qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

microchip_pfsoc.c (29231B)


      1 /*
      2  * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
      3  *
      4  * Copyright (c) 2020 Wind River Systems, Inc.
      5  *
      6  * Author:
      7  *   Bin Meng <bin.meng@windriver.com>
      8  *
      9  * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
     10  *
     11  * 0) CLINT (Core Level Interruptor)
     12  * 1) PLIC (Platform Level Interrupt Controller)
     13  * 2) eNVM (Embedded Non-Volatile Memory)
     14  * 3) MMUARTs (Multi-Mode UART)
     15  * 4) Cadence eMMC/SDHC controller and an SD card connected to it
     16  * 5) SiFive Platform DMA (Direct Memory Access Controller)
     17  * 6) GEM (Gigabit Ethernet MAC Controller)
     18  * 7) DMC (DDR Memory Controller)
     19  * 8) IOSCB modules
     20  *
     21  * This board currently generates devicetree dynamically that indicates at least
     22  * two harts and up to five harts.
     23  *
     24  * This program is free software; you can redistribute it and/or modify it
     25  * under the terms and conditions of the GNU General Public License,
     26  * version 2 or later, as published by the Free Software Foundation.
     27  *
     28  * This program is distributed in the hope it will be useful, but WITHOUT
     29  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     30  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     31  * more details.
     32  *
     33  * You should have received a copy of the GNU General Public License along with
     34  * this program.  If not, see <http://www.gnu.org/licenses/>.
     35  */
     36 
     37 #include "qemu/osdep.h"
     38 #include "qemu/error-report.h"
     39 #include "qemu/units.h"
     40 #include "qemu/cutils.h"
     41 #include "qapi/error.h"
     42 #include "hw/boards.h"
     43 #include "hw/loader.h"
     44 #include "hw/sysbus.h"
     45 #include "chardev/char.h"
     46 #include "hw/cpu/cluster.h"
     47 #include "target/riscv/cpu.h"
     48 #include "hw/misc/unimp.h"
     49 #include "hw/riscv/boot.h"
     50 #include "hw/riscv/riscv_hart.h"
     51 #include "hw/riscv/microchip_pfsoc.h"
     52 #include "hw/intc/riscv_aclint.h"
     53 #include "hw/intc/sifive_plic.h"
     54 #include "sysemu/device_tree.h"
     55 #include "sysemu/sysemu.h"
     56 
     57 /*
     58  * The BIOS image used by this machine is called Hart Software Services (HSS).
     59  * See https://github.com/polarfire-soc/hart-software-services
     60  */
     61 #define BIOS_FILENAME   "hss.bin"
     62 #define RESET_VECTOR    0x20220000
     63 
     64 /* CLINT timebase frequency */
     65 #define CLINT_TIMEBASE_FREQ 1000000
     66 
     67 /* GEM version */
     68 #define GEM_REVISION    0x0107010c
     69 
     70 /*
     71  * The complete description of the whole PolarFire SoC memory map is scattered
     72  * in different documents. There are several places to look at for memory maps:
     73  *
     74  * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
     75  *   Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
     76  *   https://www.microsemi.com/document-portal/doc_download/
     77  *   1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
     78  *   describes the whole picture of the PolarFire SoC memory map.
