qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

mc146818rtc.c (33528B)


      1 /*
      2  * QEMU MC146818 RTC emulation
      3  *
      4  * Copyright (c) 2003-2004 Fabrice Bellard
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a copy
      7  * of this software and associated documentation files (the "Software"), to deal
      8  * in the Software without restriction, including without limitation the rights
      9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10  * copies of the Software, and to permit persons to whom the Software is
     11  * furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22  * THE SOFTWARE.
     23  */
     24 
     25 #include "qemu/osdep.h"
     26 #include "qemu/cutils.h"
     27 #include "qemu/module.h"
     28 #include "qemu/bcd.h"
     29 #include "hw/acpi/acpi_aml_interface.h"
     30 #include "hw/irq.h"
     31 #include "hw/qdev-properties.h"
     32 #include "hw/qdev-properties-system.h"
     33 #include "qemu/timer.h"
     34 #include "sysemu/sysemu.h"
     35 #include "sysemu/replay.h"
     36 #include "sysemu/reset.h"
     37 #include "sysemu/runstate.h"
     38 #include "sysemu/rtc.h"
     39 #include "hw/rtc/mc146818rtc.h"
     40 #include "hw/rtc/mc146818rtc_regs.h"
     41 #include "migration/vmstate.h"
     42 #include "qapi/error.h"
     43 #include "qapi/qapi-events-misc.h"
     44 #include "qapi/visitor.h"
     45 #include "hw/rtc/mc146818rtc_regs.h"
     46 
     47 #ifdef TARGET_I386
     48 #include "qapi/qapi-commands-misc-target.h"
     49 #include "hw/i386/apic.h"
     50 #endif
     51 
     52 //#define DEBUG_CMOS
     53 //#define DEBUG_COALESCED
     54 
     55 #ifdef DEBUG_CMOS
     56 # define CMOS_DPRINTF(format, ...)      printf(format, ## __VA_ARGS__)
     57 #else
     58 # define CMOS_DPRINTF(format, ...)      do { } while (0)
     59 #endif
     60 
     61 #ifdef DEBUG_COALESCED
     62 # define DPRINTF_C(format, ...)      printf(format, ## __VA_ARGS__)
     63 #else
     64 # define DPRINTF_C(format, ...)      do { } while (0)
     65 #endif
     66 
     67 #define SEC_PER_MIN     60
     68 #define MIN_PER_HOUR    60
     69 #define SEC_PER_HOUR    3600
     70 #define HOUR_PER_DAY    24
     71 #define SEC_PER_DAY     86400
     72 
     73 #define RTC_REINJECT_ON_ACK_COUNT 20
     74 #define RTC_CLOCK_RATE            32768
     75 #define UIP_HOLD_LENGTH           (8 * NANOSECONDS_PER_SECOND / 32768)
     76 
     77 #define RTC_ISA_BASE 0x70
     78 
     79 static void rtc_set_time(RTCState *s);
     80 static void rtc_update_time(RTCState *s);
     81 static void rtc_set_cmos(RTCState *s, const struct tm *tm);
     82 static inline int rtc_from_bcd(RTCState *s, int a);
     83 static uint64_t get_next_alarm(RTCState *s);
     84 
     85 static inline bool rtc_running(RTCState *s)
     86 {
     87     return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
     88             (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
     89 }
     90 
     91 static uint64_t get_guest_rtc_ns(RTCState *s)
     92 {
     93     uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
     94 
     95     return s->base_rtc * NANOSECONDS_PER_SECOND +
     96         guest_clock - s->last_update + s->offset;
     97 }
     98 
     99 static void rtc_coalesced_timer_update(RTCState *s)
    100 {
    101     if (s->irq_coalesced == 0) {
    102         timer_del(s->coalesced_timer);
    103     } else {
    104         /* divide each RTC interval to 2 - 8 smaller intervals */
    105         int c = MIN(s->irq_coalesced, 7) + 1;
    106         int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
    107             periodic_clock_to_ns(s->period / c);
    108         timer_mod(s->coalesced_timer, next_clock);
    109     }
    110 }
    111 
    112 static QLIST_HEAD(, RTCState) rtc_devices =
    113     QLIST_HEAD_INITIALIZER(rtc_devices);
    114 
    115 #ifdef TARGET_I386
    116 void qmp_rtc_reset_reinjection(Error **errp)
    117 {
    118     RTCState *s;
    119 
    120     QLIST_FOREACH(s, &rtc_devices, link) {
    121         s->irq_coalesced = 0;
    122     }
    123 }
    124 
    125 static bool rtc_policy_slew_deliver_irq(RTCState *s)
    126 {
    127     apic_reset_irq_delivered();
    128     qemu_irq_raise(s->irq);
    129     return apic_get_irq_delivered();
    130 }
    131 
    132 static void rtc_coalesced_timer(void *opaque)
    133 {
    134     RTCState *s = opaque;
    135 
    136     if (s->irq_coalesced != 0) {
    137         s->cmos_data[RTC_REG_C] |= 0xc0;
    138         DPRINTF_C("cmos: injecting from timer\n");
    139         if (rtc_policy_slew_deliver_irq(s)) {
    140             s->irq_coalesced--;
    141             DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
    142                       s->irq_coalesced);
    143         }
    144     }
    145 
    146     rtc_coalesced_timer_update(s);
    147 }
    148 #else
    149 static bool rtc_policy_slew_deliver_irq(RTCState *s)
    150 {
    151     assert(0);
    152     return false;
    153 }
    154 #endif
    155 
    156 static uint32_t rtc_periodic_clock_ticks(RTCState *s)
