qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

aspeed_timer.c (21909B)


      1 /*
      2  * ASPEED AST2400 Timer
      3  *
      4  * Andrew Jeffery <andrew@aj.id.au>
      5  *
      6  * Copyright (C) 2016 IBM Corp.
      7  *
      8  * This code is licensed under the GPL version 2 or later.  See
      9  * the COPYING file in the top-level directory.
     10  */
     11 
     12 #include "qemu/osdep.h"
     13 #include "qapi/error.h"
     14 #include "hw/irq.h"
     15 #include "hw/sysbus.h"
     16 #include "hw/timer/aspeed_timer.h"
     17 #include "migration/vmstate.h"
     18 #include "qemu/bitops.h"
     19 #include "qemu/timer.h"
     20 #include "qemu/log.h"
     21 #include "qemu/module.h"
     22 #include "hw/qdev-properties.h"
     23 #include "trace.h"
     24 
     25 #define TIMER_NR_REGS 4
     26 
     27 #define TIMER_CTRL_BITS 4
     28 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
     29 
     30 #define TIMER_CLOCK_USE_EXT true
     31 #define TIMER_CLOCK_EXT_HZ 1000000
     32 #define TIMER_CLOCK_USE_APB false
     33 
     34 #define TIMER_REG_STATUS 0
     35 #define TIMER_REG_RELOAD 1
     36 #define TIMER_REG_MATCH_FIRST 2
     37 #define TIMER_REG_MATCH_SECOND 3
     38 
     39 #define TIMER_FIRST_CAP_PULSE 4
     40 
     41 enum timer_ctrl_op {
     42     op_enable = 0,
     43     op_external_clock,
     44     op_overflow_interrupt,
     45     op_pulse_enable
     46 };
     47 
     48 /*
     49  * Minimum value of the reload register to filter out short period
     50  * timers which have a noticeable impact in emulation. 5us should be
     51  * enough, use 20us for "safety".
     52  */
     53 #define TIMER_MIN_NS (20 * SCALE_US)
     54 
     55 /**
     56  * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
     57  * structs, as it's a waste of memory. The ptimer BH callback needs to know
     58  * whether a specific AspeedTimer is enabled, but this information is held in
     59  * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
     60  * arbitrary AspeedTimer to AspeedTimerCtrlState.
     61  */
     62 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
     63 {
     64     const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
     65     return container_of(timers, AspeedTimerCtrlState, timers);
     66 }
     67 
     68 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
     69 {
     70     return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
     71 }
     72 
     73 static inline bool timer_enabled(AspeedTimer *t)
     74 {
     75     return timer_ctrl_status(t, op_enable);
     76 }
     77 
     78 static inline bool timer_overflow_interrupt(AspeedTimer *t)
     79 {
     80     return timer_ctrl_status(t, op_overflow_interrupt);
     81 }
     82 
     83 static inline bool timer_can_pulse(AspeedTimer *t)
     84 {
     85     return t->id >= TIMER_FIRST_CAP_PULSE;
     86 }
     87 
     88 static inline bool timer_external_clock(AspeedTimer *t)
     89 {
     90     return timer_ctrl_status(t, op_external_clock);
     91 }
     92 
     93 static inline uint32_t calculate_rate(struct AspeedTimer *t)
     94 {
     95     AspeedTimerCtrlState *s = timer_to_ctrl(t);
     96 
     97     return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ :
     98         aspeed_scu_get_apb_freq(s->scu);
     99 }
    100 
    101 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns)
    102 {
    103     uint64_t delta_ns = now_ns - MIN(now_ns, t->start);
    104     uint32_t rate = calculate_rate(t);
    105     uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND);
    106 
    107     return t->reload - MIN(t->reload, ticks);
    108 }
    109 
    110 static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value)
    111 {
    112     uint32_t rate = calculate_rate(t);
    113     uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND);
    114 
    115     return  value < min_ticks ? min_ticks : value;
    116 }
    117 
    118 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks)
    119 {
    120     uint64_t delta_ns;
    121     uint64_t delta_ticks;
    122 
    123     delta_ticks = t->reload - MIN(t->reload, ticks);
    124     delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t));
    125 
    126     return t->start + delta_ns;
    127 }
    128 
    129 static inline uint32_t calculate_match(struct AspeedTimer *t, int i)
    130 {
    131     return t->match[i] < t->reload ? t->match[i] : 0;
    132 }
    133 
    134 static uint64_t calculate_next(struct AspeedTimer *t)
    135 {
    136     uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    137     uint64_t next;
    138 
    139     /*
    140      * We don't know the relationship between the values in the match
    141      * registers, so sort using MAX/MIN/zero. We sort in that order as
    142      * the timer counts down to zero.
