qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

cadence_ttc.c (12323B)


      1 /*
      2  * Xilinx Zynq cadence TTC model
      3  *
      4  * Copyright (c) 2011 Xilinx Inc.
      5  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
      6  * Copyright (c) 2012 PetaLogix Pty Ltd.
      7  * Written By Haibing Ma
      8  *            M. Habib
      9  *
     10  * This program is free software; you can redistribute it and/or
     11  * modify it under the terms of the GNU General Public License
     12  * as published by the Free Software Foundation; either version
     13  * 2 of the License, or (at your option) any later version.
     14  *
     15  * You should have received a copy of the GNU General Public License along
     16  * with this program; if not, see <http://www.gnu.org/licenses/>.
     17  */
     18 
     19 #include "qemu/osdep.h"
     20 #include "hw/irq.h"
     21 #include "hw/sysbus.h"
     22 #include "migration/vmstate.h"
     23 #include "qemu/module.h"
     24 #include "qemu/timer.h"
     25 #include "qom/object.h"
     26 
     27 #include "hw/timer/cadence_ttc.h"
     28 
     29 #ifdef CADENCE_TTC_ERR_DEBUG
     30 #define DB_PRINT(...) do { \
     31     fprintf(stderr,  ": %s: ", __func__); \
     32     fprintf(stderr, ## __VA_ARGS__); \
     33     } while (0)
     34 #else
     35     #define DB_PRINT(...)
     36 #endif
     37 
     38 #define COUNTER_INTR_IV     0x00000001
     39 #define COUNTER_INTR_M1     0x00000002
     40 #define COUNTER_INTR_M2     0x00000004
     41 #define COUNTER_INTR_M3     0x00000008
     42 #define COUNTER_INTR_OV     0x00000010
     43 #define COUNTER_INTR_EV     0x00000020
     44 
     45 #define COUNTER_CTRL_DIS    0x00000001
     46 #define COUNTER_CTRL_INT    0x00000002
     47 #define COUNTER_CTRL_DEC    0x00000004
     48 #define COUNTER_CTRL_MATCH  0x00000008
     49 #define COUNTER_CTRL_RST    0x00000010
     50 
     51 #define CLOCK_CTRL_PS_EN    0x00000001
     52 #define CLOCK_CTRL_PS_V     0x0000001e
     53 
     54 static void cadence_timer_update(CadenceTimerState *s)
     55 {
     56     qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en));
     57 }
     58 
     59 static CadenceTimerState *cadence_timer_from_addr(void *opaque,
     60                                         hwaddr offset)
     61 {
     62     unsigned int index;
     63     CadenceTTCState *s = (CadenceTTCState *)opaque;
     64 
     65     index = (offset >> 2) % 3;
     66 
     67     return &s->timer[index];
     68 }
     69 
     70 static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps)
     71 {
     72     /* timer_steps has max value of 0x100000000. double check it
     73      * (or overflow can happen below) */
     74     assert(timer_steps <= 1ULL << 32);
     75 
     76     uint64_t r = timer_steps * 1000000000ULL;
     77     if (s->reg_clock & CLOCK_CTRL_PS_EN) {
     78         r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
     79     } else {
     80         r >>= 16;
     81     }
     82     r /= (uint64_t)s->freq;
     83     return r;
     84 }
     85 
     86 static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns)
     87 {
     88     uint64_t to_divide = 1000000000ULL;
     89 
     90     uint64_t r = ns;
     91      /* for very large intervals (> 8s) do some division first to stop
     92       * overflow (costs some prescision) */
     93     while (r >= 8ULL << 30 && to_divide > 1) {
     94         r /= 1000;
     95         to_divide /= 1000;
     96     }
     97     r <<= 16;
     98     /* keep early-dividing as needed */
     99     while (r >= 8ULL << 30 && to_divide > 1) {
    100         r /= 1000;
    101         to_divide /= 1000;
    102     }
    103     r *= (uint64_t)s->freq;
    104     if (s->reg_clock & CLOCK_CTRL_PS_EN) {
    105         r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
    106     }
    107 
    108     r /= to_divide;
    109     return r;
    110 }
    111 
    112 /* determine if x is in between a and b, exclusive of a, inclusive of b */
    113 
    114 static inline int64_t is_between(int64_t x, int64_t a, int64_t b)
    115 {
    116     if (a < b) {
    117         return x > a && x <= b;
    118     }
    119     return x < a && x >= b;
    120 }
    121 
    122 static void cadence_timer_run(CadenceTimerState *s)
    123 {
    124     int i;
    125     int64_t event_interval, next_value;
    126 
    127     assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */
    128 
    129     if (s->reg_count & COUNTER_CTRL_DIS) {
    130         s->cpu_time_valid = 0;
    131         return;
    132     }
    133 
    134     { /* figure out what's going to happen next (rollover or match) */
    135         int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ?