    157 {
    158     int period_code;
    159 
    160     if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
    161         return 0;
    162      }
    163 
    164     period_code = s->cmos_data[RTC_REG_A] & 0x0f;
    165 
    166     return periodic_period_to_clock(period_code);
    167 }
    168 
    169 /*
    170  * handle periodic timer. @old_period indicates the periodic timer update
    171  * is just due to period adjustment.
    172  */
    173 static void
    174 periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period, bool period_change)
    175 {
    176     uint32_t period;
    177     int64_t cur_clock, next_irq_clock, lost_clock = 0;
    178 
    179     period = rtc_periodic_clock_ticks(s);
    180     s->period = period;
    181 
    182     if (!period) {
    183         s->irq_coalesced = 0;
    184         timer_del(s->periodic_timer);
    185         return;
    186     }
    187 
    188     /* compute 32 khz clock */
    189     cur_clock =
    190         muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
    191 
    192     /*
    193      * if the periodic timer's update is due to period re-configuration,
    194      * we should count the clock since last interrupt.
    195      */
    196     if (old_period && period_change) {
    197         int64_t last_periodic_clock, next_periodic_clock;
    198 
    199         next_periodic_clock = muldiv64(s->next_periodic_time,
    200                                 RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
    201         last_periodic_clock = next_periodic_clock - old_period;
    202         lost_clock = cur_clock - last_periodic_clock;
    203         assert(lost_clock >= 0);
    204     }
    205 
    206     /*
    207      * s->irq_coalesced can change for two reasons:
    208      *
    209      * a) if one or more periodic timer interrupts have been lost,
    210      *    lost_clock will be more that a period.
    211      *
    212      * b) when the period may be reconfigured, we expect the OS to
    213      *    treat delayed tick as the new period.  So, when switching
    214      *    from a shorter to a longer period, scale down the missing,
    215      *    because the OS will treat past delayed ticks as longer
    216      *    (leftovers are put back into lost_clock).  When switching
    217      *    to a shorter period, scale up the missing ticks since the
    218      *    OS handler will treat past delayed ticks as shorter.
    219      */
    220     if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
    221         uint32_t old_irq_coalesced = s->irq_coalesced;
    222 
    223         lost_clock += old_irq_coalesced * old_period;
    224         s->irq_coalesced = lost_clock / s->period;
    225         lost_clock %= s->period;
    226         if (old_irq_coalesced != s->irq_coalesced ||
    227             old_period != s->period) {
    228             DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
    229                       "period scaled from %d to %d\n", old_irq_coalesced,
    230                       s->irq_coalesced, old_period, s->period);
    231             rtc_coalesced_timer_update(s);
    232         }
    233     } else {
    234         /*
    235          * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
    236          * is not used, we should make the time progress anyway.
    237          */
    238         lost_clock = MIN(lost_clock, period);
    239     }
    240 
    241     assert(lost_clock >= 0 && lost_clock <= period);
    242 
    243     next_irq_clock = cur_clock + period - lost_clock;
    244     s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
    245     timer_mod(s->periodic_timer, s->next_periodic_time);
    246 }
    247 
    248 static void rtc_periodic_timer(void *opaque)
    249 {
    250     RTCState *s = opaque;
    251 
    252     periodic_timer_update(s, s->next_periodic_time, s->period, false);
    253     s->cmos_data[RTC_REG_C] |= REG_C_PF;
    254     if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
    255         s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
    256         if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
    257             if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
    258                 s->irq_reinject_on_ack_count = 0;
    259             if (!rtc_policy_slew_deliver_irq(s)) {
    260                 s->irq_coalesced++;
    261                 rtc_coalesced_timer_update(s);
    262                 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
    263                           s->irq_coalesced);
    264             }
    265         } else
    266             qemu_irq_raise(s->irq);
    267     }
    268 }
    269 
    270 /* handle update-ended timer */
    271 static void check_update_timer(RTCState *s)
    272 {
    273     uint64_t next_update_time;
    274     uint64_t guest_nsec;
    275     int next_alarm_sec;
    276 
    277     /* From the data sheet: "Holding the dividers in reset prevents
    278      * interrupts from operating, while setting the SET bit allows"
    279      * them to occur.
