qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

boot.c (13098B)


      1 /*
      2  * QEMU RISC-V Boot Helper
      3  *
      4  * Copyright (c) 2017 SiFive, Inc.
      5  * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
      6  *
      7  * This program is free software; you can redistribute it and/or modify it
      8  * under the terms and conditions of the GNU General Public License,
      9  * version 2 or later, as published by the Free Software Foundation.
     10  *
     11  * This program is distributed in the hope it will be useful, but WITHOUT
     12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     14  * more details.
     15  *
     16  * You should have received a copy of the GNU General Public License along with
     17  * this program.  If not, see <http://www.gnu.org/licenses/>.
     18  */
     19 
     20 #include "qemu/osdep.h"
     21 #include "qemu/datadir.h"
     22 #include "qemu/units.h"
     23 #include "qemu/error-report.h"
     24 #include "exec/cpu-defs.h"
     25 #include "hw/boards.h"
     26 #include "hw/loader.h"
     27 #include "hw/riscv/boot.h"
     28 #include "hw/riscv/boot_opensbi.h"
     29 #include "elf.h"
     30 #include "sysemu/device_tree.h"
     31 #include "sysemu/qtest.h"
     32 #include "sysemu/kvm.h"
     33 #include "sysemu/reset.h"
     34 
     35 #include <libfdt.h>
     36 
     37 bool riscv_is_32bit(RISCVHartArrayState *harts)
     38 {
     39     return harts->harts[0].env.misa_mxl_max == MXL_RV32;
     40 }
     41 
     42 /*
     43  * Return the per-socket PLIC hart topology configuration string
     44  * (caller must free with g_free())
     45  */
     46 char *riscv_plic_hart_config_string(int hart_count)
     47 {
     48     g_autofree const char **vals = g_new(const char *, hart_count + 1);
     49     int i;
     50 
     51     for (i = 0; i < hart_count; i++) {
     52         CPUState *cs = qemu_get_cpu(i);
     53         CPURISCVState *env = &RISCV_CPU(cs)->env;
     54 
     55         if (kvm_enabled()) {
     56             vals[i] = "S";
     57         } else if (riscv_has_ext(env, RVS)) {
     58             vals[i] = "MS";
     59         } else {
     60             vals[i] = "M";
     61         }
     62     }
     63     vals[i] = NULL;
     64 
     65     /* g_strjoinv() obliges us to cast away const here */
     66     return g_strjoinv(",", (char **)vals);
     67 }
     68 
     69 target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
     70                                           target_ulong firmware_end_addr) {
     71     if (riscv_is_32bit(harts)) {
     72         return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
     73     } else {
     74         return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
     75     }
     76 }
     77 
     78 target_ulong riscv_find_and_load_firmware(MachineState *machine,
     79                                           const char *default_machine_firmware,
     80                                           hwaddr firmware_load_addr,
     81                                           symbol_fn_t sym_cb)
     82 {
     83     char *firmware_filename = NULL;
     84     target_ulong firmware_end_addr = firmware_load_addr;
     85 
     86     if ((!machine->firmware) || (!strcmp(machine->firmware, "default"))) {
     87         /*
     88          * The user didn't specify -bios, or has specified "-bios default".
     89          * That means we are going to load the OpenSBI binary included in
     90          * the QEMU source.
     91          */
     92         firmware_filename = riscv_find_firmware(default_machine_firmware);
     93     } else if (strcmp(machine->firmware, "none")) {
     94         firmware_filename = riscv_find_firmware(machine->firmware);
     95     }
     96 
     97     if (firmware_filename) {
     98         /* If not "none" load the firmware */
     99         firmware_end_addr = riscv_load_firmware(firmware_filename,
    100                                                 firmware_load_addr, sym_cb);
    101         g_free(firmware_filename);
    102     }
    103 
    104     return firmware_end_addr;
    105 }
    106 
    107 char *riscv_find_firmware(const char *firmware_filename)
    108 {
    109     char *filename;
    110 
    111     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware_filename);
    112     if (filename == NULL) {
    113         if (!qtest_enabled()) {
    114             /*
    115              * We only ship OpenSBI binary bios images in the QEMU source.
    116              * For machines that use images other than the default bios,
    117              * running QEMU test will complain hence let's suppress the error
    118              * report for QEMU testing.