     79  *
     80  * 2 A zip file for PolarFire soC memory map, which can be downloaded from
     81  *   https://www.microsemi.com/document-portal/doc_download/
     82  *   1244581-polarfire-soc-register-map, contains the following 2 major parts:
     83  *   - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
     84  *     describes the complete integrated peripherals memory map
     85  *   - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
     86  *     describes the complete IOSCB modules memory maps
     87  */
     88 static const MemMapEntry microchip_pfsoc_memmap[] = {
     89     [MICROCHIP_PFSOC_RSVD0] =           {        0x0,      0x100 },
     90     [MICROCHIP_PFSOC_DEBUG] =           {      0x100,      0xf00 },
     91     [MICROCHIP_PFSOC_E51_DTIM] =        {  0x1000000,     0x2000 },
     92     [MICROCHIP_PFSOC_BUSERR_UNIT0] =    {  0x1700000,     0x1000 },
     93     [MICROCHIP_PFSOC_BUSERR_UNIT1] =    {  0x1701000,     0x1000 },
     94     [MICROCHIP_PFSOC_BUSERR_UNIT2] =    {  0x1702000,     0x1000 },
     95     [MICROCHIP_PFSOC_BUSERR_UNIT3] =    {  0x1703000,     0x1000 },
     96     [MICROCHIP_PFSOC_BUSERR_UNIT4] =    {  0x1704000,     0x1000 },
     97     [MICROCHIP_PFSOC_CLINT] =           {  0x2000000,    0x10000 },
     98     [MICROCHIP_PFSOC_L2CC] =            {  0x2010000,     0x1000 },
     99     [MICROCHIP_PFSOC_DMA] =             {  0x3000000,   0x100000 },
    100     [MICROCHIP_PFSOC_L2LIM] =           {  0x8000000,  0x2000000 },
    101     [MICROCHIP_PFSOC_PLIC] =            {  0xc000000,  0x4000000 },
    102     [MICROCHIP_PFSOC_MMUART0] =         { 0x20000000,     0x1000 },
    103     [MICROCHIP_PFSOC_WDOG0] =           { 0x20001000,     0x1000 },
    104     [MICROCHIP_PFSOC_SYSREG] =          { 0x20002000,     0x2000 },
    105     [MICROCHIP_PFSOC_AXISW] =           { 0x20004000,     0x1000 },
    106     [MICROCHIP_PFSOC_MPUCFG] =          { 0x20005000,     0x1000 },
    107     [MICROCHIP_PFSOC_FMETER] =          { 0x20006000,     0x1000 },
    108     [MICROCHIP_PFSOC_DDR_SGMII_PHY] =   { 0x20007000,     0x1000 },
    109     [MICROCHIP_PFSOC_EMMC_SD] =         { 0x20008000,     0x1000 },
    110     [MICROCHIP_PFSOC_DDR_CFG] =         { 0x20080000,    0x40000 },
    111     [MICROCHIP_PFSOC_MMUART1] =         { 0x20100000,     0x1000 },
    112     [MICROCHIP_PFSOC_MMUART2] =         { 0x20102000,     0x1000 },
    113     [MICROCHIP_PFSOC_MMUART3] =         { 0x20104000,     0x1000 },
    114     [MICROCHIP_PFSOC_MMUART4] =         { 0x20106000,     0x1000 },
    115     [MICROCHIP_PFSOC_WDOG1] =           { 0x20101000,     0x1000 },
    116     [MICROCHIP_PFSOC_WDOG2] =           { 0x20103000,     0x1000 },
    117     [MICROCHIP_PFSOC_WDOG3] =           { 0x20105000,     0x1000 },
    118     [MICROCHIP_PFSOC_WDOG4] =           { 0x20106000,     0x1000 },
    119     [MICROCHIP_PFSOC_SPI0] =            { 0x20108000,     0x1000 },
    120     [MICROCHIP_PFSOC_SPI1] =            { 0x20109000,     0x1000 },
    121     [MICROCHIP_PFSOC_I2C0] =            { 0x2010a000,     0x1000 },
    122     [MICROCHIP_PFSOC_I2C1] =            { 0x2010b000,     0x1000 },
    123     [MICROCHIP_PFSOC_CAN0] =            { 0x2010c000,     0x1000 },
    124     [MICROCHIP_PFSOC_CAN1] =            { 0x2010d000,     0x1000 },
    125     [MICROCHIP_PFSOC_GEM0] =            { 0x20110000,     0x2000 },
    126     [MICROCHIP_PFSOC_GEM1] =            { 0x20112000,     0x2000 },
    127     [MICROCHIP_PFSOC_GPIO0] =           { 0x20120000,     0x1000 },
    128     [MICROCHIP_PFSOC_GPIO1] =           { 0x20121000,     0x1000 },
    129     [MICROCHIP_PFSOC_GPIO2] =           { 0x20122000,     0x1000 },
    130     [MICROCHIP_PFSOC_RTC] =             { 0x20124000,     0x1000 },
    131     [MICROCHIP_PFSOC_ENVM_CFG] =        { 0x20200000,     0x1000 },
    132     [MICROCHIP_PFSOC_ENVM_DATA] =       { 0x20220000,    0x20000 },
    133     [MICROCHIP_PFSOC_USB] =             { 0x20201000,     0x1000 },
    134     [MICROCHIP_PFSOC_QSPI_XIP] =        { 0x21000000,  0x1000000 },
    135     [MICROCHIP_PFSOC_IOSCB] =           { 0x30000000, 0x10000000 },
    136     [MICROCHIP_PFSOC_FABRIC_FIC3] =     { 0x40000000, 0x20000000 },
    137     [MICROCHIP_PFSOC_DRAM_LO] =         { 0x80000000, 0x40000000 },
    138     [MICROCHIP_PFSOC_DRAM_LO_ALIAS] =   { 0xc0000000, 0x40000000 },
    139     [MICROCHIP_PFSOC_DRAM_HI] =       { 0x1000000000,        0x0 },
    140     [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000,        0x0 },
    141 };
    142 
    143 static void microchip_pfsoc_soc_instance_init(Object *obj)
    144 {
    145     MachineState *ms = MACHINE(qdev_get_machine());
    146     MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
    147 
    148     object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
    149     qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
    150 
    151     object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
    152                             TYPE_RISCV_HART_ARRAY);
    153     qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
    154     qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
    155     qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
    156                          TYPE_RISCV_CPU_SIFIVE_E51);
    157     qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
    158 
    159     object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