    280      */
    281     if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
    282         assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
    283         timer_del(s->update_timer);
    284         return;
    285     }
    286 
    287     guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
    288     next_update_time = qemu_clock_get_ns(rtc_clock)
    289         + NANOSECONDS_PER_SECOND - guest_nsec;
    290 
    291     /* Compute time of next alarm.  One second is already accounted
    292      * for in next_update_time.
    293      */
    294     next_alarm_sec = get_next_alarm(s);
    295     s->next_alarm_time = next_update_time +
    296                          (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
    297 
    298     /* If update_in_progress latched the UIP bit, we must keep the timer
    299      * programmed to the next second, so that UIP is cleared.  Otherwise,
    300      * if UF is already set, we might be able to optimize.
    301      */
    302     if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
    303         (s->cmos_data[RTC_REG_C] & REG_C_UF)) {
    304         /* If AF cannot change (i.e. either it is set already, or
    305          * SET=1 and then the time is not updated), nothing to do.
    306          */
    307         if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
    308             (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
    309             timer_del(s->update_timer);
    310             return;
    311         }
    312 
    313         /* UF is set, but AF is clear.  Program the timer to target
    314          * the alarm time.  */
    315         next_update_time = s->next_alarm_time;
    316     }
    317     if (next_update_time != timer_expire_time_ns(s->update_timer)) {
    318         timer_mod(s->update_timer, next_update_time);
    319     }
    320 }
    321 
    322 static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
    323 {
    324     if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
    325         hour %= 12;
    326         if (s->cmos_data[RTC_HOURS] & 0x80) {
    327             hour += 12;
    328         }
    329     }
    330     return hour;
    331 }
    332 
    333 static uint64_t get_next_alarm(RTCState *s)
    334 {
    335     int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
    336     int32_t hour, min, sec;
    337 
    338     rtc_update_time(s);
    339 
    340     alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
    341     alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
    342     alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
    343     alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
    344 
    345     cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
    346     cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
    347     cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
    348     cur_hour = convert_hour(s, cur_hour);
    349 
    350     if (alarm_hour == -1) {
    351         alarm_hour = cur_hour;
    352         if (alarm_min == -1) {
    353             alarm_min = cur_min;
    354             if (alarm_sec == -1) {
    355                 alarm_sec = cur_sec + 1;
    356             } else if (cur_sec > alarm_sec) {
    357                 alarm_min++;
    358             }
    359         } else if (cur_min == alarm_min) {
    360             if (alarm_sec == -1) {
    361                 alarm_sec = cur_sec + 1;
    362             } else {
    363                 if (cur_sec > alarm_sec) {
    364                     alarm_hour++;
    365                 }
    366             }
    367             if (alarm_sec == SEC_PER_MIN) {
    368                 /* wrap to next hour, minutes is not in don't care mode */
    369                 alarm_sec = 0;
    370                 alarm_hour++;
    371             }
    372         } else if (cur_min > alarm_min) {
    373             alarm_hour++;
    374         }
    375     } else if (cur_hour == alarm_hour) {
    376         if (alarm_min == -1) {
    377             alarm_min = cur_min;
    378             if (alarm_sec == -1) {
    379                 alarm_sec = cur_sec + 1;
    380             } else if (cur_sec > alarm_sec) {
    381                 alarm_min++;
    382             }
    383 
    384             if (alarm_sec == SEC_PER_MIN) {
    385                 alarm_sec = 0;