    136                 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
    137         next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval;
    138         for (i = 0; i < 3; ++i) {
    139             int64_t cand = (uint64_t)s->reg_match[i] << 16;
    140             if (is_between(cand, (uint64_t)s->reg_value, next_value)) {
    141                 next_value = cand;
    142             }
    143         }
    144     }
    145     DB_PRINT("next timer event value: %09llx\n",
    146             (unsigned long long)next_value);
    147 
    148     event_interval = next_value - (int64_t)s->reg_value;
    149     event_interval = (event_interval < 0) ? -event_interval : event_interval;
    150 
    151     timer_mod(s->timer, s->cpu_time +
    152                 cadence_timer_get_ns(s, event_interval));
    153 }
    154 
    155 static void cadence_timer_sync(CadenceTimerState *s)
    156 {
    157     int i;
    158     int64_t r, x;
    159     int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ?
    160             (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
    161     uint64_t old_time = s->cpu_time;
    162 
    163     s->cpu_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    164     DB_PRINT("cpu time: %lld ns\n", (long long)old_time);
    165 
    166     if (!s->cpu_time_valid || old_time == s->cpu_time) {
    167         s->cpu_time_valid = 1;
    168         return;
    169     }
    170 
    171     r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time);
    172     x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r);
    173 
    174     for (i = 0; i < 3; ++i) {
    175         int64_t m = (int64_t)s->reg_match[i] << 16;
    176         if (m > interval) {
    177             continue;
    178         }
    179         /* check to see if match event has occurred. check m +/- interval
    180          * to account for match events in wrap around cases */
    181         if (is_between(m, s->reg_value, x) ||
    182             is_between(m + interval, s->reg_value, x) ||
    183             is_between(m - interval, s->reg_value, x)) {
    184             s->reg_intr |= (2 << i);
    185         }
    186     }
    187     if ((x < 0) || (x >= interval)) {
    188         s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ?