    160     qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
    161 
    162     object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
    163                             TYPE_RISCV_HART_ARRAY);
    164     qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
    165     qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
    166     qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
    167                          TYPE_RISCV_CPU_SIFIVE_U54);
    168     qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
    169 
    170     object_initialize_child(obj, "dma-controller", &s->dma,
    171                             TYPE_SIFIVE_PDMA);
    172 
    173     object_initialize_child(obj, "sysreg", &s->sysreg,
    174                             TYPE_MCHP_PFSOC_SYSREG);
    175 
    176     object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
    177                             TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
    178     object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
    179                             TYPE_MCHP_PFSOC_DDR_CFG);
    180 
    181     object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
    182     object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
    183 
    184     object_initialize_child(obj, "sd-controller", &s->sdhci,
    185                             TYPE_CADENCE_SDHCI);
    186 
    187     object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
    188 }
    189 
    190 static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
    191 {
    192     MachineState *ms = MACHINE(qdev_get_machine());
    193     MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
    194     const MemMapEntry *memmap = microchip_pfsoc_memmap;
    195     MemoryRegion *system_memory = get_system_memory();
    196     MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
    197     MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
    198     MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
    199     MemoryRegion *envm_data = g_new(MemoryRegion, 1);
    200     MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1);
    201     char *plic_hart_config;
    202     NICInfo *nd;
    203     int i;
    204 
    205     sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
    206     sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
    207     /*
    208      * The cluster must be realized after the RISC-V hart array container,
    209      * as the container's CPU object is only created on realize, and the
    210      * CPU must exist and have been parented into the cluster before the
    211      * cluster is realized.
    212      */
    213     qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
    214     qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
    215 
    216     /* Reserved Memory at address 0 */
    217     memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
    218                            memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
    219     memory_region_add_subregion(system_memory,
    220                                 memmap[MICROCHIP_PFSOC_RSVD0].base,
    221                                 rsvd0_mem);
    222 
    223     /* E51 DTIM */
    224     memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
    225                            memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
    226     memory_region_add_subregion(system_memory,
    227                                 memmap[MICROCHIP_PFSOC_E51_DTIM].base,
    228                                 e51_dtim_mem);
    229 
    230     /* Bus Error Units */
    231     create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
    232         memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
    233         memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
    234     create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
    235         memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
    236         memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
    237     create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
    238         memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
    239         memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
    240     create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
    241         memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
    242         memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
    243     create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
    244         memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
    245         memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
    246 
    247     /* CLINT */
    248     riscv_aclint_swi_create(memmap[MICROCHIP_PFSOC_CLINT].base,
    249         0, ms->smp.cpus, false);
    250     riscv_aclint_mtimer_create(
    251         memmap[MICROCHIP_PFSOC_CLINT].base + RISCV_ACLINT_SWI_SIZE,
    252         RISCV_ACLINT_DEFAULT_MTIMER_SIZE, 0, ms->smp.cpus,
    253         RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
    254         CLINT_TIMEBASE_FREQ, false);
    255 
    256     /* L2 cache controller */
    257     create_unimplemented_device("microchip.pfsoc.l2cc",
    258         memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
    259 
    260     /*
    261      * Add L2-LIM at reset size.