    119              */
    120             error_report("Unable to load the RISC-V firmware \"%s\"",
    121                          firmware_filename);
    122             exit(1);
    123         }
    124     }
    125 
    126     return filename;
    127 }
    128 
    129 target_ulong riscv_load_firmware(const char *firmware_filename,
    130                                  hwaddr firmware_load_addr,
    131                                  symbol_fn_t sym_cb)
    132 {
    133     uint64_t firmware_entry, firmware_end;
    134     ssize_t firmware_size;
    135 
    136     if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
    137                          &firmware_entry, NULL, &firmware_end, NULL,
    138                          0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
    139         return firmware_end;
    140     }
    141 
    142     firmware_size = load_image_targphys_as(firmware_filename,
    143                                            firmware_load_addr,
    144                                            current_machine->ram_size, NULL);
    145 
    146     if (firmware_size > 0) {
    147         return firmware_load_addr + firmware_size;
    148     }
    149 
    150     error_report("could not load firmware '%s'", firmware_filename);
    151     exit(1);
    152 }
    153 
    154 target_ulong riscv_load_kernel(const char *kernel_filename,
    155                                target_ulong kernel_start_addr,
    156                                symbol_fn_t sym_cb)
    157 {
    158     uint64_t kernel_load_base, kernel_entry;
    159 
    160     /*
    161      * NB: Use low address not ELF entry point to ensure that the fw_dynamic
    162      * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
    163      * behaviour, as well as fw_dynamic with a raw binary, all of which jump to
    164      * the (expected) load address load address. This allows kernels to have
    165      * separate SBI and ELF entry points (used by FreeBSD, for example).
    166      */
    167     if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
    168                          NULL, &kernel_load_base, NULL, NULL, 0,
    169                          EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
    170         return kernel_load_base;
    171     }
    172 
    173     if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
    174                        NULL, NULL, NULL) > 0) {
    175         return kernel_entry;
    176     }
    177 
    178     if (load_image_targphys_as(kernel_filename, kernel_start_addr,
    179                                current_machine->ram_size, NULL) > 0) {
    180         return kernel_start_addr;
    181     }
    182 
    183     error_report("could not load kernel '%s'", kernel_filename);
    184     exit(1);
    185 }
    186 
    187 hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
    188                          uint64_t kernel_entry, hwaddr *start)
    189 {
    190     ssize_t size;
    191 
    192     /*
    193      * We want to put the initrd far enough into RAM that when the
    194      * kernel is uncompressed it will not clobber the initrd. However
    195      * on boards without much RAM we must ensure that we still leave
    196      * enough room for a decent sized initrd, and on boards with large
    197      * amounts of RAM we must avoid the initrd being so far up in RAM
    198      * that it is outside lowmem and inaccessible to the kernel.
    199      * So for boards with less  than 256MB of RAM we put the initrd
    200      * halfway into RAM, and for boards with 256MB of RAM or more we put
    201      * the initrd at 128MB.
    202      */
    203     *start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
    204 
    205     size = load_ramdisk(filename, *start, mem_size - *start);
    206     if (size == -1) {
    207         size = load_image_targphys(filename, *start, mem_size - *start);
    208         if (size == -1) {
    209             error_report("could not load ramdisk '%s'", filename);
    210             exit(1);
    211         }
    212     }
    213 
    214     return *start + size;
    215 }
    216 
    217 uint64_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt)
    218 {
    219     uint64_t temp, fdt_addr;
    220     hwaddr dram_end = dram_base + mem_size;
    221     int ret, fdtsize = fdt_totalsize(fdt);
    222 
    223     if (fdtsize <= 0) {
    224         error_report("invalid device-tree");
    225         exit(1);
    226     }
    227 
    228     /*
    229      * We should put fdt as far as possible to avoid kernel/initrd overwriting
    230      * its content. But it should be addressable by 32 bit system as well.
    231      * Thus, put it at an 2MB aligned address that less than fdt size from the
    232      * end of dram or 3GB whichever is lesser.