    189             COUNTER_INTR_IV : COUNTER_INTR_OV;
    190     }
    191     while (x < 0) {
    192         x += interval;
    193     }
    194     s->reg_value = (uint32_t)(x % interval);
    195     cadence_timer_update(s);
    196 }
    197 
    198 static void cadence_timer_tick(void *opaque)
    199 {
    200     CadenceTimerState *s = opaque;
    201 
    202     DB_PRINT("\n");
    203     cadence_timer_sync(s);
    204     cadence_timer_run(s);
    205 }
    206 
    207 static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset)
    208 {
    209     CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
    210     uint32_t value;
    211 
    212     cadence_timer_sync(s);
    213     cadence_timer_run(s);
    214 
    215     switch (offset) {
    216     case 0x00: /* clock control */
    217     case 0x04:
    218     case 0x08:
    219         return s->reg_clock;
    220 
    221     case 0x0c: /* counter control */
    222     case 0x10:
    223     case 0x14:
    224         return s->reg_count;
    225 
    226     case 0x18: /* counter value */
    227     case 0x1c:
    228     case 0x20:
    229         return (uint16_t)(s->reg_value >> 16);
    230 
    231     case 0x24: /* reg_interval counter */
    232     case 0x28:
    233     case 0x2c:
    234         return s->reg_interval;
    235 
    236     case 0x30: /* match 1 counter */
    237     case 0x34:
    238     case 0x38:
    239         return s->reg_match[0];
    240 
    241     case 0x3c: /* match 2 counter */
    242     case 0x40:
    243     case 0x44:
    244         return s->reg_match[1];
    245 
    246     case 0x48: /* match 3 counter */
    247     case 0x4c:
    248     case 0x50:
    249         return s->reg_match[2];
    250 
    251     case 0x54: /* interrupt register */
    252     case 0x58:
    253     case 0x5c:
    254         /* cleared after read */
    255         value = s->reg_intr;
    256         s->reg_intr = 0;
    257         cadence_timer_update(s);
    258         return value;
    259 
    260     case 0x60: /* interrupt enable */
    261     case 0x64:
    262     case 0x68:
    263         return s->reg_intr_en;
    264 
    265     case 0x6c:
    266     case 0x70:
    267     case 0x74:
    268         return s->reg_event_ctrl;
    269 
    270     case 0x78:
    271     case 0x7c:
    272     case 0x80:
    273         return s->reg_event;
    274 
    275     default:
    276         return 0;
    277     }
    278 }
    279 
    280 static uint64_t cadence_ttc_read(void *opaque, hwaddr offset,
    281     unsigned size)
    282 {
    283     uint32_t ret = cadence_ttc_read_imp(opaque, offset);
    284 
    285     DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret);
    286     return ret;
    287 }
    288 
    289 static void cadence_ttc_write(void *opaque, hwaddr offset,
    290         uint64_t value, unsigned size)
    291 {
    292     CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
    293 
    294     DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value);
    295 
    296     cadence_timer_sync(s);
    297 
    298     switch (offset) {
    299     case 0x00: /* clock control */
    300     case 0x04:
    301     case 0x08:
    302         s->reg_clock = value & 0x3F;
    303         break;
    304 
    305     case 0x0c: /* counter control */
    306     case 0x10:
    307     case 0x14:
    308         if (value & COUNTER_CTRL_RST) {
    309             s->reg_value = 0;
    310         }
    311         s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST;
    312         break;
    313 
    314     case 0x24: /* interval register */
    315     case 0x28:
    316     case 0x2c:
    317         s->reg_interval = value & 0xffff;
    318         break;
    319 
    320     case 0x30: /* match register */
    321     case 0x34:
    322     case 0x38:
    323         s->reg_match[0] = value & 0xffff;
    324         break;
    325 
    326     case 0x3c: /* match register */
    327     case 0x40:
    328     case 0x44:
    329         s->reg_match[1] = value & 0xffff;
    330         break;
    331 
    332     case 0x48: /* match register */
    333     case 0x4c:
    334     case 0x50:
    335         s->reg_match[2] = value & 0xffff;
    336         break;
    337 
    338     case 0x54: /* interrupt register */
    339     case 0x58:
    340     case 0x5c:
    341         break;
    342 
    343     case 0x60: /* interrupt enable */