    262      * This should be reduced in size as the L2 Cache Controller WayEnable
    263      * register is incremented. Unfortunately I don't see a nice (or any) way
    264      * to handle reducing or blocking out the L2 LIM while still allowing it
    265      * be re returned to all enabled after a reset. For the time being, just
    266      * leave it enabled all the time. This won't break anything, but will be
    267      * too generous to misbehaving guests.
    268      */
    269     memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
    270                            memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
    271     memory_region_add_subregion(system_memory,
    272                                 memmap[MICROCHIP_PFSOC_L2LIM].base,
    273                                 l2lim_mem);
    274 
    275     /* create PLIC hart topology configuration string */
    276     plic_hart_config = riscv_plic_hart_config_string(ms->smp.cpus);
    277 
    278     /* PLIC */
    279     s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
    280         plic_hart_config, ms->smp.cpus, 0,
    281         MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
    282         MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
    283         MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
    284         MICROCHIP_PFSOC_PLIC_PENDING_BASE,
    285         MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
    286         MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
    287         MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
    288         MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
    289         memmap[MICROCHIP_PFSOC_PLIC].size);
    290     g_free(plic_hart_config);
    291 
    292     /* DMA */
    293     sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
    294     sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
    295                     memmap[MICROCHIP_PFSOC_DMA].base);
    296     for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
    297         sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
    298                            qdev_get_gpio_in(DEVICE(s->plic),
    299                                             MICROCHIP_PFSOC_DMA_IRQ0 + i));
    300     }
    301 
    302     /* SYSREG */
    303     sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
    304     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
    305                     memmap[MICROCHIP_PFSOC_SYSREG].base);
    306 
    307     /* AXISW */
    308     create_unimplemented_device("microchip.pfsoc.axisw",
    309         memmap[MICROCHIP_PFSOC_AXISW].base,
    310         memmap[MICROCHIP_PFSOC_AXISW].size);
    311 
    312     /* MPUCFG */
    313     create_unimplemented_device("microchip.pfsoc.mpucfg",
    314         memmap[MICROCHIP_PFSOC_MPUCFG].base,
    315         memmap[MICROCHIP_PFSOC_MPUCFG].size);
    316 
    317     /* FMETER */
    318     create_unimplemented_device("microchip.pfsoc.fmeter",
    319         memmap[MICROCHIP_PFSOC_FMETER].base,
    320         memmap[MICROCHIP_PFSOC_FMETER].size);
    321 
    322     /* DDR SGMII PHY */
    323     sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
    324     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
    325                     memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
    326 
    327     /* DDR CFG */
    328     sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
    329     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
    330                     memmap[MICROCHIP_PFSOC_DDR_CFG].base);
    331 
    332     /* SDHCI */
    333     sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
    334     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
    335                     memmap[MICROCHIP_PFSOC_EMMC_SD].base);
    336     sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
    337         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
    338 
    339     /* MMUARTs */
    340     s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
    341         memmap[MICROCHIP_PFSOC_MMUART0].base,
    342         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
    343         serial_hd(0));
    344     s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
    345         memmap[MICROCHIP_PFSOC_MMUART1].base,
    346         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
    347         serial_hd(1));
    348     s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
    349         memmap[MICROCHIP_PFSOC_MMUART2].base,
    350         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
    351         serial_hd(2));
    352     s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
    353         memmap[MICROCHIP_PFSOC_MMUART3].base,
    354         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
    355         serial_hd(3));
    356     s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
    357         memmap[MICROCHIP_PFSOC_MMUART4].base,
    358         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
    359         serial_hd(4));
    360 
    361     /* Watchdogs */
