qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

spapr_pci.c (81774B)


      1 /*
      2  * QEMU sPAPR PCI host originated from Uninorth PCI host
      3  *
      4  * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
      5  * Copyright (C) 2011 David Gibson, IBM Corporation.
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a copy
      8  * of this software and associated documentation files (the "Software"), to deal
      9  * in the Software without restriction, including without limitation the rights
     10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     11  * copies of the Software, and to permit persons to whom the Software is
     12  * furnished to do so, subject to the following conditions:
     13  *
     14  * The above copyright notice and this permission notice shall be included in
     15  * all copies or substantial portions of the Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     23  * THE SOFTWARE.
     24  */
     25 
     26 #include "qemu/osdep.h"
     27 #include "qapi/error.h"
     28 #include "hw/irq.h"
     29 #include "hw/sysbus.h"
     30 #include "migration/vmstate.h"
     31 #include "hw/pci/pci.h"
     32 #include "hw/pci/msi.h"
     33 #include "hw/pci/msix.h"
     34 #include "hw/pci/pci_host.h"
     35 #include "hw/ppc/spapr.h"
     36 #include "hw/pci-host/spapr.h"
     37 #include "exec/ram_addr.h"
     38 #include <libfdt.h>
     39 #include "trace.h"
     40 #include "qemu/error-report.h"
     41 #include "qemu/module.h"
     42 #include "qapi/qmp/qerror.h"
     43 #include "hw/ppc/fdt.h"
     44 #include "hw/pci/pci_bridge.h"
     45 #include "hw/pci/pci_bus.h"
     46 #include "hw/pci/pci_ids.h"
     47 #include "hw/ppc/spapr_drc.h"
     48 #include "hw/qdev-properties.h"
     49 #include "sysemu/device_tree.h"
     50 #include "sysemu/kvm.h"
     51 #include "sysemu/hostmem.h"
     52 #include "sysemu/numa.h"
     53 #include "hw/ppc/spapr_numa.h"
     54 #include "qemu/log.h"
     55 
     56 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
     57 #define RTAS_QUERY_FN           0
     58 #define RTAS_CHANGE_FN          1
     59 #define RTAS_RESET_FN           2
     60 #define RTAS_CHANGE_MSI_FN      3
     61 #define RTAS_CHANGE_MSIX_FN     4
     62 
     63 /* Interrupt types to return on RTAS_CHANGE_* */
     64 #define RTAS_TYPE_MSI           1
     65 #define RTAS_TYPE_MSIX          2
     66 
     67 SpaprPhbState *spapr_pci_find_phb(SpaprMachineState *spapr, uint64_t buid)
     68 {
     69     SpaprPhbState *sphb;
     70 
     71     QLIST_FOREACH(sphb, &spapr->phbs, list) {
     72         if (sphb->buid != buid) {
     73             continue;
     74         }
     75         return sphb;
     76     }
     77 
     78     return NULL;
     79 }
     80 
     81 PCIDevice *spapr_pci_find_dev(SpaprMachineState *spapr, uint64_t buid,
     82                               uint32_t config_addr)
     83 {
     84     SpaprPhbState *sphb = spapr_pci_find_phb(spapr, buid);
     85     PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
     86     int bus_num = (config_addr >> 16) & 0xFF;
     87     int devfn = (config_addr >> 8) & 0xFF;
     88 
     89     if (!phb) {
     90         return NULL;
     91     }
     92 
     93     return pci_find_device(phb->bus, bus_num, devfn);
     94 }
     95 
     96 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
     97 {
     98     /* This handles the encoding of extended config space addresses */
     99     return ((arg >> 20) & 0xf00) | (arg & 0xff);
    100 }
    101 
    102 static void finish_read_pci_config(SpaprMachineState *spapr, uint64_t buid,
    103                                    uint32_t addr, uint32_t size,
    104                                    target_ulong rets)
    105 {
    106     PCIDevice *pci_dev;
    107     uint32_t val;
    108 
    109     if ((size != 1) && (size != 2) && (size != 4)) {
    110         /* access must be 1, 2 or 4 bytes */
    111         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
    112         return;
    113     }
    114 
    115     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
    116     addr = rtas_pci_cfgaddr(addr);
    117 
    118     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
    119         /* Access must be to a valid device, within bounds and
    120          * naturally aligned */
    121         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
    122         return;
    123     }
    124 
    125     val = pci_host_config_read_common(pci_dev, addr,
    126                                       pci_config_size(pci_dev), size);
    127 
    128     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
    129     rtas_st(rets, 1, val);
    130 }
    131 
    132 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
    133                                      uint32_t token, uint32_t nargs,
    134                                      target_ulong args,
    135                                      uint32_t nret, target_ulong rets)
    136 {
    137     uint64_t buid;
    138     uint32_t size, addr;
    139 
    140     if ((nargs != 4) || (nret != 2)) {
    141         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
    142         return;
    143     }
    144 
    145     buid = rtas_ldq(args, 1);
    146     size = rtas_ld(args, 3);
    147     addr = rtas_ld(args, 0);
    148 
    149     finish_read_pci_config(spapr, buid, addr, size, rets);
    150 }
    151 
    152 static void rtas_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
    153                                  uint32_t token, uint32_t nargs,
    154                                  target_ulong args,
    155                                  uint32_t nret, target_ulong rets)
    156 {
    157     uint32_t size, addr;
    158 
    159     if ((nargs != 2) || (nret != 2)) {
    160         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
    161         return;
    162     }
    163 
    164     size = rtas_ld(args, 1);
    165     addr = rtas_ld(args, 0);
    166 
    167     finish_read_pci_config(spapr, 0, addr, size, rets);
    168 }
    169 
    170 static void finish_write_pci_config(SpaprMachineState *spapr, uint64_t buid,
    171                                     uint32_t addr, uint32_t size,
    172                                     uint32_t val, target_ulong rets)
    173 {
    174     PCIDevice *pci_dev;
    175 
    176     if ((size != 1) && (size != 2) && (size != 4)) {
    177         /* access must be 1, 2 or 4 bytes */
    178         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
    179         return;
    180     }
    181 
    182     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
    183     addr = rtas_pci_cfgaddr(addr);
    184 
    185     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
    186         /* Access must be to a valid device, within bounds and
    187          * naturally aligned */
    188         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
    189         return;
    190     }
    191 
    192     pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
    193                                  val, size);
    194 
    195     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
    196 }
    197 
    198 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
    199                                       uint32_t token, uint32_t nargs,
    200                                       target_ulong args,
    201                                       uint32_t nret, target_ulong rets)
    202 {
    203     uint64_t buid;
    204     uint32_t val, size, addr;
    205 
    206     if ((nargs != 5) || (nret != 1)) {
    207         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
    208         return;
    209     }
    210 
    211     buid = rtas_ldq(args, 1);
    212     val = rtas_ld(args, 4);
    213     size = rtas_ld(args, 3);
    214     addr = rtas_ld(args, 0);
    215 
    216     finish_write_pci_config(spapr, buid, addr, size, val, rets);
    217 }
    218 
    219 static void rtas_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
    220                                   uint32_t token, uint32_t nargs,
    221                                   target_ulong args,
    222                                   uint32_t nret, target_ulong rets)
    223 {
    224     uint32_t val, size, addr;
    225 
    226     if ((nargs != 3) || (nret != 1)) {
    227         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
    228         return;
    229     }
    230 
    231 
    232     val = rtas_ld(args, 2);
    233     size = rtas_ld(args, 1);
    234     addr = rtas_ld(args, 0);
    235 
    236     finish_write_pci_config(spapr, 0, addr, size, val, rets);
    237 }
    238 
    239 /*
    240  * Set MSI/MSIX message data.
    241  * This is required for msi_notify()/msix_notify() which
    242  * will write at the addresses via spapr_msi_write().
    243  *
    244  * If hwaddr == 0, all entries will have .data == first_irq i.e.
    245  * table will be reset.
