qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

mss-spi.c (12194B)


      1 /*
      2  * Block model of SPI controller present in
      3  * Microsemi's SmartFusion2 and SmartFusion SoCs.
      4  *
      5  * Copyright (C) 2017 Subbaraya Sundeep <sundeep.lkml@gmail.com>
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a copy
      8  * of this software and associated documentation files (the "Software"), to deal
      9  * in the Software without restriction, including without limitation the rights
     10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     11  * copies of the Software, and to permit persons to whom the Software is
     12  * furnished to do so, subject to the following conditions:
     13  *
     14  * The above copyright notice and this permission notice shall be included in
     15  * all copies or substantial portions of the Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     23  * THE SOFTWARE.
     24  */
     25 
     26 #include "qemu/osdep.h"
     27 #include "hw/irq.h"
     28 #include "hw/ssi/mss-spi.h"
     29 #include "migration/vmstate.h"
     30 #include "qemu/log.h"
     31 #include "qemu/module.h"
     32 
     33 #ifndef MSS_SPI_ERR_DEBUG
     34 #define MSS_SPI_ERR_DEBUG   0
     35 #endif
     36 
     37 #define DB_PRINT_L(lvl, fmt, args...) do { \
     38     if (MSS_SPI_ERR_DEBUG >= lvl) { \
     39         qemu_log("%s: " fmt "\n", __func__, ## args); \
     40     } \
     41 } while (0)
     42 
     43 #define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args)
     44 
     45 #define FIFO_CAPACITY         32
     46 
     47 #define R_SPI_CONTROL         0
     48 #define R_SPI_DFSIZE          1
     49 #define R_SPI_STATUS          2
     50 #define R_SPI_INTCLR          3
     51 #define R_SPI_RX              4
     52 #define R_SPI_TX              5
     53 #define R_SPI_CLKGEN          6
     54 #define R_SPI_SS              7
     55 #define R_SPI_MIS             8
     56 #define R_SPI_RIS             9
     57 
     58 #define S_TXDONE             (1 << 0)
     59 #define S_RXRDY              (1 << 1)
     60 #define S_RXCHOVRF           (1 << 2)
     61 #define S_RXFIFOFUL          (1 << 4)
     62 #define S_RXFIFOFULNXT       (1 << 5)
     63 #define S_RXFIFOEMP          (1 << 6)
     64 #define S_RXFIFOEMPNXT       (1 << 7)
     65 #define S_TXFIFOFUL          (1 << 8)
     66 #define S_TXFIFOFULNXT       (1 << 9)
     67 #define S_TXFIFOEMP          (1 << 10)
     68 #define S_TXFIFOEMPNXT       (1 << 11)
     69 #define S_FRAMESTART         (1 << 12)
     70 #define S_SSEL               (1 << 13)
     71 #define S_ACTIVE             (1 << 14)
     72 
     73 #define C_ENABLE             (1 << 0)
     74 #define C_MODE               (1 << 1)
     75 #define C_INTRXDATA          (1 << 4)
     76 #define C_INTTXDATA          (1 << 5)
     77 #define C_INTRXOVRFLO        (1 << 6)
     78 #define C_SPS                (1 << 26)
     79 #define C_BIGFIFO            (1 << 29)
     80 #define C_RESET              (1 << 31)
     81 
     82 #define FRAMESZ_MASK         0x3F
     83 #define FMCOUNT_MASK         0x00FFFF00
     84 #define FMCOUNT_SHIFT        8
     85 #define FRAMESZ_MAX          32
     86 
     87 static void txfifo_reset(MSSSpiState *s)
     88 {
     89     fifo32_reset(&s->tx_fifo);
     90 
     91     s->regs[R_SPI_STATUS] &= ~S_TXFIFOFUL;
     92     s->regs[R_SPI_STATUS] |= S_TXFIFOEMP;
     93 }
     94 
     95 static void rxfifo_reset(MSSSpiState *s)
     96 {
     97     fifo32_reset(&s->rx_fifo);
     98 
     99     s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
    100     s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
    101 }
    102 
