         error_setg(errp, "counter property was not set");
    418         return;
    419     }
    420 
    421     s->counter_notifier.notify = sse_timer_counter_callback;
    422     sse_counter_register_consumer(s->counter, &s->counter_notifier);
    423 
    424     timer_init_ns(&s->timer, QEMU_CLOCK_VIRTUAL, sse_timer_cb, s);
    425 }
    426 
    427 static const VMStateDescription sse_timer_vmstate = {
    428     .name = "sse-timer",
    429     .version_id = 1,
    430     .minimum_version_id = 1,
    431     .fields = (VMStateField[]) {
    432         VMSTATE_TIMER(timer, SSETimer),
    433         VMSTATE_UINT32(cntfrq, SSETimer),
    434         VMSTATE_UINT32(cntp_ctl, SSETimer),
    435         VMSTATE_UINT64(cntp_cval, SSETimer),
    436         VMSTATE_UINT64(cntp_aival, SSETimer),
    437         VMSTATE_UINT32(cntp_aival_ctl, SSETimer),
    438         VMSTATE_UINT32(cntp_aival_reload, SSETimer),
    439         VMSTATE_END_OF_LIST()
    440     }
    441 };
    442 
    443 static Property sse_timer_properties[] = {
    444     DEFINE_PROP_LINK("counter", SSETimer, counter, TYPE_SSE_COUNTER, SSECounter *),
    445     DEFINE_PROP_END_OF_LIST(),
    446 };
    447 
    448 static void sse_timer_class_init(ObjectClass *klass, void *data)
    449 {
    450     DeviceClass *dc = DEVICE_CLASS(klass);
    451 
    452     dc->realize = sse_timer_realize;
    453     dc->vmsd = &sse_timer_vmstate;
    454     dc->reset = sse_timer_reset;
    455     device_class_set_props(dc, sse_timer_properties);
    456 }
    457 
    458 static const TypeInfo sse_timer_info = {
    459     .name = TYPE_SSE_TIMER,
    460     .parent = TYPE_SYS_BUS_DEVICE,
    461     .instance_size = sizeof(SSETimer),
    462     .instance_init = sse_timer_init,
    463     .class_init = sse_timer_class_init,
    464 };
    465 
    466 static void sse_timer_register_types(void)
    467 {
    468     type_register_static(&sse_timer_info);
    469 }
    470 
    471 type_init(sse_timer_register_types);