qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

spike.c (14086B)


      1 /*
      2  * QEMU RISC-V Spike Board
      3  *
      4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
      5  * Copyright (c) 2017-2018 SiFive, Inc.
      6  *
      7  * This provides a RISC-V Board with the following devices:
      8  *
      9  * 0) HTIF Console and Poweroff
     10  * 1) CLINT (Timer and IPI)
     11  * 2) PLIC (Platform Level Interrupt Controller)
     12  *
     13  * This program is free software; you can redistribute it and/or modify it
     14  * under the terms and conditions of the GNU General Public License,
     15  * version 2 or later, as published by the Free Software Foundation.
     16  *
     17  * This program is distributed in the hope it will be useful, but WITHOUT
     18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     20  * more details.
     21  *
     22  * You should have received a copy of the GNU General Public License along with
     23  * this program.  If not, see <http://www.gnu.org/licenses/>.
     24  */
     25 
     26 #include "qemu/osdep.h"
     27 #include "qemu/error-report.h"
     28 #include "qapi/error.h"
     29 #include "hw/boards.h"
     30 #include "hw/loader.h"
     31 #include "hw/sysbus.h"
     32 #include "target/riscv/cpu.h"
     33 #include "hw/riscv/riscv_hart.h"
     34 #include "hw/riscv/spike.h"
     35 #include "hw/riscv/boot.h"
     36 #include "hw/riscv/numa.h"
     37 #include "hw/char/riscv_htif.h"
     38 #include "hw/intc/riscv_aclint.h"
     39 #include "chardev/char.h"
     40 #include "sysemu/device_tree.h"
     41 #include "sysemu/sysemu.h"
     42 
     43 #include <libfdt.h>
     44 
     45 static const MemMapEntry spike_memmap[] = {
     46     [SPIKE_MROM] =     {     0x1000,     0xf000 },
     47     [SPIKE_HTIF] =     {  0x1000000,     0x1000 },
     48     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
     49     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
     50 };
     51 
     52 static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
     53                        uint64_t mem_size, const char *cmdline, bool is_32_bit)
     54 {
     55     void *fdt;
     56     uint64_t addr, size;
     57     unsigned long clint_addr;
     58     int cpu, socket;
     59     MachineState *mc = MACHINE(s);
     60     uint32_t *clint_cells;
     61     uint32_t cpu_phandle, intc_phandle, phandle = 1;
     62     char *name, *mem_name, *clint_name, *clust_name;
     63     char *core_name, *cpu_name, *intc_name;
     64     static const char * const clint_compat[2] = {
     65         "sifive,clint0", "riscv,clint0"
     66     };
     67 
     68     fdt = s->fdt = create_device_tree(&s->fdt_size);
     69     if (!fdt) {
     70         error_report("create_device_tree() failed");
     71         exit(1);
     72     }
     73 
     74     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
     75     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
     76     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
     77     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
     78 
     79     qemu_fdt_add_subnode(fdt, "/htif");
     80     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
     81     if (!htif_uses_elf_symbols()) {
     82         qemu_fdt_setprop_cells(fdt, "/htif", "reg",
     83             0x0, memmap[SPIKE_HTIF].base, 0x0, memmap[SPIKE_HTIF].size);
     84     }
     85 
     86     qemu_fdt_add_subnode(fdt, "/soc");
     87     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
     88     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
     89     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
     90     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
     91 
     92     qemu_fdt_add_subnode(fdt, "/cpus");
     93     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
     94         RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
     95     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
     96     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
     97     qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
     98 
     99     for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
    100         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
    101         qemu_fdt_add_subnode(fdt, clust_name);
    102 
    103         clint_cells =  g_new0(uint32_t, s->soc[socket].num_harts * 4);
    104 
    105         for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
    106             cpu_phandle = phandle++;
    107 
    108             cpu_name = g_strdup_printf("/cpus/cpu@%d",
    109                 s->soc[socket].hartid_base + cpu);
    110             qemu_fdt_add_subnode(fdt, cpu_name);
    111             if (is_32_bit) {
    112                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
    113             } else {
    114                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
    115             }
    116             name = riscv_isa_string(&s->soc[socket].harts[cpu]);
    117             qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
    118             g_free(name);
    119             qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
    120             qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
    121             qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
    122                 s->soc[socket].hartid_base + cpu);
    123             qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
    124             riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
    125             qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
    126 
    127             intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
    128             qemu_fdt_add_subnode(fdt, intc_name);
    129             intc_phandle = phandle++;
    130             qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
    131             qemu_fdt_setprop_string(fdt, intc_name, "compatible",
    132                 "riscv,cpu-intc");
    133             qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