    386                 alarm_min++;
    387             }
    388             /* wrap to next day, hour is not in don't care mode */
    389             alarm_min %= MIN_PER_HOUR;
    390         } else if (cur_min == alarm_min) {
    391             if (alarm_sec == -1) {
    392                 alarm_sec = cur_sec + 1;
    393             }
    394             /* wrap to next day, hours+minutes not in don't care mode */
    395             alarm_sec %= SEC_PER_MIN;
    396         }
    397     }
    398 
    399     /* values that are still don't care fire at the next min/sec */
    400     if (alarm_min == -1) {
    401         alarm_min = 0;
    402     }
    403     if (alarm_sec == -1) {
    404         alarm_sec = 0;
    405     }
    406 
    407     /* keep values in range */
    408     if (alarm_sec == SEC_PER_MIN) {
    409         alarm_sec = 0;
    410         alarm_min++;
    411     }
    412     if (alarm_min == MIN_PER_HOUR) {
    413         alarm_min = 0;
    414         alarm_hour++;
    415     }
    416     alarm_hour %= HOUR_PER_DAY;
    417 
    418     hour = alarm_hour - cur_hour;
    419     min = hour * MIN_PER_HOUR + alarm_min - cur_min;
    420     sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
    421     return sec <= 0 ? sec + SEC_PER_DAY : sec;
    422 }
    423 
    424 static void rtc_update_timer(void *opaque)
    425 {
    426     RTCState *s = opaque;
    427     int32_t irqs = REG_C_UF;
    428     int32_t new_irqs;
    429 
    430     assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
    431 
    432     /* UIP might have been latched, update time and clear it.  */
    433     rtc_update_time(s);
    434     s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
    435 
    436     if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
    437         irqs |= REG_C_AF;
    438         if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
    439             qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL);
    440         }
    441     }
    442 
    443     new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
    444     s->cmos_data[RTC_REG_C] |= irqs;
    445     if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
    446         s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
    447         qemu_irq_raise(s->irq);
    448     }
    449     check_update_timer(s);
    450 }
    451 
    452 static void cmos_ioport_write(void *opaque, hwaddr addr,
    453                               uint64_t data, unsigned size)
    454 {
    455     RTCState *s = opaque;
    456     uint32_t old_period;
    457     bool update_periodic_timer;
    458 
    459     if ((addr & 1) == 0) {
    460         s->cmos_index = data & 0x7f;
    461     } else {
    462         CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
    463                      s->cmos_index, data);
    464         switch(s->cmos_index) {
    465         case RTC_SECONDS_ALARM:
    466         case RTC_MINUTES_ALARM:
    467         case RTC_HOURS_ALARM:
    468             s->cmos_data[s->cmos_index] = data;
    469             check_update_timer(s);
    470             break;
    471         case RTC_IBM_PS2_CENTURY_BYTE:
    472             s->cmos_index = RTC_CENTURY;
    473             /* fall through */
    474         case RTC_CENTURY:
    475         case RTC_SECONDS:
    476         case RTC_MINUTES:
    477         case RTC_HOURS:
    478         case RTC_DAY_OF_WEEK:
    479         case RTC_DAY_OF_MONTH:
    480         case RTC_MONTH:
    481         case RTC_YEAR:
    482             s->cmos_data[s->cmos_index] = data;
    483             /* if in set mode, do not update the time */
    484             if (rtc_running(s)) {
    485                 rtc_set_time(s);
    486                 check_update_timer(s);
    487             }
    488             break;
    489         case RTC_REG_A:
    490             update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
    491             old_period = rtc_periodic_clock_ticks(s);
    492 
    493             if ((data & 0x60) == 0x60) {
    494                 if (rtc_running(s)) {
    495                     rtc_update_time(s);
    496                 }
    497                 /* What happens to UIP when divider reset is enabled is
    498                  * unclear from the datasheet.  Shouldn't matter much
    499                  * though.