    362     create_unimplemented_device("microchip.pfsoc.watchdog0",
    363         memmap[MICROCHIP_PFSOC_WDOG0].base,
    364         memmap[MICROCHIP_PFSOC_WDOG0].size);
    365     create_unimplemented_device("microchip.pfsoc.watchdog1",
    366         memmap[MICROCHIP_PFSOC_WDOG1].base,
    367         memmap[MICROCHIP_PFSOC_WDOG1].size);
    368     create_unimplemented_device("microchip.pfsoc.watchdog2",
    369         memmap[MICROCHIP_PFSOC_WDOG2].base,
    370         memmap[MICROCHIP_PFSOC_WDOG2].size);
    371     create_unimplemented_device("microchip.pfsoc.watchdog3",
    372         memmap[MICROCHIP_PFSOC_WDOG3].base,
    373         memmap[MICROCHIP_PFSOC_WDOG3].size);
    374     create_unimplemented_device("microchip.pfsoc.watchdog4",
    375         memmap[MICROCHIP_PFSOC_WDOG4].base,
    376         memmap[MICROCHIP_PFSOC_WDOG4].size);
    377 
    378     /* SPI */
    379     create_unimplemented_device("microchip.pfsoc.spi0",
    380         memmap[MICROCHIP_PFSOC_SPI0].base,
    381         memmap[MICROCHIP_PFSOC_SPI0].size);
    382     create_unimplemented_device("microchip.pfsoc.spi1",
    383         memmap[MICROCHIP_PFSOC_SPI1].base,
    384         memmap[MICROCHIP_PFSOC_SPI1].size);
    385 
    386     /* I2C */
    387     create_unimplemented_device("microchip.pfsoc.i2c0",
    388         memmap[MICROCHIP_PFSOC_I2C0].base,
    389         memmap[MICROCHIP_PFSOC_I2C0].size);
    390     create_unimplemented_device("microchip.pfsoc.i2c1",
    391         memmap[MICROCHIP_PFSOC_I2C1].base,
    392         memmap[MICROCHIP_PFSOC_I2C1].size);
    393 
    394     /* CAN */
    395     create_unimplemented_device("microchip.pfsoc.can0",
    396         memmap[MICROCHIP_PFSOC_CAN0].base,
    397         memmap[MICROCHIP_PFSOC_CAN0].size);
    398     create_unimplemented_device("microchip.pfsoc.can1",
    399         memmap[MICROCHIP_PFSOC_CAN1].base,
    400         memmap[MICROCHIP_PFSOC_CAN1].size);
    401 
    402     /* USB */
    403     create_unimplemented_device("microchip.pfsoc.usb",
    404         memmap[MICROCHIP_PFSOC_USB].base,
    405         memmap[MICROCHIP_PFSOC_USB].size);
    406 
    407     /* GEMs */
    408 
    409     nd = &nd_table[0];
    410     if (nd->used) {
    411         qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
    412         qdev_set_nic_properties(DEVICE(&s->gem0), nd);
    413     }
    414     nd = &nd_table[1];
    415     if (nd->used) {
    416         qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
    417         qdev_set_nic_properties(DEVICE(&s->gem1), nd);
    418     }
    419 
    420     object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
    421     object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
    422     sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
    423     sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
    424                     memmap[MICROCHIP_PFSOC_GEM0].base);
    425     sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
    426         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
    427 
    428     object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
    429     object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
    430     sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
    431     sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
    432                     memmap[MICROCHIP_PFSOC_GEM1].base);
    433     sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
    434         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
    435 
    436     /* GPIOs */
    437     create_unimplemented_device("microchip.pfsoc.gpio0",
    438         memmap[MICROCHIP_PFSOC_GPIO0].base,
    439         memmap[MICROCHIP_PFSOC_GPIO0].size);
    440     create_unimplemented_device("microchip.pfsoc.gpio1",
    441         memmap[MICROCHIP_PFSOC_GPIO1].base,
    442         memmap[MICROCHIP_PFSOC_GPIO1].size);
    443     create_unimplemented_device("microchip.pfsoc.gpio2",
    444         memmap[MICROCHIP_PFSOC_GPIO2].base,
    445         memmap[MICROCHIP_PFSOC_GPIO2].size);
    446 
    447     /* eNVM */
    448     memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
    449                            memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
    450                            &error_fatal);
    451     memory_region_add_subregion(system_memory,
    452                                 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
    453                                 envm_data);
    454 
    455     /* IOSCB */
    456     sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
    457     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
    458                     memmap[MICROCHIP_PFSOC_IOSCB].base);
    459 
    460     /* FPGA Fabric */
    461     create_unimplemented_device("microchip.pfsoc.fabricfic3",
    462         memmap[MICROCHIP_PFSOC_FABRIC_FIC3].base,
    463         memmap[MICROCHIP_PFSOC_FABRIC_FIC3].size);
    464 
    465     /* QSPI Flash */
    466     memory_region_init_rom(qspi_xip_mem, OBJECT(dev),
    467                            "microchip.pfsoc.qspi_xip",