    143      */
    144 
    145     next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1)));
    146     if (now < next) {
    147         return next;
    148     }
    149 
    150     next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1)));
    151     if (now < next) {
    152         return next;
    153     }
    154 
    155     next = calculate_time(t, 0);
    156     if (now < next) {
    157         return next;
    158     }
    159 
    160     /* We've missed all deadlines, fire interrupt and try again */
    161     timer_del(&t->timer);
    162 
    163     if (timer_overflow_interrupt(t)) {
    164         AspeedTimerCtrlState *s = timer_to_ctrl(t);
    165         t->level = !t->level;
    166         s->irq_sts |= BIT(t->id);
    167         qemu_set_irq(t->irq, t->level);
    168     }
    169 
    170     next = MAX(MAX(calculate_match(t, 0), calculate_match(t, 1)), 0);
    171     t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    172 
    173     return calculate_time(t, next);
    174 }
    175 
    176 static void aspeed_timer_mod(AspeedTimer *t)
    177 {
    178     uint64_t next = calculate_next(t);
    179     if (next) {
    180         timer_mod(&t->timer, next);
    181     }
    182 }
    183 
    184 static void aspeed_timer_expire(void *opaque)
    185 {
    186     AspeedTimer *t = opaque;
    187     bool interrupt = false;
    188     uint32_t ticks;
    189 
    190     if (!timer_enabled(t)) {
    191         return;
    192     }
    193 
    194     ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
    195 
    196     if (!ticks) {
    197         interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1];
    198     } else if (ticks <= MIN(t->match[0], t->match[1])) {
    199         interrupt = true;
    200     } else if (ticks <= MAX(t->match[0], t->match[1])) {
    201         interrupt = true;
    202     }
    203 
    204     if (interrupt) {
    205         AspeedTimerCtrlState *s = timer_to_ctrl(t);
    206         t->level = !t->level;
    207         s->irq_sts |= BIT(t->id);
    208         qemu_set_irq(t->irq, t->level);
    209     }
    210 
    211     aspeed_timer_mod(t);
    212 }
    213 
    214 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
    215 {
    216     uint64_t value;
    217 
    218     switch (reg) {
    219     case TIMER_REG_STATUS:
    220         if (timer_enabled(t)) {
    221             value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
    222         } else {
    223             value = t->reload;
    224         }
    225         break;
    226     case TIMER_REG_RELOAD:
    227         value = t->reload;
    228         break;
    229     case TIMER_REG_MATCH_FIRST:
    230     case TIMER_REG_MATCH_SECOND:
    231         value = t->match[reg - 2];
    232         break;
    233     default:
    234         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
    235                       __func__, reg);
    236         value = 0;
    237         break;
    238     }
    239     return value;
    240 }
    241 
    242 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
    243 {
    244     AspeedTimerCtrlState *s = opaque;
    245     const int reg = (offset & 0xf) / 4;
    246     uint64_t value;
    247 
    248     switch (offset) {
    249     case 0x30: /* Control Register */
    250         value = s->ctrl;
    251         break;
    252     case 0x00 ... 0x2c: /* Timers 1 - 4 */
    253         value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
    254         break;
    255     case 0x40 ... 0x8c: /* Timers 5 - 8 */
    256         value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
    257         break;
    258     default:
    259         value = ASPEED_TIMER_GET_CLASS(s)->read(s, offset);
    260         break;
    261     }
    262     trace_aspeed_timer_read(offset, size, value);
    263     return value;
    264 }
    265 
    266 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
    267                                    uint32_t value)
    268 {
    269     AspeedTimer *t;
    270     uint32_t old_reload;
    271 
    272     trace_aspeed_timer_set_value(timer, reg, value);
    273     t = &s->timers[timer];
    274     switch (reg) {
    275     case TIMER_REG_RELOAD:
    276         old_reload = t->reload;
    277         t->reload = calculate_min_ticks(t, value);
    278 
    279         /* If the reload value was not previously set, or zero, and
    280          * the current value is valid, try to start the timer if it is
    281          * enabled.