    500                  */
    501                 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
    502             } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
    503                     (data & 0x70)  <= 0x20) {
    504                 /* when the divider reset is removed, the first update cycle
    505                  * begins one-half second later*/
    506                 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
    507                     s->offset = 500000000;
    508                     rtc_set_time(s);
    509                 }
    510                 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
    511             }
    512             /* UIP bit is read only */
    513             s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
    514                 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
    515 
    516             if (update_periodic_timer) {
    517                 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
    518                                       old_period, true);
    519             }
    520 
    521             check_update_timer(s);
    522             break;
    523         case RTC_REG_B:
    524             update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
    525                                        & REG_B_PIE;
    526             old_period = rtc_periodic_clock_ticks(s);
    527 
    528             if (data & REG_B_SET) {
    529                 /* update cmos to when the rtc was stopping */
    530                 if (rtc_running(s)) {
    531                     rtc_update_time(s);
    532                 }
    533                 /* set mode: reset UIP mode */
    534                 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
    535                 data &= ~REG_B_UIE;
    536             } else {
    537                 /* if disabling set mode, update the time */
    538                 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
    539                     (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
    540                     s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
    541                     rtc_set_time(s);
    542                 }
    543             }
    544             /* if an interrupt flag is already set when the interrupt
    545              * becomes enabled, raise an interrupt immediately.  */
    546             if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
    547                 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
    548                 qemu_irq_raise(s->irq);
    549             } else {
    550                 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
    551                 qemu_irq_lower(s->irq);
    552             }
    553             s->cmos_data[RTC_REG_B] = data;
    554 
    555             if (update_periodic_timer) {
    556                 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
    557                                       old_period, true);
    558             }
    559 
    560             check_update_timer(s);
    561             break;
    562         case RTC_REG_C:
    563         case RTC_REG_D:
    564             /* cannot write to them */
    565             break;
    566         default:
    567             s->cmos_data[s->cmos_index] = data;
    568             break;
    569         }
    570     }
    571 }
    572 
    573 static inline int rtc_to_bcd(RTCState *s, int a)
    574 {
    575     if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
    576         return a;
    577     } else {
    578         return ((a / 10) << 4) | (a % 10);
    579     }
    580 }
    581 
    582 static inline int rtc_from_bcd(RTCState *s, int a)
    583 {
    584     if ((a & 0xc0) == 0xc0) {
    585         return -1;
    586     }
    587     if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
    588         return a;
    589     } else {
    590         return ((a >> 4) * 10) + (a & 0x0f);
    591     }
    592 }
    593 
    594 static void rtc_get_time(RTCState *s, struct tm *tm)
    595 {
    596     tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
    597     tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
    598     tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
    599     if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
    600         tm->tm_hour %= 12;
    601         if (s->cmos_data[RTC_HOURS] & 0x80) {
    602             tm->tm_hour += 12;
    603         }
    604     }
    605     tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
    606     tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
    607     tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
    608     tm->tm_year =
    609         rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
    610         rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
    611 }
    612 
    613 static void rtc_set_time(RTCState *s)
    614 {
    615     struct tm tm;
    616     g_autofree const char *qom_path = object_get_canonical_path(OBJECT(s));
    617 
    618     rtc_get_time(s, &tm);
    619     s->base_rtc = mktimegm(&tm);
    620     s->last_update = qemu_clock_get_ns(rtc_clock);
    621 
    622     qapi_event_send_rtc_change(qemu_timedate_diff(&tm), qom_path);
    623 }
    624 
    625 static void rtc_set_cmos(RTCState *s, const struct tm *tm)
    626 {
    627     int year;
    628 
    629     s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
    630     s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
    631     if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
    632         /* 24 hour format */
    633         s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
    634     } else {
    635         /* 12 hour format */
    636         int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
    637         s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
    638         if (tm->tm_hour >= 12)
    639             s->cmos_data[RTC_HOURS] |= 0x80;
