qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

sse-counter.c (14420B)


      1 /*
      2  * Arm SSE Subsystem System Counter
      3  *
      4  * Copyright (c) 2020 Linaro Limited
      5  * Written by Peter Maydell
      6  *
      7  * This program is free software; you can redistribute it and/or modify
      8  * it under the terms of the GNU General Public License version 2 or
      9  * (at your option) any later version.
     10  */
     11 
     12 /*
     13  * This is a model of the "System counter" which is documented in
     14  * the Arm SSE-123 Example Subsystem Technical Reference Manual:
     15  * https://developer.arm.com/documentation/101370/latest/
     16  *
     17  * The system counter is a non-stop 64-bit up-counter. It provides
     18  * this count value to other devices like the SSE system timer,
     19  * which are driven by this system timestamp rather than directly
     20  * from a clock. Internally to the counter the count is actually
     21  * 88-bit precision (64.24 fixed point), with a programmable scale factor.
     22  *
     23  * The hardware has the optional feature that it supports dynamic
     24  * clock switching, where two clock inputs are connected, and which
     25  * one is used is selected via a CLKSEL input signal. Since the
     26  * users of this device in QEMU don't use this feature, we only model
     27  * the HWCLKSW=0 configuration.
     28  */
     29 #include "qemu/osdep.h"
     30 #include "qemu/log.h"
     31 #include "qemu/timer.h"
     32 #include "qapi/error.h"
     33 #include "trace.h"
     34 #include "hw/timer/sse-counter.h"
     35 #include "hw/sysbus.h"
     36 #include "hw/registerfields.h"
     37 #include "hw/clock.h"
     38 #include "hw/qdev-clock.h"
     39 #include "migration/vmstate.h"
     40 
     41 /* Registers in the control frame */
     42 REG32(CNTCR, 0x0)
     43     FIELD(CNTCR, EN, 0, 1)
     44     FIELD(CNTCR, HDBG, 1, 1)
     45     FIELD(CNTCR, SCEN, 2, 1)
     46     FIELD(CNTCR, INTRMASK, 3, 1)
     47     FIELD(CNTCR, PSLVERRDIS, 4, 1)
     48     FIELD(CNTCR, INTRCLR, 5, 1)
     49 /*
     50  * Although CNTCR defines interrupt-related bits, the counter doesn't
     51  * appear to actually have an interrupt output. So INTRCLR is
     52  * effectively a RAZ/WI bit, as are the reserved bits [31:6].
     53  */
     54 #define CNTCR_VALID_MASK (R_CNTCR_EN_MASK | R_CNTCR_HDBG_MASK | \
     55                           R_CNTCR_SCEN_MASK | R_CNTCR_INTRMASK_MASK | \
     56                           R_CNTCR_PSLVERRDIS_MASK)
     57 REG32(CNTSR, 0x4)
     58 REG32(CNTCV_LO, 0x8)
     59 REG32(CNTCV_HI, 0xc)
     60 REG32(CNTSCR, 0x10) /* Aliased with CNTSCR0 */
     61 REG32(CNTID, 0x1c)
     62     FIELD(CNTID, CNTSC, 0, 4)
     63     FIELD(CNTID, CNTCS, 16, 1)
     64     FIELD(CNTID, CNTSELCLK, 17, 2)
     65     FIELD(CNTID, CNTSCR_OVR, 19, 1)
     66 REG32(CNTSCR0, 0xd0)
     67 REG32(CNTSCR1, 0xd4)
     68 
     69 /* Registers in the status frame */
     70 REG32(STATUS_CNTCV_LO, 0x0)
     71 REG32(STATUS_CNTCV_HI, 0x4)
     72 
     73 /* Standard ID registers, present in both frames */
     74 REG32(PID4, 0xFD0)
     75 REG32(PID5, 0xFD4)
     76 REG32(PID6, 0xFD8)
     77 REG32(PID7, 0xFDC)
     78 REG32(PID0, 0xFE0)
     79 REG32(PID1, 0xFE4)
     80 REG32(PID2, 0xFE8)
     81 REG32(PID3, 0xFEC)
     82 REG32(CID0, 0xFF0)
     83 REG32(CID1, 0xFF4)
     84 REG32(CID2, 0xFF8)
     85 REG32(CID3, 0xFFC)
     86 
     87 /* PID/CID values */
     88 static const int control_id[] = {
     89     0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
     90     0xba, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
     91     0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
     92 };
     93 
     94 static const int status_id[] = {
     95     0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
     96     0xbb, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
     97     0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
     98 };
     99 
    100 static void sse_counter_notify_users(SSECounter *s)
    101 {
    102     /*
    103      * Notify users of the count timestamp that they may
    104      * need to recalculate.