    246  */
    247 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
    248                              unsigned first_irq, unsigned req_num)
    249 {
    250     unsigned i;
    251     MSIMessage msg = { .address = addr, .data = first_irq };
    252 
    253     if (!msix) {
    254         msi_set_message(pdev, msg);
    255         trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
    256         return;
    257     }
    258 
    259     for (i = 0; i < req_num; ++i) {
    260         msix_set_message(pdev, i, msg);
    261         trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
    262         if (addr) {
    263             ++msg.data;
    264         }
    265     }
    266 }
    267 
    268 static void rtas_ibm_change_msi(PowerPCCPU *cpu, SpaprMachineState *spapr,
    269                                 uint32_t token, uint32_t nargs,
    270                                 target_ulong args, uint32_t nret,
    271                                 target_ulong rets)
    272 {
    273     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
    274     uint32_t config_addr = rtas_ld(args, 0);
    275     uint64_t buid = rtas_ldq(args, 1);
    276     unsigned int func = rtas_ld(args, 3);
    277     unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
    278     unsigned int seq_num = rtas_ld(args, 5);
    279     unsigned int ret_intr_type;
    280     unsigned int irq, max_irqs = 0;
    281     SpaprPhbState *phb = NULL;
    282     PCIDevice *pdev = NULL;
    283     SpaprPciMsi *msi;
    284     int *config_addr_key;
    285     Error *err = NULL;
    286     int i;
    287 
    288     /* Fins SpaprPhbState */
    289     phb = spapr_pci_find_phb(spapr, buid);
    290     if (phb) {
    291         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
    292     }
    293     if (!phb || !pdev) {
    294         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
    295         return;
    296     }
    297 
    298     switch (func) {
    299     case RTAS_CHANGE_FN:
    300         if (msi_present(pdev)) {
    301             ret_intr_type = RTAS_TYPE_MSI;
    302         } else if (msix_present(pdev)) {
    303             ret_intr_type = RTAS_TYPE_MSIX;
    304         } else {
    305             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
    306             return;
    307         }
    308         break;
    309     case RTAS_CHANGE_MSI_FN:
    310         if (msi_present(pdev)) {
    311             ret_intr_type = RTAS_TYPE_MSI;
    312         } else {
    313             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
    314             return;
    315         }
    316         break;
    317     case RTAS_CHANGE_MSIX_FN:
    318         if (msix_present(pdev)) {
    319             ret_intr_type = RTAS_TYPE_MSIX;
    320         } else {
    321             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
    322             return;
    323         }
    324         break;
    325     default:
    326         error_report("rtas_ibm_change_msi(%u) is not implemented", func);
    327         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
    328         return;
    329     }
    330 
    331     msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr);
    332 
    333     /* Releasing MSIs */
    334     if (!req_num) {
    335         if (!msi) {
    336             trace_spapr_pci_msi("Releasing wrong config", config_addr);
    337             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
    338             return;
    339         }
    340 
    341         if (msi_present(pdev)) {
    342             spapr_msi_setmsg(pdev, 0, false, 0, 0);
    343         }
    344         if (msix_present(pdev)) {
    345             spapr_msi_setmsg(pdev, 0, true, 0, 0);
    346         }
    347         g_hash_table_remove(phb->msi, &config_addr);
    348 
    349         trace_spapr_pci_msi("Released MSIs", config_addr);
    350         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
    351         rtas_st(rets, 1, 0);
    352         return;
    353     }
    354 
    355     /* Enabling MSI */
    356 
    357     /* Check if the device supports as many IRQs as requested */
    358     if (ret_intr_type == RTAS_TYPE_MSI) {
    359         max_irqs = msi_nr_vectors_allocated(pdev);
    360     } else if (ret_intr_type == RTAS_TYPE_MSIX) {
    361         max_irqs = pdev->msix_entries_nr;
    362     }
    363     if (!max_irqs) {
    364         error_report("Requested interrupt type %d is not enabled for device %x",
    365                      ret_intr_type, config_addr);
    366         rtas_st(rets, 0, -1); /* Hardware error */
    367         return;
    368     }
    369     /* Correct the number if the guest asked for too many */
    370     if (req_num > max_irqs) {
    371         trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
    372         req_num = max_irqs;
    373         irq = 0; /* to avoid misleading trace */
    374         goto out;
    375     }
    376 
    377     /* Allocate MSIs */
    378     if (smc->legacy_irq_allocation) {
    379         irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI,
    380                              &err);
    381     } else {
    382         irq = spapr_irq_msi_alloc(spapr, req_num,
    383                                   ret_intr_type == RTAS_TYPE_MSI, &err);
    384     }
    385     if (err) {
    386         error_reportf_err(err, "Can't allocate MSIs for device %x: ",
    387                           config_addr);
    388         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
    389         return;
    390     }
    391 
    392     for (i = 0; i < req_num; i++) {
    393         spapr_irq_claim(spapr, irq + i, false, &err);
    394         if (err) {
    395             if (i) {
    396                 spapr_irq_free(spapr, irq, i);
    397             }
    398             if (!smc->legacy_irq_allocation) {
    399                 spapr_irq_msi_free(spapr, irq, req_num);
    400             }
    401             error_reportf_err(err, "Can't allocate MSIs for device %x: ",
    402                               config_addr);
    403             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
    404             return;
    405         }
    406     }
    407 
    408     /* Release previous MSIs */
    409     if (msi) {
    410         g_hash_table_remove(phb->msi, &config_addr);
    411     }
    412 
    413     /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
    414     spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
    415                      irq, req_num);
    416 
    417     /* Add MSI device to cache */
    418     msi = g_new(SpaprPciMsi, 1);
    419     msi->first_irq = irq;
    420     msi->num = req_num;
    421     config_addr_key = g_new(int, 1);
    422     *config_addr_key = config_addr;
    423     g_hash_table_insert(phb->msi, config_addr_key, msi);
    424 
    425 out:
    426     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
    427     rtas_st(rets, 1, req_num);
    428     rtas_st(rets, 2, ++seq_num);
    429     if (nret > 3) {
    430         rtas_st(rets, 3, ret_intr_type);
    431     }
    432 
    433     trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
    434 }
    435 
    436 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
    437                                                    SpaprMachineState *spapr,
    438                                                    uint32_t token,
    439                                                    uint32_t nargs,
    440                                                    target_ulong args,
    441                                                    uint32_t nret,
    442                                                    target_ulong rets)
    443 {
    444     uint32_t config_addr = rtas_ld(args, 0);
    445     uint64_t buid = rtas_ldq(args, 1);
    446     unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
    447     SpaprPhbState *phb = NULL;
    448     PCIDevice *pdev = NULL;
    449     SpaprPciMsi *msi;
    450 
    451     /* Find SpaprPhbState */
    452     phb = spapr_pci_find_phb(spapr, buid);
    453     if (phb) {
    454         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
    455     }
    456     if (!phb || !pdev) {
    457         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
    458         return;
    459     }
    460 
    461     /* Find device descriptor and start IRQ */
    462     msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr);
    463     if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
    464         trace_spapr_pci_msi("Failed to return vector", config_addr);
    465         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
    466         return;
    467     }
    468     intr_src_num = msi->first_irq + ioa_intr_num;
    469     trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
    470                                                            intr_src_num);
    471 
    472     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
    473     rtas_st(rets, 1, intr_src_num);
    474     rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
    475 }
    476 
    477 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
    478                                     SpaprMachineState *spapr,
    479                                     uint32_t token, uint32_t nargs,
    480                                     target_ulong args, uint32_t nret,
    481                                     target_ulong rets)
    482 {
    483     SpaprPhbState *sphb;
    484     uint32_t addr, option;
    485     uint64_t buid;
    486     int ret;
    487 
    488     if ((nargs != 4) || (nret != 1)) {
    489         goto param_error_exit;
    490     }
    491 
    492     buid = rtas_ldq(args, 1);
    493     addr = rtas_ld(args, 0);
    494     option = rtas_ld(args, 3);
    495 
    496     sphb = spapr_pci_find_phb(spapr, buid);
    497     if (!sphb) {
    498         goto param_error_exit;
    499     }
    500 
    501     if (!spapr_phb_eeh_available(sphb)) {
    502         goto param_error_exit;
    503     }
    504 
    505     ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
    506     rtas_st(rets, 0, ret);
    507     return;
    508 
    509 param_error_exit:
    510     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
    511 }
    512 
    513 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
    514                                            SpaprMachineState *spapr,
    515                                            uint32_t token, uint32_t nargs,
    516                                            target_ulong args, uint32_t nret,
    517                                            target_ulong rets)
    518 {
    519     SpaprPhbState *sphb;
    520     PCIDevice *pdev;
    521     uint32_t addr, option;
    522     uint64_t buid;
    523 
    524     if ((nargs != 4) || (nret != 2)) {
    525         goto param_error_exit;
    526     }
    527 
    528     buid = rtas_ldq(args, 1);
    529     sphb = spapr_pci_find_phb(spapr, buid);
    530     if (!sphb) {
    531         goto param_error_exit;
    532     }
    533 
    534     if (!spapr_phb_eeh_available(sphb)) {
    535         goto param_error_exit;
    536     }
    537 
    538     /*
    539      * We always have PE address of form "00BB0001". "BB"
    540      * represents the bus number of PE's primary bus.