    640     }
    641     s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
    642     s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
    643     s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
    644     year = tm->tm_year + 1900 - s->base_year;
    645     s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
    646     s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
    647 }
    648 
    649 static void rtc_update_time(RTCState *s)
    650 {
    651     struct tm ret;
    652     time_t guest_sec;
    653     int64_t guest_nsec;
    654 
    655     guest_nsec = get_guest_rtc_ns(s);
    656     guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
    657     gmtime_r(&guest_sec, &ret);
    658 
    659     /* Is SET flag of Register B disabled? */
    660     if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
    661         rtc_set_cmos(s, &ret);
    662     }
    663 }
    664 
    665 static int update_in_progress(RTCState *s)
    666 {
    667     int64_t guest_nsec;
    668 
    669     if (!rtc_running(s)) {
    670         return 0;
    671     }
    672     if (timer_pending(s->update_timer)) {
    673         int64_t next_update_time = timer_expire_time_ns(s->update_timer);
    674         /* Latch UIP until the timer expires.  */
    675         if (qemu_clock_get_ns(rtc_clock) >=
    676             (next_update_time - UIP_HOLD_LENGTH)) {
    677             s->cmos_data[RTC_REG_A] |= REG_A_UIP;
    678             return 1;
    679         }
    680     }
    681 
    682     guest_nsec = get_guest_rtc_ns(s);
    683     /* UIP bit will be set at last 244us of every second. */
    684     if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
    685         (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
    686         return 1;
    687     }
    688     return 0;
    689 }
    690 
    691 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
    692                                  unsigned size)
    693 {
    694     RTCState *s = opaque;
    695     int ret;
    696     if ((addr & 1) == 0) {
    697         return 0xff;
    698     } else {
    699         switch(s->cmos_index) {
    700         case RTC_IBM_PS2_CENTURY_BYTE:
    701             s->cmos_index = RTC_CENTURY;
    702             /* fall through */
    703         case RTC_CENTURY:
    704         case RTC_SECONDS:
    705         case RTC_MINUTES:
    706         case RTC_HOURS:
    707         case RTC_DAY_OF_WEEK:
    708         case RTC_DAY_OF_MONTH:
    709         case RTC_MONTH:
    710         case RTC_YEAR:
    711             /* if not in set mode, calibrate cmos before
    712              * reading*/
    713             if (rtc_running(s)) {
    714                 rtc_update_time(s);
    715             }
    716             ret = s->cmos_data[s->cmos_index];
    717             break;
    718         case RTC_REG_A:
    719             ret = s->cmos_data[s->cmos_index];
    720             if (update_in_progress(s)) {
    721                 ret |= REG_A_UIP;
    722             }
    723             break;
    724         case RTC_REG_C:
    725             ret = s->cmos_data[s->cmos_index];
    726             qemu_irq_lower(s->irq);
    727             s->cmos_data[RTC_REG_C] = 0x00;
    728             if (ret & (REG_C_UF | REG_C_AF)) {
    729                 check_update_timer(s);
    730             }
    731 
    732             if(s->irq_coalesced &&
    733                     (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
    734                     s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
    735                 s->irq_reinject_on_ack_count++;
    736                 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
    737                 DPRINTF_C("cmos: injecting on ack\n");
    738                 if (rtc_policy_slew_deliver_irq(s)) {
    739                     s->irq_coalesced--;
    740                     DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
    741                               s->irq_coalesced);
    742                 }
    743             }
    744             break;
    745         default:
    746             ret = s->cmos_data[s->cmos_index];
    747             break;
    748         }
    749         CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
    750                      s->cmos_index, ret);
    751         return ret;
    752     }
    753 }
    754 
    755 void rtc_set_memory(ISADevice *dev, int addr, int val)
    756 {
    757     RTCState *s = MC146818_RTC(dev);
    758     if (addr >= 0 && addr <= 127)
    759         s->cmos_data[addr] = val;
    760 }
    761 
    762 int rtc_get_memory(ISADevice *dev, int addr)
    763 {
    764     RTCState *s = MC146818_RTC(dev);
    765     assert(addr >= 0 && addr <= 127);
    766     return s->cmos_data[addr];
    767 }
    768 
    769 static void rtc_set_date_from_host(ISADevice *dev)
    770 {
    771     RTCState *s = MC146818_RTC(dev);
    772     struct tm tm;
    773 
    774     qemu_get_timedate(&tm, 0);
    775 
    776     s->base_rtc = mktimegm(&tm);
    777     s->last_update = qemu_clock_get_ns(rtc_clock);
    778     s->offset = 0;
    779 
    780     /* set the CMOS date */
    781     rtc_set_cmos(s, &tm);
    782 }
    783 
    784 static int rtc_pre_save(void *opaque)
    785 {
    786     RTCState *s = opaque;
    787 
    788     rtc_update_time(s);
    789 
    790     return 0;
    791 }
    792 
    793 static int rtc_post_load(void *opaque, int version_id)
    794 {
    795     RTCState *s = opaque;
    796 
    797     if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
    798         rtc_set_time(s);
    799         s->offset = 0;
    800         check_update_timer(s);
    801     }
    802     s->period = rtc_periodic_clock_ticks(s);
    803 
    804     /* The periodic timer is deterministic in record/replay mode,
    805      * so there is no need to update it after loading the vmstate.
    806      * Reading RTC here would misalign record and replay.