    103 static void set_fifodepth(MSSSpiState *s)
    104 {
    105     unsigned int size = s->regs[R_SPI_DFSIZE] & FRAMESZ_MASK;
    106 
    107     if (size <= 8) {
    108         s->fifo_depth = 32;
    109     } else if (size <= 16) {
    110         s->fifo_depth = 16;
    111     } else {
    112         s->fifo_depth = 8;
    113     }
    114 }
    115 
    116 static void update_mis(MSSSpiState *s)
    117 {
    118     uint32_t reg = s->regs[R_SPI_CONTROL];
    119     uint32_t tmp;
    120 
    121     /*
    122      * form the Control register interrupt enable bits
    123      * same as RIS, MIS and Interrupt clear registers for simplicity
    124      */
    125     tmp = ((reg & C_INTRXOVRFLO) >> 4) | ((reg & C_INTRXDATA) >> 3) |
    126            ((reg & C_INTTXDATA) >> 5);
    127     s->regs[R_SPI_MIS] |= tmp & s->regs[R_SPI_RIS];
    128 }
    129 
    130 static void spi_update_irq(MSSSpiState *s)
    131 {
    132     int irq;
    133 
    134     update_mis(s);
    135     irq = !!(s->regs[R_SPI_MIS]);
    136 
    137     qemu_set_irq(s->irq, irq);
    138 }
    139 
    140 static void mss_spi_reset(DeviceState *d)
    141 {
    142     MSSSpiState *s = MSS_SPI(d);
    143 
    144     memset(s->regs, 0, sizeof s->regs);
    145     s->regs[R_SPI_CONTROL] = 0x80000102;
    146     s->regs[R_SPI_DFSIZE] = 0x4;
    147     s->regs[R_SPI_STATUS] = S_SSEL | S_TXFIFOEMP | S_RXFIFOEMP;
    148     s->regs[R_SPI_CLKGEN] = 0x7;
    149     s->regs[R_SPI_RIS] = 0x0;
    150 
    151     s->fifo_depth = 4;
    152     s->frame_count = 1;
    153     s->enabled = false;
    154 
    155     rxfifo_reset(s);
    156     txfifo_reset(s);
    157 }
    158 
    159 static uint64_t
    160 spi_read(void *opaque, hwaddr addr, unsigned int size)
    161 {
    162     MSSSpiState *s = opaque;
    163     uint32_t ret = 0;
    164 
    165     addr >>= 2;
    166     switch (addr) {
    167     case R_SPI_RX:
    168         s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
    169         s->regs[R_SPI_STATUS] &= ~S_RXCHOVRF;
    170         if (fifo32_is_empty(&s->rx_fifo)) {
    171             qemu_log_mask(LOG_GUEST_ERROR,
    172                           "%s: Reading empty RX_FIFO\n",
    173                           __func__);
    174         } else {
    175             ret = fifo32_pop(&s->rx_fifo);
    176         }
    177         if (fifo32_is_empty(&s->rx_fifo)) {
    178             s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
    179         }
    180         break;
    181 
    182     case R_SPI_MIS:
    183         update_mis(s);
    184         ret = s->regs[R_SPI_MIS];
    185         break;
    186 
    187     default:
    188         if (addr < ARRAY_SIZE(s->regs)) {
    189             ret = s->regs[addr];
    190         } else {
    191             qemu_log_mask(LOG_GUEST_ERROR,
    192                          "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
    193                          addr * 4);
    194             return ret;
    195         }
    196         break;
    197     }
    198 
    199     DB_PRINT("addr=0x%" HWADDR_PRIx " = 0x%" PRIx32, addr * 4, ret);
    200     spi_update_irq(s);
    201     return ret;
    202 }
    203 
    204 static void assert_cs(MSSSpiState *s)
    205 {
    206     qemu_set_irq(s->cs_line, 0);
    207 }
    208 
    209 static void deassert_cs(MSSSpiState *s)
    210 {
    211     qemu_set_irq(s->cs_line, 1);
    212 }
    213 
    214 static void spi_flush_txfifo(MSSSpiState *s)
    215 {
    216     uint32_t tx;
    217     uint32_t rx;
    218     bool sps = !!(s->regs[R_SPI_CONTROL] & C_SPS);
    219 
    220     /*
    221      * Chip Select(CS) is automatically controlled by this controller.