    541      */
    542     option = rtas_ld(args, 3);
    543     switch (option) {
    544     case RTAS_GET_PE_ADDR:
    545         addr = rtas_ld(args, 0);
    546         pdev = spapr_pci_find_dev(spapr, buid, addr);
    547         if (!pdev) {
    548             goto param_error_exit;
    549         }
    550 
    551         rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1);
    552         break;
    553     case RTAS_GET_PE_MODE:
    554         rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
    555         break;
    556     default:
    557         goto param_error_exit;
    558     }
    559 
    560     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
    561     return;
    562 
    563 param_error_exit:
    564     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
    565 }
    566 
    567 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
    568                                             SpaprMachineState *spapr,
    569                                             uint32_t token, uint32_t nargs,
    570                                             target_ulong args, uint32_t nret,
    571                                             target_ulong rets)
    572 {
    573     SpaprPhbState *sphb;
    574     uint64_t buid;
    575     int state, ret;
    576 
    577     if ((nargs != 3) || (nret != 4 && nret != 5)) {
    578         goto param_error_exit;
    579     }
    580 
    581     buid = rtas_ldq(args, 1);
    582     sphb = spapr_pci_find_phb(spapr, buid);
    583     if (!sphb) {
    584         goto param_error_exit;
    585     }
    586 
    587     if (!spapr_phb_eeh_available(sphb)) {
    588         goto param_error_exit;
    589     }
    590 
    591     ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
    592     rtas_st(rets, 0, ret);
    593     if (ret != RTAS_OUT_SUCCESS) {
    594         return;
    595     }
    596 
    597     rtas_st(rets, 1, state);
    598     rtas_st(rets, 2, RTAS_EEH_SUPPORT);
    599     rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
    600     if (nret >= 5) {
    601         rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
    602     }
    603     return;
    604 
    605 param_error_exit:
    606     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
    607 }
    608 
    609 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
    610                                     SpaprMachineState *spapr,
    611                                     uint32_t token, uint32_t nargs,
    612                                     target_ulong args, uint32_t nret,
    613                                     target_ulong rets)
    614 {
    615     SpaprPhbState *sphb;
    616     uint32_t option;
    617     uint64_t buid;
    618     int ret;
    619 
    620     if ((nargs != 4) || (nret != 1)) {
    621         goto param_error_exit;
    622     }
    623 
    624     buid = rtas_ldq(args, 1);
    625     option = rtas_ld(args, 3);
    626     sphb = spapr_pci_find_phb(spapr, buid);
    627     if (!sphb) {
    628         goto param_error_exit;
    629     }
    630 
    631     if (!spapr_phb_eeh_available(sphb)) {
    632         goto param_error_exit;
    633     }
    634 
    635     ret = spapr_phb_vfio_eeh_reset(sphb, option);
    636     rtas_st(rets, 0, ret);
    637     return;
    638 
    639 param_error_exit:
    640     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
    641 }
    642 
    643 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
    644                                   SpaprMachineState *spapr,
    645                                   uint32_t token, uint32_t nargs,
    646                                   target_ulong args, uint32_t nret,
    647                                   target_ulong rets)
    648 {
    649     SpaprPhbState *sphb;
    650     uint64_t buid;
    651     int ret;
    652 
    653     if ((nargs != 3) || (nret != 1)) {
    654         goto param_error_exit;
    655     }
    656 
    657     buid = rtas_ldq(args, 1);
    658     sphb = spapr_pci_find_phb(spapr, buid);
    659     if (!sphb) {
    660         goto param_error_exit;
    661     }
    662 
    663     if (!spapr_phb_eeh_available(sphb)) {
    664         goto param_error_exit;
    665     }
    666 
    667     ret = spapr_phb_vfio_eeh_configure(sphb);
    668     rtas_st(rets, 0, ret);
    669     return;
    670 
    671 param_error_exit:
    672     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
    673 }
    674 
    675 /* To support it later */
    676 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
    677                                        SpaprMachineState *spapr,
    678                                        uint32_t token, uint32_t nargs,
    679                                        target_ulong args, uint32_t nret,
    680                                        target_ulong rets)
    681 {
    682     SpaprPhbState *sphb;
    683     int option;
    684     uint64_t buid;
    685 
    686     if ((nargs != 8) || (nret != 1)) {
    687         goto param_error_exit;
    688     }
    689 
    690     buid = rtas_ldq(args, 1);
    691     sphb = spapr_pci_find_phb(spapr, buid);
    692     if (!sphb) {
    693         goto param_error_exit;
    694     }
    695 
    696     if (!spapr_phb_eeh_available(sphb)) {
    697         goto param_error_exit;
    698     }
    699 
    700     option = rtas_ld(args, 7);
    701     switch (option) {
    702     case RTAS_SLOT_TEMP_ERR_LOG:
    703     case RTAS_SLOT_PERM_ERR_LOG:
    704         break;
    705     default:
    706         goto param_error_exit;
    707     }
    708 
    709     /* We don't have error log yet */
    710     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
    711     return;
    712 
    713 param_error_exit:
    714     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
    715 }
    716 
    717 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
    718 {
    719     /*
    720      * Here we use the number returned by pci_swizzle_map_irq_fn to find a
    721      * corresponding qemu_irq.
    722      */
    723     SpaprPhbState *phb = opaque;
    724     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
    725 
    726     trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
    727     qemu_set_irq(spapr_qirq(spapr, phb->lsi_table[irq_num].irq), level);
    728 }
    729 
    730 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
    731 {
    732     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
    733     PCIINTxRoute route;
    734 
    735     route.mode = PCI_INTX_ENABLED;
    736     route.irq = sphb->lsi_table[pin].irq;
    737 
    738     return route;
    739 }
    740 
    741 static uint64_t spapr_msi_read(void *opaque, hwaddr addr, unsigned size)
    742 {
    743     qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid access\n", __func__);
    744     return 0;
    745 }
    746 
    747 /*
    748  * MSI/MSIX memory region implementation.
    749  * The handler handles both MSI and MSIX.
    750  * The vector number is encoded in least bits in data.
    751  */
    752 static void spapr_msi_write(void *opaque, hwaddr addr,
    753                             uint64_t data, unsigned size)
    754 {
    755     SpaprMachineState *spapr = opaque;
    756     uint32_t irq = data;
    757 
    758     trace_spapr_pci_msi_write(addr, data, irq);
    759 
    760     qemu_irq_pulse(spapr_qirq(spapr, irq));
    761 }
    762 
    763 static const MemoryRegionOps spapr_msi_ops = {
    764     /*
    765      * .read result is undefined by PCI spec.