    807      */
    808     if (replay_mode == REPLAY_MODE_NONE) {
    809         uint64_t now = qemu_clock_get_ns(rtc_clock);
    810         if (now < s->next_periodic_time ||
    811             now > (s->next_periodic_time + get_max_clock_jump())) {
    812             periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), s->period, false);
    813         }
    814     }
    815 
    816     if (version_id >= 2) {
    817         if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
    818             rtc_coalesced_timer_update(s);
    819         }
    820     }
    821     return 0;
    822 }
    823 
    824 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
    825 {
    826     RTCState *s = (RTCState *)opaque;
    827     return s->irq_reinject_on_ack_count != 0;
    828 }
    829 
    830 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
    831     .name = "mc146818rtc/irq_reinject_on_ack_count",
    832     .version_id = 1,
    833     .minimum_version_id = 1,
    834     .needed = rtc_irq_reinject_on_ack_count_needed,
    835     .fields = (VMStateField[]) {
    836         VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
    837         VMSTATE_END_OF_LIST()
    838     }
    839 };
    840 
    841 static const VMStateDescription vmstate_rtc = {
    842     .name = "mc146818rtc",
    843     .version_id = 3,
    844     .minimum_version_id = 1,
    845     .pre_save = rtc_pre_save,
    846     .post_load = rtc_post_load,
    847     .fields = (VMStateField[]) {
    848         VMSTATE_BUFFER(cmos_data, RTCState),
    849         VMSTATE_UINT8(cmos_index, RTCState),
    850         VMSTATE_UNUSED(7*4),
    851         VMSTATE_TIMER_PTR(periodic_timer, RTCState),
    852         VMSTATE_INT64(next_periodic_time, RTCState),
    853         VMSTATE_UNUSED(3*8),
    854         VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
    855         VMSTATE_UINT32_V(period, RTCState, 2),
    856         VMSTATE_UINT64_V(base_rtc, RTCState, 3),
    857         VMSTATE_UINT64_V(last_update, RTCState, 3),
    858         VMSTATE_INT64_V(offset, RTCState, 3),
    859         VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
    860         VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
    861         VMSTATE_END_OF_LIST()
    862     },
    863     .subsections = (const VMStateDescription*[]) {
    864         &vmstate_rtc_irq_reinject_on_ack_count,
    865         NULL
    866     }
    867 };
    868 
    869 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
    870    BIOS will read it and start S3 resume at POST Entry */
    871 static void rtc_notify_suspend(Notifier *notifier, void *data)
    872 {
    873     RTCState *s = container_of(notifier, RTCState, suspend_notifier);
    874     rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
    875 }
    876 
    877 static const MemoryRegionOps cmos_ops = {
    878     .read = cmos_ioport_read,
    879     .write = cmos_ioport_write,
    880     .impl = {
    881         .min_access_size = 1,
    882         .max_access_size = 1,
    883     },
    884     .endianness = DEVICE_LITTLE_ENDIAN,
    885 };
    886 
    887 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
    888 {
    889     RTCState *s = MC146818_RTC(obj);
    890 
    891     rtc_update_time(s);
    892     rtc_get_time(s, current_tm);
    893 }
    894 
    895 static void rtc_realizefn(DeviceState *dev, Error **errp)
    896 {
    897     ISADevice *isadev = ISA_DEVICE(dev);
    898     RTCState *s = MC146818_RTC(dev);
    899 
    900     s->cmos_data[RTC_REG_A] = 0x26;
    901     s->cmos_data[RTC_REG_B] = 0x02;
    902     s->cmos_data[RTC_REG_C] = 0x00;
    903     s->cmos_data[RTC_REG_D] = 0x80;
    904 
    905     /* This is for historical reasons.  The default base year qdev property
    906      * was set to 2000 for most machine types before the century byte was
    907      * implemented.
    908      *
    909      * This if statement means that the century byte will be always 0
    910      * (at least until 2079...) for base_year = 1980, but will be set
    911      * correctly for base_year = 2000.
    912      */
    913     if (s->base_year == 2000) {
    914         s->base_year = 0;
    915     }
    916 
    917     if (s->isairq >= ISA_NUM_IRQS) {
    918         error_setg(errp, "Maximum value for \"irq\" is: %u", ISA_NUM_IRQS - 1);
    919         return;
    920     }
    921 
    922     rtc_set_date_from_host(isadev);
    923 
    924     switch (s->lost_tick_policy) {
    925 #ifdef TARGET_I386
    926     case LOST_TICK_POLICY_SLEW:
    927         s->coalesced_timer =
    928             timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
    929         break;
    930 #endif
    931     case LOST_TICK_POLICY_DISCARD:
    932         break;
    933     default:
    934         error_setg(errp, "Invalid lost tick policy.");
    935         return;
    936     }
    937 
    938     s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
    939     s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
    940     check_update_timer(s);