    222      * If SPS bit is set in Control register then CS is asserted
    223      * until all the frames set in frame count of Control register are
    224      * transferred. If SPS is not set then CS pulses between frames.
    225      * Note that Slave Select register specifies which of the CS line
    226      * has to be controlled automatically by controller. Bits SS[7:1] are for
    227      * masters in FPGA fabric since we model only Microcontroller subsystem
    228      * of Smartfusion2 we control only one CS(SS[0]) line.
    229      */
    230     while (!fifo32_is_empty(&s->tx_fifo) && s->frame_count) {
    231         assert_cs(s);
    232 
    233         s->regs[R_SPI_STATUS] &= ~(S_TXDONE | S_RXRDY);
    234 
    235         tx = fifo32_pop(&s->tx_fifo);
    236         DB_PRINT("data tx:0x%" PRIx32, tx);
    237         rx = ssi_transfer(s->spi, tx);
    238         DB_PRINT("data rx:0x%" PRIx32, rx);
    239 
    240         if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
    241             s->regs[R_SPI_STATUS] |= S_RXCHOVRF;
    242             s->regs[R_SPI_RIS] |= S_RXCHOVRF;
    243         } else {
    244             fifo32_push(&s->rx_fifo, rx);
    245             s->regs[R_SPI_STATUS] &= ~S_RXFIFOEMP;
    246             if (fifo32_num_used(&s->rx_fifo) == (s->fifo_depth - 1)) {
    247                 s->regs[R_SPI_STATUS] |= S_RXFIFOFULNXT;
    248             } else if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
    249                 s->regs[R_SPI_STATUS] |= S_RXFIFOFUL;
    250             }
    251         }
    252         s->frame_count--;
    253         if (!sps) {
    254             deassert_cs(s);
    255         }
    256     }
    257 
    258     if (!s->frame_count) {
    259         s->frame_count = (s->regs[R_SPI_CONTROL] & FMCOUNT_MASK) >>
    260                             FMCOUNT_SHIFT;
    261         deassert_cs(s);
    262         s->regs[R_SPI_RIS] |= S_TXDONE | S_RXRDY;
    263         s->regs[R_SPI_STATUS] |= S_TXDONE | S_RXRDY;
    264    }
    265 }
    266 
    267 static void spi_write(void *opaque, hwaddr addr,
    268             uint64_t val64, unsigned int size)
    269 {
    270     MSSSpiState *s = opaque;
    271     uint32_t value = val64;
    272 
    273     DB_PRINT("addr=0x%" HWADDR_PRIx " =0x%" PRIx32, addr, value);
    274     addr >>= 2;
    275 
    276     switch (addr) {
    277     case R_SPI_TX:
    278         /* adding to already full FIFO */
    279         if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
    280             break;
    281         }
    282         s->regs[R_SPI_STATUS] &= ~S_TXFIFOEMP;
    283         fifo32_push(&s->tx_fifo, value);
    284         if (fifo32_num_used(&s->tx_fifo) == (s->fifo_depth - 1)) {
    285             s->regs[R_SPI_STATUS] |= S_TXFIFOFULNXT;
    286         } else if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
    287             s->regs[R_SPI_STATUS] |= S_TXFIFOFUL;
    288         }
    289         if (s->enabled) {
    290             spi_flush_txfifo(s);
    291         }
    292         break;
    293 
    294     case R_SPI_CONTROL:
    295         s->regs[R_SPI_CONTROL] = value;
    296         if (value & C_BIGFIFO) {
    297             set_fifodepth(s);
    298         } else {
    299             s->fifo_depth = 4;
    300         }
    301         s->enabled = value & C_ENABLE;
    302         s->frame_count = (value & FMCOUNT_MASK) >> FMCOUNT_SHIFT;
    303         if (value & C_RESET) {
    304             mss_spi_reset(DEVICE(s));
    305         }
    306         break;
    307 
    308     case R_SPI_DFSIZE:
    309         if (s->enabled) {
    310             break;
    311         }
    312         /*
    313          * [31:6] bits are reserved bits and for future use.
    314          * [5:0] are for frame size. Only [5:0] bits are validated
    315          * during write, [31:6] bits are untouched.