    468                            memmap[MICROCHIP_PFSOC_QSPI_XIP].size,
    469                            &error_fatal);
    470     memory_region_add_subregion(system_memory,
    471                                 memmap[MICROCHIP_PFSOC_QSPI_XIP].base,
    472                                 qspi_xip_mem);
    473 }
    474 
    475 static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
    476 {
    477     DeviceClass *dc = DEVICE_CLASS(oc);
    478 
    479     dc->realize = microchip_pfsoc_soc_realize;
    480     /* Reason: Uses serial_hds in realize function, thus can't be used twice */
    481     dc->user_creatable = false;
    482 }
    483 
    484 static const TypeInfo microchip_pfsoc_soc_type_info = {
    485     .name = TYPE_MICROCHIP_PFSOC,
    486     .parent = TYPE_DEVICE,
    487     .instance_size = sizeof(MicrochipPFSoCState),
    488     .instance_init = microchip_pfsoc_soc_instance_init,
    489     .class_init = microchip_pfsoc_soc_class_init,
    490 };
    491 
    492 static void microchip_pfsoc_soc_register_types(void)
    493 {
    494     type_register_static(&microchip_pfsoc_soc_type_info);
    495 }
    496 
    497 type_init(microchip_pfsoc_soc_register_types)
    498 
    499 static void microchip_icicle_kit_machine_init(MachineState *machine)
    500 {
    501     MachineClass *mc = MACHINE_GET_CLASS(machine);
    502     const MemMapEntry *memmap = microchip_pfsoc_memmap;
    503     MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
    504     MemoryRegion *system_memory = get_system_memory();
    505     MemoryRegion *mem_low = g_new(MemoryRegion, 1);
    506     MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
    507     MemoryRegion *mem_high = g_new(MemoryRegion, 1);
    508     MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
    509     uint64_t mem_low_size, mem_high_size;
    510     hwaddr firmware_load_addr;
    511     const char *firmware_name;
    512     bool kernel_as_payload = false;
    513     target_ulong firmware_end_addr, kernel_start_addr;
    514     uint64_t kernel_entry;
    515     uint32_t fdt_load_addr;
    516     DriveInfo *dinfo = drive_get(IF_SD, 0, 0);
    517 
    518     /* Sanity check on RAM size */
    519     if (machine->ram_size < mc->default_ram_size) {
    520         char *sz = size_to_str(mc->default_ram_size);
    521         error_report("Invalid RAM size, should be bigger than %s", sz);
    522         g_free(sz);
    523         exit(EXIT_FAILURE);
    524     }
    525 
    526     /* Initialize SoC */
    527     object_initialize_child(OBJECT(machine), "soc", &s->soc,
    528                             TYPE_MICROCHIP_PFSOC);
    529     qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
    530 
    531     /* Split RAM into low and high regions using aliases to machine->ram */
    532     mem_low_size = memmap[MICROCHIP_PFSOC_DRAM_LO].size;
    533     mem_high_size = machine->ram_size - mem_low_size;
    534     memory_region_init_alias(mem_low, NULL,
    535                              "microchip.icicle.kit.ram_low", machine->ram,
    536                              0, mem_low_size);
    537     memory_region_init_alias(mem_high, NULL,
    538                              "microchip.icicle.kit.ram_high", machine->ram,
    539                              mem_low_size, mem_high_size);
    540 
    541     /* Register RAM */
    542     memory_region_add_subregion(system_memory,
    543                                 memmap[MICROCHIP_PFSOC_DRAM_LO].base,
    544                                 mem_low);
    545     memory_region_add_subregion(system_memory,
    546                                 memmap[MICROCHIP_PFSOC_DRAM_HI].base,
    547                                 mem_high);
    548 
    549     /* Create aliases for the low and high RAM regions */
    550     memory_region_init_alias(mem_low_alias, NULL,
    551                              "microchip.icicle.kit.ram_low.alias",
    552                              mem_low, 0, mem_low_size);
    553     memory_region_add_subregion(system_memory,
    554                                 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
    555                                 mem_low_alias);
    556     memory_region_init_alias(mem_high_alias, NULL,
    557                              "microchip.icicle.kit.ram_high.alias",
    558                              mem_high, 0, mem_high_size);
    559     memory_region_add_subregion(system_memory,
    560                                 memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
    561                                 mem_high_alias);
    562 
    563     /* Attach an SD card */
    564     if (dinfo) {
    565         CadenceSDHCIState *sdhci = &(s->soc.sdhci);
    566         DeviceState *card = qdev_new(TYPE_SD_CARD);
    567 
    568         qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
    569                                 &error_fatal);
    570         qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
    571     }
    572 
    573     /*
    574      * We follow the following table to select which payload we execute.