    282          */
    283         if (old_reload || !t->reload) {
    284             break;
    285         }
    286         /* fall through to re-enable */
    287     case TIMER_REG_STATUS:
    288         if (timer_enabled(t)) {
    289             uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    290             int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now);
    291             uint32_t rate = calculate_rate(t);
    292 
    293             if (delta >= 0) {
    294                 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate);
    295             } else {
    296                 t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate);
    297             }
    298             aspeed_timer_mod(t);
    299         }
    300         break;
    301     case TIMER_REG_MATCH_FIRST:
    302     case TIMER_REG_MATCH_SECOND:
    303         t->match[reg - 2] = value;
    304         if (timer_enabled(t)) {
    305             aspeed_timer_mod(t);
    306         }
    307         break;
    308     default:
    309         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
    310                       __func__, reg);
    311         break;
    312     }
    313 }
    314 
    315 /* Control register operations are broken out into helpers that can be
    316  * explicitly called on aspeed_timer_reset(), but also from
    317  * aspeed_timer_ctrl_op().
    318  */
    319 
    320 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
    321 {
    322     trace_aspeed_timer_ctrl_enable(t->id, enable);
    323     if (enable) {
    324         t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    325         aspeed_timer_mod(t);
    326     } else {
    327         timer_del(&t->timer);
    328     }
    329 }
    330 
    331 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
    332 {
    333     trace_aspeed_timer_ctrl_external_clock(t->id, enable);
    334 }
    335 
    336 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
    337 {
    338     trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
    339 }
    340 
    341 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
    342 {
    343     if (timer_can_pulse(t)) {
    344         trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
    345     } else {
    346         qemu_log_mask(LOG_GUEST_ERROR,
    347                 "%s: Timer does not support pulse mode\n", __func__);
    348     }
    349 }
    350 
    351 /**
    352  * Given the actions are fixed in number and completely described in helper
    353  * functions, dispatch with a lookup table rather than manage control flow with
    354  * a switch statement.
    355  */
    356 static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
    357     [op_enable] = aspeed_timer_ctrl_enable,
    358     [op_external_clock] = aspeed_timer_ctrl_external_clock,
    359     [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
    360     [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
    361 };
    362 
    363 /**
    364  * Conditionally affect changes chosen by a timer's control bit.
    365  *
    366  * The aspeed_timer_ctrl_op() interface is convenient for the
    367  * aspeed_timer_set_ctrl() function as the "no change" early exit can be
    368  * calculated for all operations, which cleans up the caller code. However the
    369  * interface isn't convenient for the reset function where we want to enter a
    370  * specific state without artificially constructing old and new values that
    371  * will fall through the change guard (and motivates extracting the actions
    372  * out to helper functions).