    316          */
    317         if ((value & FRAMESZ_MASK) > FRAMESZ_MAX) {
    318             qemu_log_mask(LOG_GUEST_ERROR, "%s: Incorrect size %u provided."
    319                          "Maximum frame size is %u\n",
    320                          __func__, value & FRAMESZ_MASK, FRAMESZ_MAX);
    321             break;
    322         }
    323         s->regs[R_SPI_DFSIZE] = value;
    324         break;
    325 
    326     case R_SPI_INTCLR:
    327         s->regs[R_SPI_INTCLR] = value;
    328         if (value & S_TXDONE) {
    329             s->regs[R_SPI_RIS] &= ~S_TXDONE;
    330         }
    331         if (value & S_RXRDY) {
    332             s->regs[R_SPI_RIS] &= ~S_RXRDY;
    333         }
    334         if (value & S_RXCHOVRF) {
    335             s->regs[R_SPI_RIS] &= ~S_RXCHOVRF;
    336         }
    337         break;
    338 
    339     case R_SPI_MIS:
    340     case R_SPI_STATUS:
    341     case R_SPI_RIS:
    342             qemu_log_mask(LOG_GUEST_ERROR,
    343                          "%s: Write to read only register 0x%" HWADDR_PRIx "\n",
    344                          __func__, addr * 4);
    345         break;
    346 
    347     default:
    348         if (addr < ARRAY_SIZE(s->regs)) {
    349             s->regs[addr] = value;
    350         } else {
    351             qemu_log_mask(LOG_GUEST_ERROR,
    352                          "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
    353                          addr * 4);
    354         }
    355         break;
    356     }
    357 
    358     spi_update_irq(s);
    359 }
    360 
    361 static const MemoryRegionOps spi_ops = {
    362     .read = spi_read,
    363     .write = spi_write,
    364     .endianness = DEVICE_NATIVE_ENDIAN,
    365     .valid = {
    366         .min_access_size = 1,
    367         .max_access_size = 4
    368     }
    369 };
    370 
    371 static void mss_spi_realize(DeviceState *dev, Error **errp)
    372 {
    373     MSSSpiState *s = MSS_SPI(dev);
    374     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
    375 
    376     s->spi = ssi_create_bus(dev, "spi");
    377 
    378     sysbus_init_irq(sbd, &s->irq);
    379     sysbus_init_irq(sbd, &s->cs_line);
    380 
    381     memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
    382                           TYPE_MSS_SPI, R_SPI_MAX * 4);
    383     sysbus_init_mmio(sbd, &s->mmio);
    384 
    385     fifo32_create(&s->tx_fifo, FIFO_CAPACITY);
    386     fifo32_create(&s->rx_fifo, FIFO_CAPACITY);
    387 }
    388 
    389 static const VMStateDescription vmstate_mss_spi = {
    390     .name = TYPE_MSS_SPI,
    391     .version_id = 1,
    392     .minimum_version_id = 1,
    393     .fields = (VMStateField[]) {
    394         VMSTATE_FIFO32(tx_fifo, MSSSpiState),
    395         VMSTATE_FIFO32(rx_fifo, MSSSpiState),
    396         VMSTATE_UINT32_ARRAY(regs, MSSSpiState, R_SPI_MAX),
    397         VMSTATE_END_OF_LIST()
    398     }
    399 };
    400 
    401 static void mss_spi_class_init(ObjectClass *klass, void *data)
    402 {
    403     DeviceClass *dc = DEVICE_CLASS(klass);
    404 
    405     dc->realize = mss_spi_realize;
    406     dc->reset = mss_spi_reset;
    407     dc->vmsd = &vmstate_mss_spi;
    408 }
    409 
    410 static const TypeInfo mss_spi_info = {
    411     .name           = TYPE_MSS_SPI,
    412     .parent         = TYPE_SYS_BUS_DEVICE,
    413     .instance_size  = sizeof(MSSSpiState),
    414     .class_init     = mss_spi_class_init,
    415 };
    416 
    417 static void mss_spi_register_types(void)
    418 {
    419     type_register_static(&mss_spi_info);
    420 }
    421 
    422 type_init(mss_spi_register_types)