    766      * define .read method to avoid assert failure in memory_region_init_io
    767      */
    768     .read = spapr_msi_read,
    769     .write = spapr_msi_write,
    770     .endianness = DEVICE_LITTLE_ENDIAN
    771 };
    772 
    773 /*
    774  * PHB PCI device
    775  */
    776 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
    777 {
    778     SpaprPhbState *phb = opaque;
    779 
    780     return &phb->iommu_as;
    781 }
    782 
    783 static char *spapr_phb_vfio_get_loc_code(SpaprPhbState *sphb,  PCIDevice *pdev)
    784 {
    785     g_autofree char *path = NULL;
    786     g_autofree char *host = NULL;
    787     g_autofree char *devspec = NULL;
    788     char *buf = NULL;
    789 
    790     /* Get the PCI VFIO host id */
    791     host = object_property_get_str(OBJECT(pdev), "host", NULL);
    792     if (!host) {
    793         return NULL;
    794     }
    795 
    796     /* Construct the path of the file that will give us the DT location */
    797     path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
    798     if (!g_file_get_contents(path, &devspec, NULL, NULL)) {
    799         return NULL;
    800     }
    801 
    802     /* Construct and read from host device tree the loc-code */
    803     g_free(path);
    804     path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", devspec);
    805     if (!g_file_get_contents(path, &buf, NULL, NULL)) {
    806         return NULL;
    807     }
    808     return buf;
    809 }
    810 
    811 static char *spapr_phb_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev)
    812 {
    813     char *buf;
    814     const char *devtype = "qemu";
    815     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
    816 
    817     if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
    818         buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
    819         if (buf) {
    820             return buf;
    821         }
    822         devtype = "vfio";
    823     }
    824     /*
    825      * For emulated devices and VFIO-failure case, make up
    826      * the loc-code.
    827      */
    828     buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
    829                           devtype, pdev->name, sphb->index, busnr,
    830                           PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
    831     return buf;
    832 }
    833 
    834 /* Macros to operate with address in OF binding to PCI */
    835 #define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
    836 #define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
    837 #define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
    838 #define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
    839 #define b_ss(x)         b_x((x), 24, 2) /* the space code */
    840 #define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
    841 #define b_ddddd(x)      b_x((x), 11, 5) /* device number */
    842 #define b_fff(x)        b_x((x), 8, 3)  /* function number */
    843 #define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
    844 
    845 /* for 'reg' OF properties */
    846 #define RESOURCE_CELLS_SIZE 2
    847 #define RESOURCE_CELLS_ADDRESS 3
    848 
    849 typedef struct ResourceFields {
    850     uint32_t phys_hi;
    851     uint32_t phys_mid;
    852     uint32_t phys_lo;
    853     uint32_t size_hi;
    854     uint32_t size_lo;
    855 } QEMU_PACKED ResourceFields;
    856 
    857 typedef struct ResourceProps {
    858     ResourceFields reg[8];
    859     uint32_t reg_len;
    860 } ResourceProps;
    861 
    862 /* fill in the 'reg' OF properties for
    863  * a PCI device. 'reg' describes resource requirements for a
    864  * device's IO/MEM regions.
    865  *
    866  * the property is an array of ('phys-addr', 'size') pairs describing
    867  * the addressable regions of the PCI device, where 'phys-addr' is a
    868  * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
    869  * (phys.hi, phys.mid, phys.lo), and 'size' is a
    870  * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
    871  *
    872  * phys.hi = 0xYYXXXXZZ, where:
    873  *   0xYY = npt000ss
    874  *          |||   |
    875  *          |||   +-- space code
    876  *          |||               |
    877  *          |||               +  00 if configuration space
    878  *          |||               +  01 if IO region,
    879  *          |||               +  10 if 32-bit MEM region
    880  *          |||               +  11 if 64-bit MEM region
    881  *          |||
    882  *          ||+------ for non-relocatable IO: 1 if aliased
    883  *          ||        for relocatable IO: 1 if below 64KB
    884  *          ||        for MEM: 1 if below 1MB
    885  *          |+------- 1 if region is prefetchable
    886  *          +-------- 1 if region is non-relocatable
    887  *   0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
    888  *            bits respectively
    889  *   0xZZ = rrrrrrrr, the register number of the BAR corresponding
    890  *          to the region
    891  *
    892  * phys.mid and phys.lo correspond respectively to the hi/lo portions
    893  * of the actual address of the region.
    894  *
    895  * note also that addresses defined in this property are, at least
    896  * for PAPR guests, relative to the PHBs IO/MEM windows, and
    897  * correspond directly to the addresses in the BARs.
    898  *
    899  * in accordance with PCI Bus Binding to Open Firmware,
    900  * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
    901  * Appendix C.
    902  */
    903 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
    904 {
    905     int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
    906     uint32_t dev_id = (b_bbbbbbbb(bus_num) |
    907                        b_ddddd(PCI_SLOT(d->devfn)) |
    908                        b_fff(PCI_FUNC(d->devfn)));
    909     ResourceFields *reg;
    910     int i, reg_idx = 0;
    911 
    912     /* config space region */
    913     reg = &rp->reg[reg_idx++];
    914     reg->phys_hi = cpu_to_be32(dev_id);
    915     reg->phys_mid = 0;
    916     reg->phys_lo = 0;
    917     reg->size_hi = 0;
    918     reg->size_lo = 0;
    919 
    920     for (i = 0; i < PCI_NUM_REGIONS; i++) {
    921         if (!d->io_regions[i].size) {
    922             continue;
    923         }
    924 
    925         reg = &rp->reg[reg_idx++];
    926 
    927         reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
    928         if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
    929             reg->phys_hi |= cpu_to_be32(b_ss(1));
    930         } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
    931             reg->phys_hi |= cpu_to_be32(b_ss(3));
    932         } else {
    933             reg->phys_hi |= cpu_to_be32(b_ss(2));
    934         }
    935         reg->phys_mid = 0;
    936         reg->phys_lo = 0;
    937         reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
    938         reg->size_lo = cpu_to_be32(d->io_regions[i].size);
    939     }
    940 
    941     rp->reg_len = reg_idx * sizeof(ResourceFields);
    942 }
    943 
    944 typedef struct PCIClass PCIClass;
    945 typedef struct PCISubClass PCISubClass;
    946 typedef struct PCIIFace PCIIFace;
    947 
    948 struct PCIIFace {
    949     int iface;
    950     const char *name;
    951 };
    952 
    953 struct PCISubClass {
    954     int subclass;
    955     const char *name;
    956     const PCIIFace *iface;
    957 };
    958 
    959 struct PCIClass {
    960     const char *name;
    961     const PCISubClass *subc;
    962 };
    963 
    964 static const PCISubClass undef_subclass[] = {
    965     { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
    966     { 0xFF, NULL, NULL },
    967 };
    968 
    969 static const PCISubClass mass_subclass[] = {
    970     { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
    971     { PCI_CLASS_STORAGE_IDE, "ide", NULL },
    972     { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
    973     { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
    974     { PCI_CLASS_STORAGE_RAID, "raid", NULL },
    975     { PCI_CLASS_STORAGE_ATA, "ata", NULL },
    976     { PCI_CLASS_STORAGE_SATA, "sata", NULL },
    977     { PCI_CLASS_STORAGE_SAS, "sas", NULL },
    978     { 0xFF, NULL, NULL },
    979 };
    980 
    981 static const PCISubClass net_subclass[] = {
    982     { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
    983     { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
    984     { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
    985     { PCI_CLASS_NETWORK_ATM, "atm", NULL },
    986     { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
    987     { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
    988     { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
    989     { 0xFF, NULL, NULL },
    990 };