    134             qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
    135 
    136             clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
    137             clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
    138             clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
    139             clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
    140 
    141             core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
    142             qemu_fdt_add_subnode(fdt, core_name);
    143             qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
    144 
    145             g_free(core_name);
    146             g_free(intc_name);
    147             g_free(cpu_name);
    148         }
    149 
    150         addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
    151         size = riscv_socket_mem_size(mc, socket);
    152         mem_name = g_strdup_printf("/memory@%lx", (long)addr);
    153         qemu_fdt_add_subnode(fdt, mem_name);
    154         qemu_fdt_setprop_cells(fdt, mem_name, "reg",
    155             addr >> 32, addr, size >> 32, size);
    156         qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
    157         riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
    158         g_free(mem_name);
    159 
    160         clint_addr = memmap[SPIKE_CLINT].base +
    161             (memmap[SPIKE_CLINT].size * socket);
    162         clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
    163         qemu_fdt_add_subnode(fdt, clint_name);
    164         qemu_fdt_setprop_string_array(fdt, clint_name, "compatible",
    165             (char **)&clint_compat, ARRAY_SIZE(clint_compat));
    166         qemu_fdt_setprop_cells(fdt, clint_name, "reg",
    167             0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
    168         qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
    169             clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
    170         riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
    171 
    172         g_free(clint_name);
    173         g_free(clint_cells);
    174         g_free(clust_name);
    175     }
    176 
    177     riscv_socket_fdt_write_distance_matrix(mc, fdt);
    178 
    179     qemu_fdt_add_subnode(fdt, "/chosen");
    180     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", "/htif");
    181 
    182     if (cmdline && *cmdline) {
    183         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
    184     }
    185 }
    186 
    187 static void spike_board_init(MachineState *machine)
    188 {
    189     const MemMapEntry *memmap = spike_memmap;
    190     SpikeState *s = SPIKE_MACHINE(machine);
    191     MemoryRegion *system_memory = get_system_memory();
    192     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
    193     target_ulong firmware_end_addr, kernel_start_addr;
    194     uint32_t fdt_load_addr;
    195     uint64_t kernel_entry;
    196     char *soc_name;
    197     int i, base_hartid, hart_count;
    198 
    199     /* Check socket count limit */
    200     if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
    201         error_report("number of sockets/nodes should be less than %d",
    202             SPIKE_SOCKETS_MAX);
    203         exit(1);
    204     }
    205 
    206     /* Initialize sockets */
    207     for (i = 0; i < riscv_socket_count(machine); i++) {
    208         if (!riscv_socket_check_hartids(machine, i)) {
    209             error_report("discontinuous hartids in socket%d", i);
    210             exit(1);
    211         }
    212 
    213         base_hartid = riscv_socket_first_hartid(machine, i);
    214         if (base_hartid < 0) {
    215             error_report("can't find hartid base for socket%d", i);
    216             exit(1);
    217         }
    218 
    219         hart_count = riscv_socket_hart_count(machine, i);
    220         if (hart_count < 0) {
    221             error_report("can't find hart count for socket%d", i);
    222             exit(1);
    223         }
    224 
    225         soc_name = g_strdup_printf("soc%d", i);
    226         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
    227                                 TYPE_RISCV_HART_ARRAY);
    228         g_free(soc_name);
    229         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
    230                                 machine->cpu_type, &error_abort);
    231         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
    232                                 base_hartid, &error_abort);
    233         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
    234                                 hart_count, &error_abort);
    235         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
    236 
    237         /* Core Local Interruptor (timer and IPI) for each socket */
    238         riscv_aclint_swi_create(
    239             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
    240             base_hartid, hart_count, false);
    241         riscv_aclint_mtimer_create(
    242             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size +
    243                 RISCV_ACLINT_SWI_SIZE,
    244             RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
    245             RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
    246             RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, false);
    247     }
    248 
    249     /* register system main memory (actual RAM) */
    250     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
    251         machine->ram);
    252 
    253     /* boot rom */
    254     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
    255                            memmap[SPIKE_MROM].size, &error_fatal);
    256     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
    257                                 mask_rom);
    258 
    259     /*
    260      * Not like other RISC-V machines that use plain binary bios images,
    261      * keeping ELF files here was intentional because BIN files don't work
    262      * for the Spike machine as HTIF emulation depends on ELF parsing.