    105      */
    106     notifier_list_notify(&s->notifier_list, NULL);
    107 }
    108 
    109 static bool sse_counter_enabled(SSECounter *s)
    110 {
    111     return (s->cntcr & R_CNTCR_EN_MASK) != 0;
    112 }
    113 
    114 uint64_t sse_counter_tick_to_time(SSECounter *s, uint64_t tick)
    115 {
    116     if (!sse_counter_enabled(s)) {
    117         return UINT64_MAX;
    118     }
    119 
    120     tick -= s->ticks_then;
    121 
    122     if (s->cntcr & R_CNTCR_SCEN_MASK) {
    123         /* Adjust the tick count to account for the scale factor */
    124         tick = muldiv64(tick, 0x01000000, s->cntscr0);
    125     }
    126 
    127     return s->ns_then + clock_ticks_to_ns(s->clk, tick);
    128 }
    129 
    130 void sse_counter_register_consumer(SSECounter *s, Notifier *notifier)
    131 {
    132     /*
    133      * For the moment we assume that both we and the devices
    134      * which consume us last for the life of the simulation,
    135      * and so there is no mechanism for removing a notifier.
    136      */
    137     notifier_list_add(&s->notifier_list, notifier);
    138 }
    139 
    140 uint64_t sse_counter_for_timestamp(SSECounter *s, uint64_t now)
    141 {
    142     /* Return the CNTCV value for a particular timestamp (clock ns value). */
    143     uint64_t ticks;
    144 
    145     if (!sse_counter_enabled(s)) {
    146         /* Counter is disabled and does not increment */
    147         return s->ticks_then;
    148     }
    149 
    150     ticks = clock_ns_to_ticks(s->clk, now - s->ns_then);
    151     if (s->cntcr & R_CNTCR_SCEN_MASK) {
    152         /*
    153          * Scaling is enabled. The CNTSCR value is the amount added to
    154          * the underlying 88-bit counter for every tick of the
    155          * underlying clock; CNTCV is the top 64 bits of that full
    156          * 88-bit value. Multiplying the tick count by CNTSCR tells us
    157          * how much the full 88-bit counter has moved on; we then
    158          * divide that by 0x01000000 to find out how much the 64-bit
    159          * visible portion has advanced. muldiv64() gives us the
    160          * necessary at-least-88-bit precision for the intermediate
    161          * result.
    162          */
    163         ticks = muldiv64(ticks, s->cntscr0, 0x01000000);
    164     }
    165     return s->ticks_then + ticks;
    166 }
    167 
    168 static uint64_t sse_cntcv(SSECounter *s)
    169 {
    170     /* Return the CNTCV value for the current time */
    171     return sse_counter_for_timestamp(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
    172 }
    173 
    174 static void sse_write_cntcv(SSECounter *s, uint32_t value, unsigned startbit)
    175 {
    176     /*
    177      * Write one 32-bit half of the counter value; startbit is the
    178      * bit position of this half in the 64-bit word, either 0 or 32.
    179      */
    180     uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    181     uint64_t cntcv = sse_counter_for_timestamp(s, now);
    182 
    183     cntcv = deposit64(cntcv, startbit, 32, value);
    184     s->ticks_then = cntcv;
    185     s->ns_then = now;
    186     sse_counter_notify_users(s);
    187 }
    188 
    189 static uint64_t sse_counter_control_read(void *opaque, hwaddr offset,
    190                                          unsigned size)
    191 {
    192     SSECounter *s = SSE_COUNTER(opaque);
    193     uint64_t r;
    194 
    195     switch (offset) {
    196     case A_CNTCR:
    197         r = s->cntcr;
    198         break;
    199     case A_CNTSR:
    200         /*
    201          * The only bit here is DBGH, indicating that the counter has been
    202          * halted via the Halt-on-Debug signal. We don't implement halting
    203          * debug, so the whole register always reads as zero.