    991 
    992 static const PCISubClass displ_subclass[] = {
    993     { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
    994     { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
    995     { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
    996     { 0xFF, NULL, NULL },
    997 };
    998 
    999 static const PCISubClass media_subclass[] = {
   1000     { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
   1001     { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
   1002     { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
   1003     { 0xFF, NULL, NULL },
   1004 };
   1005 
   1006 static const PCISubClass mem_subclass[] = {
   1007     { PCI_CLASS_MEMORY_RAM, "memory", NULL },
   1008     { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
   1009     { 0xFF, NULL, NULL },
   1010 };
   1011 
   1012 static const PCISubClass bridg_subclass[] = {
   1013     { PCI_CLASS_BRIDGE_HOST, "host", NULL },
   1014     { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
   1015     { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
   1016     { PCI_CLASS_BRIDGE_MC, "mca", NULL },
   1017     { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
   1018     { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
   1019     { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
   1020     { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
   1021     { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
   1022     { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
   1023     { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
   1024     { 0xFF, NULL, NULL },
   1025 };
   1026 
   1027 static const PCISubClass comm_subclass[] = {
   1028     { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
   1029     { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
   1030     { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
   1031     { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
   1032     { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
   1033     { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
   1034     { 0xFF, NULL, NULL, },
   1035 };
   1036 
   1037 static const PCIIFace pic_iface[] = {
   1038     { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
   1039     { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
   1040     { 0xFF, NULL },
   1041 };
   1042 
   1043 static const PCISubClass sys_subclass[] = {
   1044     { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
   1045     { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
   1046     { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
   1047     { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
   1048     { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
   1049     { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
   1050     { 0xFF, NULL, NULL },
   1051 };
   1052 
   1053 static const PCISubClass inp_subclass[] = {
   1054     { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
   1055     { PCI_CLASS_INPUT_PEN, "pen", NULL },
   1056     { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
   1057     { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
   1058     { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
   1059     { 0xFF, NULL, NULL },
   1060 };
   1061 
   1062 static const PCISubClass dock_subclass[] = {
   1063     { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
   1064     { 0xFF, NULL, NULL },
   1065 };
   1066 
   1067 static const PCISubClass cpu_subclass[] = {
   1068     { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
   1069     { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
   1070     { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
   1071     { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
   1072     { 0xFF, NULL, NULL },
   1073 };
   1074 
   1075 static const PCIIFace usb_iface[] = {
   1076     { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
   1077     { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
   1078     { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
   1079     { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
   1080     { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
   1081     { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
   1082     { 0xFF, NULL },
   1083 };
   1084 
   1085 static const PCISubClass ser_subclass[] = {
   1086     { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
   1087     { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
   1088     { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
   1089     { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
   1090     { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
   1091     { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
   1092     { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
   1093     { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
   1094     { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
   1095     { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
   1096     { 0xFF, NULL, NULL },
   1097 };
   1098 
   1099 static const PCISubClass wrl_subclass[] = {
   1100     { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
   1101     { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
   1102     { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
   1103     { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
   1104     { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
   1105     { 0xFF, NULL, NULL },
   1106 };
   1107 
   1108 static const PCISubClass sat_subclass[] = {
   1109     { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
   1110     { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
   1111     { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
   1112     { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
   1113     { 0xFF, NULL, NULL },
   1114 };
   1115 
   1116 static const PCISubClass crypt_subclass[] = {
   1117     { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
   1118     { PCI_CLASS_CRYPT_ENTERTAINMENT,
   1119       "entertainment-encryption", NULL },
   1120     { 0xFF, NULL, NULL },
   1121 };
   1122 
   1123 static const PCISubClass spc_subclass[] = {
   1124     { PCI_CLASS_SP_DPIO, "dpio", NULL },
   1125     { PCI_CLASS_SP_PERF, "counter", NULL },
   1126     { PCI_CLASS_SP_SYNCH, "measurement", NULL },
   1127     { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
   1128     { 0xFF, NULL, NULL },
   1129 };
   1130 
   1131 static const PCIClass pci_classes[] = {
   1132     { "legacy-device", undef_subclass },
   1133     { "mass-storage",  mass_subclass },
   1134     { "network", net_subclass },
   1135     { "display", displ_subclass, },
   1136     { "multimedia-device", media_subclass },
   1137     { "memory-controller", mem_subclass },
   1138     { "unknown-bridge", bridg_subclass },
   1139     { "communication-controller", comm_subclass},
   1140     { "system-peripheral", sys_subclass },
   1141     { "input-controller", inp_subclass },
   1142     { "docking-station", dock_subclass },
   1143     { "cpu", cpu_subclass },
   1144     { "serial-bus", ser_subclass },
   1145     { "wireless-controller", wrl_subclass },
   1146     { "intelligent-io", NULL },
   1147     { "satellite-device", sat_subclass },
   1148     { "encryption", crypt_subclass },
   1149     { "data-processing-controller", spc_subclass },
   1150 };
   1151 
   1152 static const char *dt_name_from_class(uint8_t class, uint8_t subclass,
   1153                                       uint8_t iface)
   1154 {
   1155     const PCIClass *pclass;
   1156     const PCISubClass *psubclass;
   1157     const PCIIFace *piface;
   1158     const char *name;
   1159 
   1160     if (class >= ARRAY_SIZE(pci_classes)) {
   1161         return "pci";
   1162     }
   1163 
   1164     pclass = pci_classes + class;
   1165     name = pclass->name;
   1166 
   1167     if (pclass->subc == NULL) {
   1168         return name;
   1169     }
   1170 
   1171     psubclass = pclass->subc;
   1172     while ((psubclass->subclass & 0xff) != 0xff) {
   1173         if ((psubclass->subclass & 0xff) == subclass) {
   1174             name = psubclass->name;
   1175             break;
   1176         }
   1177         psubclass++;
   1178     }
   1179 
   1180     piface = psubclass->iface;
   1181     if (piface == NULL) {
   1182         return name;
   1183     }
   1184     while ((piface->iface & 0xff) != 0xff) {
   1185         if ((piface->iface & 0xff) == iface) {
   1186             name = piface->name;
   1187             break;
   1188         }
   1189         piface++;
   1190     }
   1191 
   1192     return name;
   1193 }
   1194 
   1195 /*
   1196  * DRC helper functions
   1197  */
   1198 
   1199 static uint32_t drc_id_from_devfn(SpaprPhbState *phb,
   1200                                   uint8_t chassis, int32_t devfn)
   1201 {