    263      */
    264     if (riscv_is_32bit(&s->soc[0])) {
    265         firmware_end_addr = riscv_find_and_load_firmware(machine,
    266                                     RISCV32_BIOS_BIN, memmap[SPIKE_DRAM].base,
    267                                     htif_symbol_callback);
    268     } else {
    269         firmware_end_addr = riscv_find_and_load_firmware(machine,
    270                                     RISCV64_BIOS_BIN, memmap[SPIKE_DRAM].base,
    271                                     htif_symbol_callback);
    272     }
    273 
    274     /* Load kernel */
    275     if (machine->kernel_filename) {
    276         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
    277                                                          firmware_end_addr);
    278 
    279         kernel_entry = riscv_load_kernel(machine->kernel_filename,
    280                                          kernel_start_addr,
    281                                          htif_symbol_callback);
    282     } else {
    283        /*
    284         * If dynamic firmware is used, it doesn't know where is the next mode
    285         * if kernel argument is not set.
    286         */
    287         kernel_entry = 0;
    288     }
    289 
    290     /* Create device tree */
    291     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
    292                riscv_is_32bit(&s->soc[0]));
    293 
    294     /* Load initrd */
    295     if (machine->kernel_filename && machine->initrd_filename) {
    296         hwaddr start;
    297         hwaddr end = riscv_load_initrd(machine->initrd_filename,
    298                                        machine->ram_size, kernel_entry,
    299                                        &start);
    300         qemu_fdt_setprop_cell(s->fdt, "/chosen",
    301                               "linux,initrd-start", start);
    302         qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
    303                               end);
    304     }
    305 
    306     /* Compute the fdt load address in dram */
    307     fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
    308                                    machine->ram_size, s->fdt);
    309 
    310     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
    311     machine->fdt = s->fdt;
    312 
    313     /* load the reset vector */
    314     riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
    315                               memmap[SPIKE_MROM].base,
    316                               memmap[SPIKE_MROM].size, kernel_entry,
    317                               fdt_load_addr);
    318 
    319     /* initialize HTIF using symbols found in load_kernel */
    320     htif_mm_init(system_memory, mask_rom,
    321                  &s->soc[0].harts[0].env, serial_hd(0),
    322                  memmap[SPIKE_HTIF].base);
    323 }
    324 
    325 static void spike_machine_instance_init(Object *obj)
    326 {
    327 }
    328 
    329 static void spike_machine_class_init(ObjectClass *oc, void *data)
    330 {
    331     MachineClass *mc = MACHINE_CLASS(oc);
    332 
    333     mc->desc = "RISC-V Spike board";
    334     mc->init = spike_board_init;
    335     mc->max_cpus = SPIKE_CPUS_MAX;
    336     mc->is_default = true;
    337     mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
    338     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
    339     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
    340     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
    341     mc->numa_mem_supported = true;
    342     mc->default_ram_id = "riscv.spike.ram";
    343 }
    344 
    345 static const TypeInfo spike_machine_typeinfo = {
    346     .name       = MACHINE_TYPE_NAME("spike"),
    347     .parent     = TYPE_MACHINE,
    348     .class_init = spike_machine_class_init,
    349     .instance_init = spike_machine_instance_init,
    350     .instance_size = sizeof(SpikeState),
    351 };
    352 
    353 static void spike_machine_init_register_types(void)
    354 {
    355     type_register_static(&spike_machine_typeinfo);
    356 }
    357 
    358 type_init(spike_machine_init_register_types)