    941 
    942     s->suspend_notifier.notify = rtc_notify_suspend;
    943     qemu_register_suspend_notifier(&s->suspend_notifier);
    944 
    945     memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
    946     isa_register_ioport(isadev, &s->io, s->io_base);
    947 
    948     /* register rtc 0x70 port for coalesced_pio */
    949     memory_region_set_flush_coalesced(&s->io);
    950     memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops,
    951                           s, "rtc-index", 1);
    952     memory_region_add_subregion(&s->io, 0, &s->coalesced_io);
    953     memory_region_add_coalescing(&s->coalesced_io, 0, 1);
    954 
    955     qdev_set_legacy_instance_id(dev, s->io_base, 3);
    956 
    957     object_property_add_tm(OBJECT(s), "date", rtc_get_date);
    958 
    959     qdev_init_gpio_out(dev, &s->irq, 1);
    960     QLIST_INSERT_HEAD(&rtc_devices, s, link);
    961 }
    962 
    963 ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
    964 {
    965     DeviceState *dev;
    966     ISADevice *isadev;
    967     RTCState *s;
    968 
    969     isadev = isa_new(TYPE_MC146818_RTC);
    970     dev = DEVICE(isadev);
    971     s = MC146818_RTC(isadev);
    972     qdev_prop_set_int32(dev, "base_year", base_year);
    973     isa_realize_and_unref(isadev, bus, &error_fatal);
    974     if (intercept_irq) {
    975         qdev_connect_gpio_out(dev, 0, intercept_irq);
    976     } else {
    977         isa_connect_gpio_out(isadev, 0, s->isairq);
    978     }
    979 
    980     object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev),
    981                               "date");
    982 
    983     return isadev;
    984 }
    985 
    986 static Property mc146818rtc_properties[] = {
    987     DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
    988     DEFINE_PROP_UINT16("iobase", RTCState, io_base, RTC_ISA_BASE),
    989     DEFINE_PROP_UINT8("irq", RTCState, isairq, RTC_ISA_IRQ),
    990     DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
    991                                lost_tick_policy, LOST_TICK_POLICY_DISCARD),
    992     DEFINE_PROP_END_OF_LIST(),
    993 };
    994 
    995 static void rtc_reset_enter(Object *obj, ResetType type)
    996 {
    997     RTCState *s = MC146818_RTC(obj);
    998 
    999     /* Reason: VM do suspend self will set 0xfe
   1000      * Reset any values other than 0xfe(Guest suspend case) */
   1001     if (s->cmos_data[0x0f] != 0xfe) {
   1002         s->cmos_data[0x0f] = 0x00;
   1003     }
   1004 
   1005     s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
   1006     s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
   1007     check_update_timer(s);
   1008 
   1009 
   1010     if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
   1011         s->irq_coalesced = 0;
   1012         s->irq_reinject_on_ack_count = 0;
   1013     }
   1014 }
   1015 
   1016 static void rtc_reset_hold(Object *obj)
   1017 {
   1018     RTCState *s = MC146818_RTC(obj);
   1019 
   1020     qemu_irq_lower(s->irq);
   1021 }
   1022 
   1023 static void rtc_build_aml(AcpiDevAmlIf *adev, Aml *scope)
   1024 {
   1025     RTCState *s = MC146818_RTC(adev);
   1026     Aml *dev;
   1027     Aml *crs;
   1028 
   1029     /*
   1030      * Reserving 8 io ports here, following what physical hardware
   1031      * does, even though qemu only responds to the first two ports.
   1032      */
   1033     crs = aml_resource_template();
   1034     aml_append(crs, aml_io(AML_DECODE16, s->io_base, s->io_base,
   1035                            0x01, 0x08));
   1036     aml_append(crs, aml_irq_no_flags(s->isairq));
   1037 
   1038     dev = aml_device("RTC");
   1039     aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00")));
   1040     aml_append(dev, aml_name_decl("_CRS", crs));
   1041 
   1042     aml_append(scope, dev);
   1043 }
   1044 
   1045 static void rtc_class_initfn(ObjectClass *klass, void *data)
   1046 {
   1047     DeviceClass *dc = DEVICE_CLASS(klass);
   1048     ResettableClass *rc = RESETTABLE_CLASS(klass);
   1049     AcpiDevAmlIfClass *adevc = ACPI_DEV_AML_IF_CLASS(klass);
   1050 
   1051     dc->realize = rtc_realizefn;
   1052     dc->vmsd = &vmstate_rtc;
   1053     rc->phases.enter = rtc_reset_enter;
   1054     rc->phases.hold = rtc_reset_hold;
   1055     adevc->build_dev_aml = rtc_build_aml;
   1056     device_class_set_props(dc, mc146818rtc_properties);
   1057     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
   1058 }
   1059 
   1060 static const TypeInfo mc146818rtc_info = {
   1061     .name          = TYPE_MC146818_RTC,
   1062     .parent        = TYPE_ISA_DEVICE,
   1063     .instance_size = sizeof(RTCState),
   1064     .class_init    = rtc_class_initfn,
   1065     .interfaces = (InterfaceInfo[]) {
   1066         { TYPE_ACPI_DEV_AML_IF },
   1067         { },
   1068     },
   1069 };
   1070 
   1071 static void mc146818rtc_register_types(void)
   1072 {
   1073     type_register_static(&mc146818rtc_info);
   1074 }
   1075 
   1076 type_init(mc146818rtc_register_types)