   1202     return (phb->index << 16) | (chassis << 8) | devfn;
   1203 }
   1204 
   1205 static SpaprDrc *drc_from_devfn(SpaprPhbState *phb,
   1206                                 uint8_t chassis, int32_t devfn)
   1207 {
   1208     return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
   1209                            drc_id_from_devfn(phb, chassis, devfn));
   1210 }
   1211 
   1212 static uint8_t chassis_from_bus(PCIBus *bus)
   1213 {
   1214     if (pci_bus_is_root(bus)) {
   1215         return 0;
   1216     } else {
   1217         PCIDevice *bridge = pci_bridge_get_device(bus);
   1218 
   1219         return object_property_get_uint(OBJECT(bridge), "chassis_nr",
   1220                                         &error_abort);
   1221     }
   1222 }
   1223 
   1224 static SpaprDrc *drc_from_dev(SpaprPhbState *phb, PCIDevice *dev)
   1225 {
   1226     uint8_t chassis = chassis_from_bus(pci_get_bus(dev));
   1227 
   1228     return drc_from_devfn(phb, chassis, dev->devfn);
   1229 }
   1230 
   1231 static void add_drcs(SpaprPhbState *phb, PCIBus *bus)
   1232 {
   1233     Object *owner;
   1234     int i;
   1235     uint8_t chassis;
   1236 
   1237     if (!phb->dr_enabled) {
   1238         return;
   1239     }
   1240 
   1241     chassis = chassis_from_bus(bus);
   1242 
   1243     if (pci_bus_is_root(bus)) {
   1244         owner = OBJECT(phb);
   1245     } else {
   1246         owner = OBJECT(pci_bridge_get_device(bus));
   1247     }
   1248 
   1249     for (i = 0; i < PCI_SLOT_MAX * PCI_FUNC_MAX; i++) {
   1250         spapr_dr_connector_new(owner, TYPE_SPAPR_DRC_PCI,
   1251                                drc_id_from_devfn(phb, chassis, i));
   1252     }
   1253 }
   1254 
   1255 static void remove_drcs(SpaprPhbState *phb, PCIBus *bus)
   1256 {
   1257     int i;
   1258     uint8_t chassis;
   1259 
   1260     if (!phb->dr_enabled) {
   1261         return;
   1262     }
   1263 
   1264     chassis = chassis_from_bus(bus);
   1265 
   1266     for (i = PCI_SLOT_MAX * PCI_FUNC_MAX - 1; i >= 0; i--) {
   1267         SpaprDrc *drc = drc_from_devfn(phb, chassis, i);
   1268 
   1269         if (drc) {
   1270             object_unparent(OBJECT(drc));
   1271         }
   1272     }
   1273 }
   1274 
   1275 typedef struct PciWalkFdt {
   1276     void *fdt;
   1277     int offset;
   1278     SpaprPhbState *sphb;
   1279     int err;
   1280 } PciWalkFdt;
   1281 
   1282 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
   1283                                void *fdt, int parent_offset);
   1284 
   1285 static void spapr_dt_pci_device_cb(PCIBus *bus, PCIDevice *pdev,
   1286                                    void *opaque)
   1287 {
   1288     PciWalkFdt *p = opaque;
   1289     int err;
   1290 
   1291     if (p->err) {
   1292         /* Something's already broken, don't keep going */
   1293         return;
   1294     }
   1295 
   1296     err = spapr_dt_pci_device(p->sphb, pdev, p->fdt, p->offset);
   1297     if (err < 0) {
   1298         p->err = err;
   1299     }
   1300 }
   1301 
   1302 /* Augment PCI device node with bridge specific information */
   1303 static int spapr_dt_pci_bus(SpaprPhbState *sphb, PCIBus *bus,
   1304                                void *fdt, int offset)
   1305 {
   1306     Object *owner;
   1307     PciWalkFdt cbinfo = {
   1308         .fdt = fdt,
   1309         .offset = offset,
   1310         .sphb = sphb,
   1311         .err = 0,
   1312     };
   1313     int ret;
   1314 
   1315     _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
   1316                           RESOURCE_CELLS_ADDRESS));
   1317     _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
   1318                           RESOURCE_CELLS_SIZE));
   1319 
   1320     assert(bus);
   1321     pci_for_each_device_under_bus_reverse(bus, spapr_dt_pci_device_cb, &cbinfo);
   1322     if (cbinfo.err) {
   1323         return cbinfo.err;
   1324     }
   1325 
   1326     if (pci_bus_is_root(bus)) {
   1327         owner = OBJECT(sphb);
   1328     } else {
   1329         owner = OBJECT(pci_bridge_get_device(bus));
   1330     }
   1331 
   1332     ret = spapr_dt_drc(fdt, offset, owner,
   1333                        SPAPR_DR_CONNECTOR_TYPE_PCI);
   1334     if (ret) {
   1335         return ret;
   1336     }
   1337 
   1338     return offset;
   1339 }
   1340 
   1341 char *spapr_pci_fw_dev_name(PCIDevice *dev)
   1342 {
   1343     const gchar *basename;
   1344     int slot = PCI_SLOT(dev->devfn);
   1345     int func = PCI_FUNC(dev->devfn);
   1346     uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
   1347 
   1348     basename = dt_name_from_class((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
   1349                                   ccode & 0xff);
   1350 
   1351     if (func != 0) {
   1352         return g_strdup_printf("%s@%x,%x", basename, slot, func);
   1353     } else {
   1354         return g_strdup_printf("%s@%x", basename, slot);
   1355     }
   1356 }
   1357 
   1358 /* create OF node for pci device and required OF DT properties */
   1359 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
   1360                                void *fdt, int parent_offset)
   1361 {
   1362     int offset;
   1363     g_autofree gchar *nodename = spapr_pci_fw_dev_name(dev);
   1364     PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(dev);
   1365     ResourceProps rp;
   1366     SpaprDrc *drc = drc_from_dev(sphb, dev);
   1367     uint32_t vendor_id = pci_default_read_config(dev, PCI_VENDOR_ID, 2);
   1368     uint32_t device_id = pci_default_read_config(dev, PCI_DEVICE_ID, 2);
   1369     uint32_t revision_id = pci_default_read_config(dev, PCI_REVISION_ID, 1);
   1370     uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
   1371     uint32_t irq_pin = pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1);
   1372     uint32_t subsystem_id = pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2);
   1373     uint32_t subsystem_vendor_id =
   1374         pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2);
   1375     uint32_t cache_line_size =
   1376         pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1);
   1377     uint32_t pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
   1378     gchar *loc_code;
   1379 
   1380     _FDT(offset = fdt_add_subnode(fdt, parent_offset, nodename));
   1381 
   1382     /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
   1383     _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", vendor_id));
   1384     _FDT(fdt_setprop_cell(fdt, offset, "device-id", device_id));
   1385     _FDT(fdt_setprop_cell(fdt, offset, "revision-id", revision_id));
   1386 
   1387     _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
   1388     if (irq_pin) {
   1389         _FDT(fdt_setprop_cell(fdt, offset, "interrupts", irq_pin));
   1390     }
   1391 
   1392     if (subsystem_id) {
   1393         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", subsystem_id));
   1394     }
   1395 
   1396     if (subsystem_vendor_id) {
   1397         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
   1398                               subsystem_vendor_id));
   1399     }
   1400 
   1401     _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", cache_line_size));
   1402 
   1403 
   1404     /* the following fdt cells are masked off the pci status register */
   1405     _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
   1406                           PCI_STATUS_DEVSEL_MASK & pci_status));
   1407 
   1408     if (pci_status & PCI_STATUS_FAST_BACK) {
   1409         _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
   1410     }
   1411     if (pci_status & PCI_STATUS_66MHZ) {
   1412         _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
   1413     }
   1414     if (pci_status & PCI_STATUS_UDF) {
   1415         _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
   1416     }
   1417 
   1418     loc_code = spapr_phb_get_loc_code(sphb, dev);
   1419     _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", loc_code));
   1420     g_free(loc_code);
   1421 
   1422     if (drc) {
   1423         _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index",
   1424                               spapr_drc_index(drc)));
   1425     }
   1426 
   1427     if (msi_present(dev)) {
   1428         uint32_t max_msi = msi_nr_vectors_allocated(dev);
   1429         if (max_msi) {
   1430             _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
   1431         }
   1432     }
   1433     if (msix_present(dev)) {
   1434         uint32_t max_msix = dev->msix_entries_nr;
   1435         if (max_msix) {
   1436             _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
   1437         }
   1438     }
   1439 
   1440     populate_resource_props(dev, &rp);
   1441     _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
   1442 
   1443     if (sphb->pcie_ecs && pci_is_express(dev)) {