    344     case 0x64:
    345     case 0x68:
    346         s->reg_intr_en = value & 0x3f;
    347         break;
    348 
    349     case 0x6c: /* event control */
    350     case 0x70:
    351     case 0x74:
    352         s->reg_event_ctrl = value & 0x07;
    353         break;
    354 
    355     default:
    356         return;
    357     }
    358 
    359     cadence_timer_run(s);
    360     cadence_timer_update(s);
    361 }
    362 
    363 static const MemoryRegionOps cadence_ttc_ops = {
    364     .read = cadence_ttc_read,
    365     .write = cadence_ttc_write,
    366     .endianness = DEVICE_NATIVE_ENDIAN,
    367 };
    368 
    369 static void cadence_timer_reset(CadenceTimerState *s)
    370 {
    371    s->reg_count = 0x21;
    372 }
    373 
    374 static void cadence_timer_init(uint32_t freq, CadenceTimerState *s)
    375 {
    376     memset(s, 0, sizeof(CadenceTimerState));
    377     s->freq = freq;
    378 
    379     cadence_timer_reset(s);
    380 
    381     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cadence_timer_tick, s);
    382 }
    383 
    384 static void cadence_ttc_init(Object *obj)
    385 {
    386     CadenceTTCState *s = CADENCE_TTC(obj);
    387 
    388     memory_region_init_io(&s->iomem, obj, &cadence_ttc_ops, s,
    389                           "timer", 0x1000);
    390     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
    391 }
    392 
    393 static void cadence_ttc_realize(DeviceState *dev, Error **errp)
    394 {
    395     CadenceTTCState *s = CADENCE_TTC(dev);
    396     int i;
    397 
    398     for (i = 0; i < 3; ++i) {
    399         cadence_timer_init(133000000, &s->timer[i]);
    400         sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->timer[i].irq);
    401     }
    402 }
    403 
    404 static int cadence_timer_pre_save(void *opaque)
    405 {
    406     cadence_timer_sync((CadenceTimerState *)opaque);
    407 
    408     return 0;
    409 }
    410 
    411 static int cadence_timer_post_load(void *opaque, int version_id)
    412 {
    413     CadenceTimerState *s = opaque;
    414 
    415     s->cpu_time_valid = 0;
    416     cadence_timer_sync(s);
    417     cadence_timer_run(s);
    418     cadence_timer_update(s);
    419     return 0;
    420 }
    421 
    422 static const VMStateDescription vmstate_cadence_timer = {
    423     .name = "cadence_timer",
    424     .version_id = 1,
    425     .minimum_version_id = 1,
    426     .pre_save = cadence_timer_pre_save,
    427     .post_load = cadence_timer_post_load,
    428     .fields = (VMStateField[]) {
    429         VMSTATE_UINT32(reg_clock, CadenceTimerState),
    430         VMSTATE_UINT32(reg_count, CadenceTimerState),
    431         VMSTATE_UINT32(reg_value, CadenceTimerState),
    432         VMSTATE_UINT16(reg_interval, CadenceTimerState),
    433         VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3),
    434         VMSTATE_UINT32(reg_intr, CadenceTimerState),
    435         VMSTATE_UINT32(reg_intr_en, CadenceTimerState),
    436         VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState),
    437         VMSTATE_UINT32(reg_event, CadenceTimerState),
    438         VMSTATE_END_OF_LIST()
    439     }
    440 };
    441 
    442 static const VMStateDescription vmstate_cadence_ttc = {
    443     .name = "cadence_TTC",
    444     .version_id = 1,
    445     .minimum_version_id = 1,
    446     .fields = (VMStateField[]) {
    447         VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0,
    448                             vmstate_cadence_timer,
    449                             CadenceTimerState),
    450         VMSTATE_END_OF_LIST()
    451     }
    452 };
    453 
    454 static void cadence_ttc_class_init(ObjectClass *klass, void *data)
    455 {
    456     DeviceClass *dc = DEVICE_CLASS(klass);
    457 
    458     dc->vmsd = &vmstate_cadence_ttc;
    459     dc->realize = cadence_ttc_realize;
    460 }
    461 
    462 static const TypeInfo cadence_ttc_info = {
    463     .name  = TYPE_CADENCE_TTC,
    464     .parent = TYPE_SYS_BUS_DEVICE,
    465     .instance_size  = sizeof(CadenceTTCState),
    466     .instance_init = cadence_ttc_init,
    467     .class_init = cadence_ttc_class_init,
    468 };
    469 
    470 static void cadence_ttc_register_types(void)
    471 {
    472     type_register_static(&cadence_ttc_info);
    473 }
    474 
    475 type_init(cadence_ttc_register_types)