    373  *
    374  * @t: The timer to manipulate
    375  * @op: The type of operation to be performed
    376  * @old: The old state of the timer's control bits
    377  * @new: The incoming state for the timer's control bits
    378  */
    379 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
    380                                  uint8_t old, uint8_t new)
    381 {
    382     const uint8_t mask = BIT(op);
    383     const bool enable = !!(new & mask);
    384     const bool changed = ((old ^ new) & mask);
    385     if (!changed) {
    386         return;
    387     }
    388     ctrl_ops[op](t, enable);
    389 }
    390 
    391 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
    392 {
    393     int i;
    394     int shift;
    395     uint8_t t_old, t_new;
    396     AspeedTimer *t;
    397     const uint8_t enable_mask = BIT(op_enable);
    398 
    399     /* Handle a dependency between the 'enable' and remaining three
    400      * configuration bits - i.e. if more than one bit in the control set has
    401      * changed, including the 'enable' bit, then we want either disable the
    402      * timer and perform configuration, or perform configuration and then
    403      * enable the timer
    404      */
    405     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
    406         t = &s->timers[i];
    407         shift = (i * TIMER_CTRL_BITS);
    408         t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
    409         t_new = (reg >> shift) & TIMER_CTRL_MASK;
    410 
    411         /* If we are disabling, do so first */
    412         if ((t_old & enable_mask) && !(t_new & enable_mask)) {
    413             aspeed_timer_ctrl_enable(t, false);
    414         }
    415         aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
    416         aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
    417         aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
    418         /* If we are enabling, do so last */
    419         if (!(t_old & enable_mask) && (t_new & enable_mask)) {
    420             aspeed_timer_ctrl_enable(t, true);
    421         }
    422     }
    423     s->ctrl = reg;
    424 }
    425 
    426 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
    427 {
    428     trace_aspeed_timer_set_ctrl2(value);
    429 }
    430 
    431 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
    432                                unsigned size)
    433 {
    434     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
    435     const int reg = (offset & 0xf) / 4;
    436     AspeedTimerCtrlState *s = opaque;
    437 
    438     switch (offset) {
    439     /* Control Registers */
    440     case 0x30:
    441         aspeed_timer_set_ctrl(s, tv);
    442         break;
    443     /* Timer Registers */
    444     case 0x00 ... 0x2c:
    445         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
    446         break;
    447     case 0x40 ... 0x8c:
    448         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
    449         break;
    450     default:
    451         ASPEED_TIMER_GET_CLASS(s)->write(s, offset, value);
    452         break;
    453     }
    454 }
    455 
    456 static const MemoryRegionOps aspeed_timer_ops = {
    457     .read = aspeed_timer_read,
    458     .write = aspeed_timer_write,
    459     .endianness = DEVICE_LITTLE_ENDIAN,
    460     .valid.min_access_size = 4,
    461     .valid.max_access_size = 4,
    462     .valid.unaligned = false,
    463 };
    464 
    465 static uint64_t aspeed_2400_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
    466 {
    467     uint64_t value;
    468 
    469     switch (offset) {
    470     case 0x34:
    471         value = s->ctrl2;
    472         break;
    473     case 0x38:
    474     case 0x3C:
    475     default:
    476         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
    477                 __func__, offset);
    478         value = 0;
    479         break;
    480     }
    481     return value;
    482 }
    483 
    484 static void aspeed_2400_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
    485                                     uint64_t value)
    486 {
    487     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
    488 
    489     switch (offset) {
    490     case 0x34:
    491         aspeed_timer_set_ctrl2(s, tv);
    492         break;
    493     case 0x38:
    494     case 0x3C:
    495     default:
    496         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
    497                 __func__, offset);
    498         break;
    499     }
    500 }
    501 
    502 static uint64_t aspeed_2500_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
    503 {
    504     uint64_t value;
    505 