   1444         _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
   1445     }
   1446 
   1447     spapr_phb_nvgpu_populate_pcidev_dt(dev, fdt, offset, sphb);
   1448 
   1449     if (!pc->is_bridge) {
   1450         /* Properties only for non-bridges */
   1451         uint32_t min_grant = pci_default_read_config(dev, PCI_MIN_GNT, 1);
   1452         uint32_t max_latency = pci_default_read_config(dev, PCI_MAX_LAT, 1);
   1453         _FDT(fdt_setprop_cell(fdt, offset, "min-grant", min_grant));
   1454         _FDT(fdt_setprop_cell(fdt, offset, "max-latency", max_latency));
   1455         return offset;
   1456     } else {
   1457         PCIBus *sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(dev));
   1458 
   1459         return spapr_dt_pci_bus(sphb, sec_bus, fdt, offset);
   1460     }
   1461 }
   1462 
   1463 /* Callback to be called during DRC release. */
   1464 void spapr_phb_remove_pci_device_cb(DeviceState *dev)
   1465 {
   1466     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
   1467 
   1468     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
   1469     object_unparent(OBJECT(dev));
   1470 }
   1471 
   1472 int spapr_pci_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
   1473                           void *fdt, int *fdt_start_offset, Error **errp)
   1474 {
   1475     HotplugHandler *plug_handler = qdev_get_hotplug_handler(drc->dev);
   1476     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(plug_handler);
   1477     PCIDevice *pdev = PCI_DEVICE(drc->dev);
   1478 
   1479     *fdt_start_offset = spapr_dt_pci_device(sphb, pdev, fdt, 0);
   1480     return 0;
   1481 }
   1482 
   1483 static void spapr_pci_bridge_plug(SpaprPhbState *phb,
   1484                                   PCIBridge *bridge)
   1485 {
   1486     PCIBus *bus = pci_bridge_get_sec_bus(bridge);
   1487 
   1488     add_drcs(phb, bus);
   1489 }
   1490 
   1491 /* Returns non-zero if the value of "chassis_nr" is already in use */
   1492 static int check_chassis_nr(Object *obj, void *opaque)
   1493 {
   1494     int new_chassis_nr =
   1495         object_property_get_uint(opaque, "chassis_nr", &error_abort);
   1496     int chassis_nr =
   1497         object_property_get_uint(obj, "chassis_nr", NULL);
   1498 
   1499     if (!object_dynamic_cast(obj, TYPE_PCI_BRIDGE)) {
   1500         return 0;
   1501     }
   1502 
   1503     /* Skip unsupported bridge types */
   1504     if (!chassis_nr) {
   1505         return 0;
   1506     }
   1507 
   1508     /* Skip self */
   1509     if (obj == opaque) {
   1510         return 0;
   1511     }
   1512 
   1513     return chassis_nr == new_chassis_nr;
   1514 }
   1515 
   1516 static bool bridge_has_valid_chassis_nr(Object *bridge, Error **errp)
   1517 {
   1518     int chassis_nr =
   1519         object_property_get_uint(bridge, "chassis_nr", NULL);
   1520 
   1521     /*
   1522      * slotid_cap_init() already ensures that "chassis_nr" isn't null for
   1523      * standard PCI bridges, so this really tells if "chassis_nr" is present
   1524      * or not.
   1525      */
   1526     if (!chassis_nr) {
   1527         error_setg(errp, "PCI Bridge lacks a \"chassis_nr\" property");
   1528         error_append_hint(errp, "Try -device pci-bridge instead.\n");
   1529         return false;
   1530     }
   1531 
   1532     /* We want unique values for "chassis_nr" */
   1533     if (object_child_foreach_recursive(object_get_root(), check_chassis_nr,
   1534                                        bridge)) {
   1535         error_setg(errp, "Bridge chassis %d already in use", chassis_nr);
   1536         return false;
   1537     }
   1538 
   1539     return true;
   1540 }
   1541 
   1542 static void spapr_pci_pre_plug(HotplugHandler *plug_handler,
   1543                                DeviceState *plugged_dev, Error **errp)
   1544 {
   1545     SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
   1546     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
   1547     PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
   1548     SpaprDrc *drc = drc_from_dev(phb, pdev);
   1549     PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
   1550     uint32_t slotnr = PCI_SLOT(pdev->devfn);
   1551 
   1552     if (!phb->dr_enabled) {
   1553         /* if this is a hotplug operation initiated by the user
   1554          * we need to let them know it's not enabled
   1555          */
   1556         if (plugged_dev->hotplugged) {
   1557             error_setg(errp, QERR_BUS_NO_HOTPLUG,
   1558                        object_get_typename(OBJECT(phb)));
   1559             return;
   1560         }
   1561     }
   1562 
   1563     if (pc->is_bridge) {
   1564         if (!bridge_has_valid_chassis_nr(OBJECT(plugged_dev), errp)) {
   1565             return;
   1566         }
   1567     }
   1568 
   1569     /* Following the QEMU convention used for PCIe multifunction
   1570      * hotplug, we do not allow functions to be hotplugged to a
   1571      * slot that already has function 0 present
   1572      */
   1573     if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
   1574         PCI_FUNC(pdev->devfn) != 0) {
   1575         error_setg(errp, "PCI: slot %d function 0 already occupied by %s,"
   1576                    " additional functions can no longer be exposed to guest.",
   1577                    slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
   1578     }
   1579 
   1580     if (drc && drc->dev) {
   1581         error_setg(errp, "PCI: slot %d already occupied by %s", slotnr,
   1582                    pci_get_function_0(PCI_DEVICE(drc->dev))->name);
   1583         return;
   1584     }
   1585 }
   1586 
   1587 static void spapr_pci_plug(HotplugHandler *plug_handler,
   1588                            DeviceState *plugged_dev, Error **errp)
   1589 {
   1590     SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
   1591     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
   1592     PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
   1593     SpaprDrc *drc = drc_from_dev(phb, pdev);
   1594     uint32_t slotnr = PCI_SLOT(pdev->devfn);
   1595 
   1596     /*
   1597      * If DR is disabled we don't need to do anything in the case of
   1598      * hotplug or coldplug callbacks.
   1599      */
   1600     if (!phb->dr_enabled) {
   1601         return;
   1602     }
   1603 
   1604     g_assert(drc);
   1605 
   1606     if (pc->is_bridge) {
   1607         spapr_pci_bridge_plug(phb, PCI_BRIDGE(plugged_dev));
   1608     }
   1609 
   1610     /* spapr_pci_pre_plug() already checked the DRC is attachable */
   1611     spapr_drc_attach(drc, DEVICE(pdev));
   1612 
   1613     /* If this is function 0, signal hotplug for all the device functions.
   1614      * Otherwise defer sending the hotplug event.
   1615      */
   1616     if (!spapr_drc_hotplugged(plugged_dev)) {
   1617         spapr_drc_reset(drc);
   1618     } else if (PCI_FUNC(pdev->devfn) == 0) {
   1619         int i;
   1620         uint8_t chassis = chassis_from_bus(pci_get_bus(pdev));
   1621 
   1622         for (i = 0; i < 8; i++) {
   1623             SpaprDrc *func_drc;
   1624             SpaprDrcClass *func_drck;
   1625             SpaprDREntitySense state;
   1626 
   1627             func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
   1628             func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
   1629             state = func_drck->dr_entity_sense(func_drc);
   1630 
   1631             if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
   1632                 spapr_hotplug_req_add_by_index(func_drc);
   1633             }
   1634         }
   1635     }
   1636 }
   1637 
   1638 static void spapr_pci_bridge_unplug(SpaprPhbState *phb,
   1639                                     PCIBridge *bridge)
   1640 {
   1641     PCIBus *bus = pci_bridge_get_sec_bus(bridge);
   1642 
   1643     remove_drcs(phb, bus);
   1644 }
   1645 
   1646 static void spapr_pci_unplug(HotplugHandler *plug_handler,
   1647                              DeviceState *plugged_dev, Error **errp)
   1648 {
   1649     PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
   1650     SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
   1651 
   1652     /* some version guests do not wait for completion of a device
   1653      * cleanup (generally done asynchronously by the kernel) before
   1654      * signaling to QEMU that the device is safe, but instead sleep
   1655      * for some 'safe' period of time. unfortunately on a busy host
   1656      * this sleep isn't guaranteed to be long enough, resulting in
   1657      * bad things like IRQ lines being left asserted during final
   1658      * device removal. to deal with this we call reset just prior
   1659      * to finalizing the device, which will put the device back into
   1660      * an 'idle' state, as the device cleanup code expects.