    233      */
    234     temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end;
    235     fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
    236 
    237     ret = fdt_pack(fdt);
    238     /* Should only fail if we've built a corrupted tree */
    239     g_assert(ret == 0);
    240     /* copy in the device tree */
    241     qemu_fdt_dumpdtb(fdt, fdtsize);
    242 
    243     rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
    244                           &address_space_memory);
    245     qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
    246                         rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize));
    247 
    248     return fdt_addr;
    249 }
    250 
    251 void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
    252                                   hwaddr rom_size, uint32_t reset_vec_size,
    253                                   uint64_t kernel_entry)
    254 {
    255     struct fw_dynamic_info dinfo;
    256     size_t dinfo_len;
    257 
    258     if (sizeof(dinfo.magic) == 4) {
    259         dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
    260         dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
    261         dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
    262         dinfo.next_addr = cpu_to_le32(kernel_entry);
    263     } else {
    264         dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
    265         dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
    266         dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
    267         dinfo.next_addr = cpu_to_le64(kernel_entry);
    268     }
    269     dinfo.options = 0;
    270     dinfo.boot_hart = 0;
    271     dinfo_len = sizeof(dinfo);
    272 
    273     /**
    274      * copy the dynamic firmware info. This information is specific to
    275      * OpenSBI but doesn't break any other firmware as long as they don't
    276      * expect any certain value in "a2" register.
    277      */
    278     if (dinfo_len > (rom_size - reset_vec_size)) {
    279         error_report("not enough space to store dynamic firmware info");
    280         exit(1);
    281     }
    282 
    283     rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
    284                            rom_base + reset_vec_size,
    285                            &address_space_memory);
    286 }
    287 
    288 void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
    289                                hwaddr start_addr,
    290                                hwaddr rom_base, hwaddr rom_size,
    291                                uint64_t kernel_entry,
    292                                uint64_t fdt_load_addr)
    293 {
    294     int i;
    295     uint32_t start_addr_hi32 = 0x00000000;
    296     uint32_t fdt_load_addr_hi32 = 0x00000000;
    297 
    298     if (!riscv_is_32bit(harts)) {
    299         start_addr_hi32 = start_addr >> 32;
    300         fdt_load_addr_hi32 = fdt_load_addr >> 32;
    301     }
    302     /* reset vector */
    303     uint32_t reset_vec[10] = {
    304         0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(fw_dyn) */
    305         0x02828613,                  /*     addi   a2, t0, %pcrel_lo(1b) */
    306         0xf1402573,                  /*     csrr   a0, mhartid  */
    307         0,
    308         0,
    309         0x00028067,                  /*     jr     t0 */
    310         start_addr,                  /* start: .dword */
    311         start_addr_hi32,
    312         fdt_load_addr,               /* fdt_laddr: .dword */
    313         fdt_load_addr_hi32,
    314                                      /* fw_dyn: */
    315     };
    316     if (riscv_is_32bit(harts)) {
    317         reset_vec[3] = 0x0202a583;   /*     lw     a1, 32(t0) */
    318         reset_vec[4] = 0x0182a283;   /*     lw     t0, 24(t0) */
    319     } else {
    320         reset_vec[3] = 0x0202b583;   /*     ld     a1, 32(t0) */
    321         reset_vec[4] = 0x0182b283;   /*     ld     t0, 24(t0) */
    322     }
    323 
    324     /* copy in the reset vector in little_endian byte order */
    325     for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
    326         reset_vec[i] = cpu_to_le32(reset_vec[i]);
    327     }
    328     rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
    329                           rom_base, &address_space_memory);
    330     riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
    331                                  kernel_entry);
    332 }
    333 
    334 void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr)
    335 {
    336     CPUState *cs;
    337 
    338     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
    339         RISCVCPU *riscv_cpu = RISCV_CPU(cs);
    340         riscv_cpu->env.kernel_addr = kernel_addr;
    341         riscv_cpu->env.fdt_addr = fdt_addr;
    342     }
    343 }
    344 
    345 void riscv_setup_firmware_boot(MachineState *machine)
    346 {
    347     if (machine->kernel_filename) {
    348         FWCfgState *fw_cfg;
    349         fw_cfg = fw_cfg_find();
    350 
    351         assert(fw_cfg);
    352         /*
    353          * Expose the kernel, the command line, and the initrd in fw_cfg.
    354          * We don't process them here at all, it's all left to the
    355          * firmware.
    356          */
    357         load_image_to_fw_cfg(fw_cfg,
    358                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
    359                              machine->kernel_filename,
    360                              true);
    361         load_image_to_fw_cfg(fw_cfg,
    362                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
    363                              machine->initrd_filename, false);
    364 
    365         if (machine->kernel_cmdline) {
    366             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
    367                            strlen(machine->kernel_cmdline) + 1);
    368             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
    369                               machine->kernel_cmdline);
    370         }
    371     }
    372 }