    575      *
    576      *  -bios |    -kernel | payload
    577      * -------+------------+--------
    578      *      N |          N | HSS
    579      *      Y | don't care | HSS
    580      *      N |          Y | kernel
    581      *
    582      * This ensures backwards compatibility with how we used to expose -bios
    583      * to users but allows them to run through direct kernel booting as well.
    584      *
    585      * When -kernel is used for direct boot, -dtb must be present to provide
    586      * a valid device tree for the board, as we don't generate device tree.
    587      */
    588 
    589     if (machine->kernel_filename && machine->dtb) {
    590         int fdt_size;
    591         machine->fdt = load_device_tree(machine->dtb, &fdt_size);
    592         if (!machine->fdt) {
    593             error_report("load_device_tree() failed");
    594             exit(1);
    595         }
    596 
    597         firmware_name = RISCV64_BIOS_BIN;
    598         firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
    599         kernel_as_payload = true;
    600     }
    601 
    602     if (!kernel_as_payload) {
    603         firmware_name = BIOS_FILENAME;
    604         firmware_load_addr = RESET_VECTOR;
    605     }
    606 
    607     /* Load the firmware */
    608     firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
    609                                                      firmware_load_addr, NULL);
    610 
    611     if (kernel_as_payload) {
    612         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus,
    613                                                          firmware_end_addr);
    614 
    615         kernel_entry = riscv_load_kernel(machine->kernel_filename,
    616                                          kernel_start_addr, NULL);
    617 
    618         if (machine->initrd_filename) {
    619             hwaddr start;
    620             hwaddr end = riscv_load_initrd(machine->initrd_filename,
    621                                            machine->ram_size, kernel_entry,
    622                                            &start);
    623             qemu_fdt_setprop_cell(machine->fdt, "/chosen",
    624                                   "linux,initrd-start", start);
    625             qemu_fdt_setprop_cell(machine->fdt, "/chosen",
    626                                   "linux,initrd-end", end);
    627         }
    628 
    629         if (machine->kernel_cmdline && *machine->kernel_cmdline) {
    630             qemu_fdt_setprop_string(machine->fdt, "/chosen",
    631                                     "bootargs", machine->kernel_cmdline);
    632         }
    633 
    634         /* Compute the fdt load address in dram */
    635         fdt_load_addr = riscv_load_fdt(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
    636                                        machine->ram_size, machine->fdt);
    637         /* Load the reset vector */
    638         riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
    639                                   memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
    640                                   memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
    641                                   kernel_entry, fdt_load_addr);
    642     }
    643 }
    644 
    645 static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
    646 {
    647     MachineClass *mc = MACHINE_CLASS(oc);
    648 
    649     mc->desc = "Microchip PolarFire SoC Icicle Kit";
    650     mc->init = microchip_icicle_kit_machine_init;
    651     mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
    652                    MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
    653     mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
    654     mc->default_cpus = mc->min_cpus;
    655     mc->default_ram_id = "microchip.icicle.kit.ram";
    656 
    657     /*
    658      * Map 513 MiB high memory, the mimimum required high memory size, because
    659      * HSS will do memory test against the high memory address range regardless
    660      * of physical memory installed.
    661      *
    662      * See memory_tests() in mss_ddr.c in the HSS source code.
    663      */
    664     mc->default_ram_size = 1537 * MiB;
    665 }
    666 
    667 static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
    668     .name       = MACHINE_TYPE_NAME("microchip-icicle-kit"),
    669     .parent     = TYPE_MACHINE,
    670     .class_init = microchip_icicle_kit_machine_class_init,
    671     .instance_size = sizeof(MicrochipIcicleKitState),
    672 };
    673 
    674 static void microchip_icicle_kit_machine_init_register_types(void)
    675 {
    676     type_register_static(&microchip_icicle_kit_machine_typeinfo);
    677 }
    678 
    679 type_init(microchip_icicle_kit_machine_init_register_types)