    506     switch (offset) {
    507     case 0x34:
    508         value = s->ctrl2;
    509         break;
    510     case 0x38:
    511         value = s->ctrl3 & BIT(0);
    512         break;
    513     case 0x3C:
    514     default:
    515         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
    516                 __func__, offset);
    517         value = 0;
    518         break;
    519     }
    520     return value;
    521 }
    522 
    523 static void aspeed_2500_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
    524                                     uint64_t value)
    525 {
    526     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
    527     uint8_t command;
    528 
    529     switch (offset) {
    530     case 0x34:
    531         aspeed_timer_set_ctrl2(s, tv);
    532         break;
    533     case 0x38:
    534         command = (value >> 1) & 0xFF;
    535         if (command == 0xAE) {
    536             s->ctrl3 = 0x1;
    537         } else if (command == 0xEA) {
    538             s->ctrl3 = 0x0;
    539         }
    540         break;
    541     case 0x3C:
    542         if (s->ctrl3 & BIT(0)) {
    543             aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
    544         }
    545         break;
    546 
    547     default:
    548         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
    549                 __func__, offset);
    550         break;
    551     }
    552 }
    553 
    554 static uint64_t aspeed_2600_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
    555 {
    556     uint64_t value;
    557 
    558     switch (offset) {
    559     case 0x34:
    560         value = s->irq_sts;
    561         break;
    562     case 0x38:
    563     case 0x3C:
    564     default:
    565         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
    566                 __func__, offset);
    567         value = 0;
    568         break;
    569     }
    570     return value;
    571 }
    572 
    573 static void aspeed_2600_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
    574                                     uint64_t value)
    575 {
    576     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
    577 
    578     switch (offset) {
    579     case 0x34:
    580         s->irq_sts &= tv;
    581         break;
    582     case 0x3C:
    583         aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
    584         break;
    585 
    586     case 0x38:
    587     default:
    588         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
    589                 __func__, offset);
    590         break;
    591     }
    592 }
    593 
    594 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
    595 {
    596     AspeedTimer *t = &s->timers[id];
    597 
    598     t->id = id;
    599     timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t);
    600 }
    601 
    602 static void aspeed_timer_realize(DeviceState *dev, Error **errp)
    603 {
    604     int i;
    605     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
    606     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
    607 
    608     assert(s->scu);
    609 
    610     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
    611         aspeed_init_one_timer(s, i);
    612         sysbus_init_irq(sbd, &s->timers[i].irq);
    613     }
    614     memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
    615                           TYPE_ASPEED_TIMER, 0x1000);
    616     sysbus_init_mmio(sbd, &s->iomem);
    617 }
    618 
    619 static void aspeed_timer_reset(DeviceState *dev)
    620 {
    621     int i;
    622     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
    623 
    624     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
    625         AspeedTimer *t = &s->timers[i];
    626         /* Explicitly call helpers to avoid any conditional behaviour through
    627          * aspeed_timer_set_ctrl().
    628          */
    629         aspeed_timer_ctrl_enable(t, false);
    630         aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
    631         aspeed_timer_ctrl_overflow_interrupt(t, false);
    632         aspeed_timer_ctrl_pulse_enable(t, false);
    633         t->level = 0;
    634         t->reload = 0;
    635         t->match[0] = 0;
    636         t->match[1] = 0;
    637     }
    638     s->ctrl = 0;
    639     s->ctrl2 = 0;
    640     s->ctrl3 = 0;
    641     s->irq_sts = 0;
    642 }
    643 
    644 static const VMStateDescription vmstate_aspeed_timer = {
    645     .name = "aspeed.timer",
    646     .version_id = 2,
    647     .minimum_version_id = 2,
    648     .fields = (VMStateField[]) {
    649         VMSTATE_UINT8(id, AspeedTimer),
    650         VMSTATE_INT32(level, AspeedTimer),