    204          */
    205         r = 0;
    206         break;
    207     case A_CNTCV_LO:
    208         r = extract64(sse_cntcv(s), 0, 32);
    209         break;
    210     case A_CNTCV_HI:
    211         r = extract64(sse_cntcv(s), 32, 32);
    212         break;
    213     case A_CNTID:
    214         /*
    215          * For our implementation:
    216          *  - CNTSCR can only be written when CNTCR.EN == 0
    217          *  - HWCLKSW=0, so selected clock is always CLK0
    218          *  - counter scaling is implemented
    219          */
    220         r = (1 << R_CNTID_CNTSELCLK_SHIFT) | (1 << R_CNTID_CNTSC_SHIFT);
    221         break;
    222     case A_CNTSCR:
    223     case A_CNTSCR0:
    224         r = s->cntscr0;
    225         break;
    226     case A_CNTSCR1:
    227         /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
    228         r = 0;
    229         break;
    230     case A_PID4 ... A_CID3:
    231         r = control_id[(offset - A_PID4) / 4];
    232         break;
    233     default:
    234         qemu_log_mask(LOG_GUEST_ERROR,
    235                       "SSE System Counter control frame read: bad offset 0x%x",
    236                       (unsigned)offset);
    237         r = 0;
    238         break;
    239     }
    240 
    241     trace_sse_counter_control_read(offset, r, size);
    242     return r;
    243 }
    244 
    245 static void sse_counter_control_write(void *opaque, hwaddr offset,
    246                                       uint64_t value, unsigned size)
    247 {
    248     SSECounter *s = SSE_COUNTER(opaque);
    249 
    250     trace_sse_counter_control_write(offset, value, size);
    251 
    252     switch (offset) {
    253     case A_CNTCR:
    254         /*
    255          * Although CNTCR defines interrupt-related bits, the counter doesn't
    256          * appear to actually have an interrupt output. So INTRCLR is
    257          * effectively a RAZ/WI bit, as are the reserved bits [31:6].
    258          * The documentation does not explicitly say so, but we assume
    259          * that changing the scale factor while the counter is enabled
    260          * by toggling CNTCR.SCEN has the same behaviour (making the counter
    261          * value UNKNOWN) as changing it by writing to CNTSCR, and so we
    262          * don't need to try to recalculate for that case.
    263          */
    264         value &= CNTCR_VALID_MASK;
    265         if ((value ^ s->cntcr) & R_CNTCR_EN_MASK) {
    266             /*
    267              * Whether the counter is being enabled or disabled, the
    268              * required action is the same: sync the (ns_then, ticks_then)
    269              * tuple.
    270              */
    271             uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    272             s->ticks_then = sse_counter_for_timestamp(s, now);
    273             s->ns_then = now;
    274             sse_counter_notify_users(s);
    275         }
    276         s->cntcr = value;
    277         break;
    278     case A_CNTCV_LO:
    279         sse_write_cntcv(s, value, 0);
    280         break;
    281     case A_CNTCV_HI:
    282         sse_write_cntcv(s, value, 32);
    283         break;
    284     case A_CNTSCR:
    285     case A_CNTSCR0:
    286         /*
    287          * If the scale registers are changed when the counter is enabled,
    288          * the count value becomes UNKNOWN. So we don't try to recalculate
    289          * anything here but only do it on a write to CNTCR.EN.
    290          */
    291         s->cntscr0 = value;
    292         break;
    293     case A_CNTSCR1:
    294         /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
    295         break;
    296     case A_CNTSR:
    297     case A_CNTID:
    298     case A_PID4 ... A_CID3:
    299         qemu_log_mask(LOG_GUEST_ERROR,
    300                       "SSE System Counter control frame: write to RO offset 0x%x\n",
    301                       (unsigned)offset);
    302         break;
    303     default:
    304         qemu_log_mask(LOG_GUEST_ERROR,
    305                       "SSE System Counter control frame: write to bad offset 0x%x\n",
    306                       (unsigned)offset);
    307         break;
    308     }
    309 }
    310 
    311 static uint64_t sse_counter_status_read(void *opaque, hwaddr offset,
    312                                         unsigned size)
    313 {
    314     SSECounter *s = SSE_COUNTER(opaque);
    315     uint64_t r;
    316 
    317     switch (offset) {
    318     case A_STATUS_CNTCV_LO:
    319         r = extract64(sse_cntcv(s), 0, 32);
    320         break;
    321     case A_STATUS_CNTCV_HI:
    322         r = extract64(sse_cntcv(s), 32, 32);
    323         break;
    324     case A_PID4 ... A_CID3:
    325         r = status_id[(offset - A_PID4) / 4];
    326         break;
    327     default:
    328         qemu_log_mask(LOG_GUEST_ERROR,
    329                       "SSE System Counter status frame read: bad offset 0x%x",
    330                       (unsigned)offset);
    331         r = 0;
    332         break;
    333     }
    334 
    335     trace_sse_counter_status_read(offset, r, size);
    336     return r;
    337 }
    338 
    339 static void sse_counter_status_write(void *opaque, hwaddr offset,
    340                                      uint64_t value, unsigned size)
    341 {
    342     trace_sse_counter_status_write(offset, value, size);
    343 
    344     switch (offset) {
    345     case A_STATUS_CNTCV_LO:
    346     case A_STATUS_CNTCV_HI:
    347     case A_PID4 ... A_CID3:
    348         qemu_log_mask(LOG_GUEST_ERROR,
    349                       "SSE System Counter status frame: write to RO offset 0x%x\n",
    350                       (unsigned)offset);
    351         break;
    352     default:
    353         qemu_log_mask(LOG_GUEST_ERROR,
    354                       "SSE System Counter status frame: write to bad offset 0x%x\n",
    355                       (unsigned)offset);
    356         break;
    357     }
    358 }
    359 
    360 static const MemoryRegionOps sse_counter_control_ops = {
    361     .read = sse_counter_control_read,
    362     .write = sse_counter_control_write,
    363     .endianness = DEVICE_LITTLE_ENDIAN,
    364     .valid.min_access_size = 4,
    365     .valid.max_access_size = 4,
    366 };
    367 
    368 static const MemoryRegionOps sse_counter_status_ops = {
    369     .read = sse_counter_status_read,
    370     .write = sse_counter_status_write,
    371     .endianness = DEVICE_LITTLE_ENDIAN,
    372     .valid.min_access_size = 4,
    373     .valid.max_access_size = 4,
    374 };
    375 
    376 static void sse_counter_reset(DeviceState *dev)
    377 {
    378     SSECounter *s = SSE_COUNTER(dev);
    379 
    380     trace_sse_counter_reset();
    381 
    382     s->cntcr = 0;
    383     s->cntscr0 = 0x01000000;
    384     s->ns_then = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    385     s->ticks_then = 0;
    386 }
    387 
    388 static void sse_clk_callback(void *opaque, ClockEvent event)
    389 {
    390     SSECounter *s = SSE_COUNTER(opaque);
    391     uint64_t now;
    392 
    393     switch (event) {
    394     case ClockPreUpdate:
    395         /*
    396          * Before the clock period updates, set (ticks_then, ns_then)
    397          * to the current time and tick count (as calculated with
    398          * the old clock period).
    399          */
    400         if (sse_counter_enabled(s)) {
    401             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    402             s->ticks_then = sse_counter_for_timestamp(s, now);
    403             s->ns_then = now;
    404         }
    405         break;
    406     case ClockUpdate:
    407         sse_counter_notify_users(s);
    408         break;
    409     default:
    410         break;
    411     }
    412 }
    413 
    414 static void sse_counter_init(Object *obj)
    415 {
    416     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    417     SSECounter *s = SSE_COUNTER(obj);
    418 
    419     notifier_list_init(&s->notifier_list);
    420 
    421     s->clk = qdev_init_clock_in(DEVICE(obj), "CLK", sse_clk_callback, s,
    422                                 ClockPreUpdate | ClockUpdate);
    423     memory_region_init_io(&s->control_mr, obj, &sse_counter_control_ops,
    424                           s, "sse-counter-control", 0x1000);
    425     memory_region_init_io(&s->status_mr, obj, &sse_counter_status_ops,
    426                           s, "sse-counter-status", 0x1000);
    427     sysbus_init_mmio(sbd, &s->control_mr);
    428     sysbus_init_mmio(sbd, &s->status_mr);
    429 }
    430 
    431 static void sse_counter_realize(DeviceState *dev, Error **errp)
    432 {
    433     SSECounter *s = SSE_COUNTER(dev);
    434 
    435     if (!clock_has_source(s->clk)) {
    436         error_setg(errp, "SSE system counter: CLK must be connected");
    437         return;
    438     }
    439 }
    440 
    441 static const VMStateDescription sse_counter_vmstate = {
    442     .name = "sse-counter",
    443     .version_id = 1,
    444     .minimum_version_id = 1,
    445     .fields = (VMStateField[]) {
    446         VMSTATE_CLOCK(clk, SSECounter),
    447         VMSTATE_END_OF_LIST()
    448     }
    449 };
    450 
    451 static void sse_counter_class_init(ObjectClass *klass, void *data)
    452 {
    453     DeviceClass *dc = DEVICE_CLASS(klass);
    454 
    455     dc->realize = sse_counter_realize;
    456     dc->vmsd = &sse_counter_vmstate;
    457     dc->reset = sse_counter_reset;
    458 }
    459 
    460 static const TypeInfo sse_counter_info = {
    461     .name = TYPE_SSE_COUNTER,
    462     .parent = TYPE_SYS_BUS_DEVICE,
    463     .instance_size = sizeof(SSECounter),
    464     .instance_init = sse_counter_init,
    465     .class_init = sse_counter_class_init,
    466 };
    467 
    468 static void sse_counter_register_types(void)
    469 {
    470     type_register_static(&sse_counter_info);
    471 }
    472 
    473 type_init(sse_counter_register_types);