    651         VMSTATE_TIMER(timer, AspeedTimer),
    652         VMSTATE_UINT32(reload, AspeedTimer),
    653         VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
    654         VMSTATE_END_OF_LIST()
    655     }
    656 };
    657 
    658 static const VMStateDescription vmstate_aspeed_timer_state = {
    659     .name = "aspeed.timerctrl",
    660     .version_id = 2,
    661     .minimum_version_id = 2,
    662     .fields = (VMStateField[]) {
    663         VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
    664         VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
    665         VMSTATE_UINT32(ctrl3, AspeedTimerCtrlState),
    666         VMSTATE_UINT32(irq_sts, AspeedTimerCtrlState),
    667         VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
    668                              ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
    669                              AspeedTimer),
    670         VMSTATE_END_OF_LIST()
    671     }
    672 };
    673 
    674 static Property aspeed_timer_properties[] = {
    675     DEFINE_PROP_LINK("scu", AspeedTimerCtrlState, scu, TYPE_ASPEED_SCU,
    676                      AspeedSCUState *),
    677     DEFINE_PROP_END_OF_LIST(),
    678 };
    679 
    680 static void timer_class_init(ObjectClass *klass, void *data)
    681 {
    682     DeviceClass *dc = DEVICE_CLASS(klass);
    683 
    684     dc->realize = aspeed_timer_realize;
    685     dc->reset = aspeed_timer_reset;
    686     dc->desc = "ASPEED Timer";
    687     dc->vmsd = &vmstate_aspeed_timer_state;
    688     device_class_set_props(dc, aspeed_timer_properties);
    689 }
    690 
    691 static const TypeInfo aspeed_timer_info = {
    692     .name = TYPE_ASPEED_TIMER,
    693     .parent = TYPE_SYS_BUS_DEVICE,
    694     .instance_size = sizeof(AspeedTimerCtrlState),
    695     .class_init = timer_class_init,
    696     .class_size = sizeof(AspeedTimerClass),
    697     .abstract   = true,
    698 };
    699 
    700 static void aspeed_2400_timer_class_init(ObjectClass *klass, void *data)
    701 {
    702     DeviceClass *dc = DEVICE_CLASS(klass);
    703     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
    704 
    705     dc->desc = "ASPEED 2400 Timer";
    706     awc->read = aspeed_2400_timer_read;
    707     awc->write = aspeed_2400_timer_write;
    708 }
    709 
    710 static const TypeInfo aspeed_2400_timer_info = {
    711     .name = TYPE_ASPEED_2400_TIMER,
    712     .parent = TYPE_ASPEED_TIMER,
    713     .class_init = aspeed_2400_timer_class_init,
    714 };
    715 
    716 static void aspeed_2500_timer_class_init(ObjectClass *klass, void *data)
    717 {
    718     DeviceClass *dc = DEVICE_CLASS(klass);
    719     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
    720 
    721     dc->desc = "ASPEED 2500 Timer";
    722     awc->read = aspeed_2500_timer_read;
    723     awc->write = aspeed_2500_timer_write;
    724 }
    725 
    726 static const TypeInfo aspeed_2500_timer_info = {
    727     .name = TYPE_ASPEED_2500_TIMER,
    728     .parent = TYPE_ASPEED_TIMER,
    729     .class_init = aspeed_2500_timer_class_init,
    730 };
    731 
    732 static void aspeed_2600_timer_class_init(ObjectClass *klass, void *data)
    733 {
    734     DeviceClass *dc = DEVICE_CLASS(klass);
    735     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
    736 
    737     dc->desc = "ASPEED 2600 Timer";
    738     awc->read = aspeed_2600_timer_read;
    739     awc->write = aspeed_2600_timer_write;
    740 }
    741 
    742 static const TypeInfo aspeed_2600_timer_info = {
    743     .name = TYPE_ASPEED_2600_TIMER,
    744     .parent = TYPE_ASPEED_TIMER,
    745     .class_init = aspeed_2600_timer_class_init,
    746 };
    747 
    748 static void aspeed_1030_timer_class_init(ObjectClass *klass, void *data)
    749 {
    750     DeviceClass *dc = DEVICE_CLASS(klass);
    751     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
    752 
    753     dc->desc = "ASPEED 1030 Timer";
    754     awc->read = aspeed_2600_timer_read;
    755     awc->write = aspeed_2600_timer_write;
    756 }
    757 
    758 static const TypeInfo aspeed_1030_timer_info = {
    759     .name = TYPE_ASPEED_1030_TIMER,
    760     .parent = TYPE_ASPEED_TIMER,
    761     .class_init = aspeed_1030_timer_class_init,
    762 };
    763 
    764 static void aspeed_timer_register_types(void)
    765 {
    766     type_register_static(&aspeed_timer_info);
    767     type_register_static(&aspeed_2400_timer_info);
    768     type_register_static(&aspeed_2500_timer_info);
    769     type_register_static(&aspeed_2600_timer_info);
    770     type_register_static(&aspeed_1030_timer_info);
    771 }
    772 
    773 type_init(aspeed_timer_register_types)