   1661      */
   1662     pci_device_reset(PCI_DEVICE(plugged_dev));
   1663 
   1664     if (pc->is_bridge) {
   1665         spapr_pci_bridge_unplug(phb, PCI_BRIDGE(plugged_dev));
   1666         return;
   1667     }
   1668 
   1669     qdev_unrealize(plugged_dev);
   1670 }
   1671 
   1672 static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
   1673                                      DeviceState *plugged_dev, Error **errp)
   1674 {
   1675     SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
   1676     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
   1677     SpaprDrc *drc = drc_from_dev(phb, pdev);
   1678 
   1679     if (!phb->dr_enabled) {
   1680         error_setg(errp, QERR_BUS_NO_HOTPLUG,
   1681                    object_get_typename(OBJECT(phb)));
   1682         return;
   1683     }
   1684 
   1685     g_assert(drc);
   1686     g_assert(drc->dev == plugged_dev);
   1687 
   1688     if (!spapr_drc_unplug_requested(drc)) {
   1689         PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
   1690         uint32_t slotnr = PCI_SLOT(pdev->devfn);
   1691         SpaprDrc *func_drc;
   1692         SpaprDrcClass *func_drck;
   1693         SpaprDREntitySense state;
   1694         int i;
   1695         uint8_t chassis = chassis_from_bus(pci_get_bus(pdev));
   1696 
   1697         if (pc->is_bridge) {
   1698             error_setg(errp, "PCI: Hot unplug of PCI bridges not supported");
   1699             return;
   1700         }
   1701         if (object_property_get_uint(OBJECT(pdev), "nvlink2-tgt", NULL)) {
   1702             error_setg(errp, "PCI: Cannot unplug NVLink2 devices");
   1703             return;
   1704         }
   1705 
   1706         /* ensure any other present functions are pending unplug */
   1707         if (PCI_FUNC(pdev->devfn) == 0) {
   1708             for (i = 1; i < 8; i++) {
   1709                 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
   1710                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
   1711                 state = func_drck->dr_entity_sense(func_drc);
   1712                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
   1713                     && !spapr_drc_unplug_requested(func_drc)) {
   1714                     /*
   1715                      * Attempting to remove function 0 of a multifunction
   1716                      * device will will cascade into removing all child
   1717                      * functions, even if their unplug weren't requested
   1718                      * beforehand.
   1719                      */
   1720                     spapr_drc_unplug_request(func_drc);
   1721                 }
   1722             }
   1723         }
   1724 
   1725         spapr_drc_unplug_request(drc);
   1726 
   1727         /* if this isn't func 0, defer unplug event. otherwise signal removal
   1728          * for all present functions
   1729          */
   1730         if (PCI_FUNC(pdev->devfn) == 0) {
   1731             for (i = 7; i >= 0; i--) {
   1732                 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
   1733                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
   1734                 state = func_drck->dr_entity_sense(func_drc);
   1735                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
   1736                     spapr_hotplug_req_remove_by_index(func_drc);
   1737                 }
   1738             }
   1739         }
   1740     } else {
   1741         error_setg(errp,
   1742                    "PCI device unplug already in progress for device %s",
   1743                    drc->dev->id);
   1744     }
   1745 }
   1746 
   1747 static void spapr_phb_finalizefn(Object *obj)
   1748 {
   1749     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(obj);
   1750 
   1751     g_free(sphb->dtbusname);
   1752     sphb->dtbusname = NULL;
   1753 }
   1754 
   1755 static void spapr_phb_unrealize(DeviceState *dev)
   1756 {
   1757     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
   1758     SysBusDevice *s = SYS_BUS_DEVICE(dev);
   1759     PCIHostState *phb = PCI_HOST_BRIDGE(s);
   1760     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(phb);
   1761     SpaprTceTable *tcet;
   1762     int i;
   1763     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
   1764 
   1765     spapr_phb_nvgpu_free(sphb);
   1766 
   1767     if (sphb->msi) {
   1768         g_hash_table_unref(sphb->msi);
   1769         sphb->msi = NULL;
   1770     }
   1771 
   1772     /*
   1773      * Remove IO/MMIO subregions and aliases, rest should get cleaned
   1774      * via PHB's unrealize->object_finalize
   1775      */
   1776     for (i = windows_supported - 1; i >= 0; i--) {
   1777         tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
   1778         if (tcet) {
   1779             memory_region_del_subregion(&sphb->iommu_root,
   1780                                         spapr_tce_get_iommu(tcet));
   1781         }
   1782     }
   1783 
   1784     remove_drcs(sphb, phb->bus);
   1785 
   1786     for (i = PCI_NUM_PINS - 1; i >= 0; i--) {
   1787         if (sphb->lsi_table[i].irq) {
   1788             spapr_irq_free(spapr, sphb->lsi_table[i].irq, 1);
   1789             sphb->lsi_table[i].irq = 0;
   1790         }
   1791     }
   1792 
   1793     QLIST_REMOVE(sphb, list);
   1794 
   1795     memory_region_del_subregion(&sphb->iommu_root, &sphb->msiwindow);
   1796 
   1797     /*
   1798      * An attached PCI device may have memory listeners, eg. VFIO PCI. We have
   1799      * unmapped all sections. Remove the listeners now, before destroying the
   1800      * address space.
   1801      */
   1802     address_space_remove_listeners(&sphb->iommu_as);
   1803     address_space_destroy(&sphb->iommu_as);
   1804 
   1805     qbus_set_hotplug_handler(BUS(phb->bus), NULL);
   1806     pci_unregister_root_bus(phb->bus);
   1807 
   1808     memory_region_del_subregion(get_system_memory(), &sphb->iowindow);
   1809     if (sphb->mem64_win_pciaddr != (hwaddr)-1) {
   1810         memory_region_del_subregion(get_system_memory(), &sphb->mem64window);
   1811     }
   1812     memory_region_del_subregion(get_system_memory(), &sphb->mem32window);
   1813 }
   1814 
   1815 static void spapr_phb_destroy_msi(gpointer opaque)
   1816 {
   1817     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
   1818     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
   1819     SpaprPciMsi *msi = opaque;
   1820 
   1821     if (!smc->legacy_irq_allocation) {
   1822         spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
   1823     }
   1824     spapr_irq_free(spapr, msi->first_irq, msi->num);
   1825     g_free(msi);
   1826 }
   1827 
   1828 static void spapr_phb_realize(DeviceState *dev, Error **errp)
   1829 {
   1830     ERRP_GUARD();
   1831     /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
   1832      * tries to add a sPAPR PHB to a non-pseries machine.
   1833      */
   1834     SpaprMachineState *spapr =
   1835         (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(),
   1836                                                   TYPE_SPAPR_MACHINE);
   1837     SpaprMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL;
   1838     SysBusDevice *s = SYS_BUS_DEVICE(dev);
   1839     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
   1840     PCIHostState *phb = PCI_HOST_BRIDGE(s);
   1841     MachineState *ms = MACHINE(spapr);
   1842     char *namebuf;
   1843     int i;
   1844     PCIBus *bus;
   1845     uint64_t msi_window_size = 4096;
   1846     SpaprTceTable *tcet;
   1847     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
   1848 
   1849     if (!spapr) {
   1850         error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
   1851         return;
   1852     }
   1853 
   1854     assert(sphb->index != (uint32_t)-1); /* checked in spapr_phb_pre_plug() */
   1855 
   1856     if (sphb->mem64_win_size != 0) {
   1857         if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
   1858             error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
   1859                        " (max 2 GiB)", sphb->mem_win_size);
   1860             return;
   1861         }
   1862 
   1863         /* 64-bit window defaults to identity mapping */
   1864         sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
   1865     } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
   1866         /*
   1867          * For compatibility with old configuration, if no 64-bit MMIO
   1868          * window is specified, but the ordinary (32-bit) memory
   1869          * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
   1870          * window, with a 64-bit MMIO window following on immediately
   1871          * afterwards
   1872          */
   1873         sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
   1874         sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
   1875         sphb->mem64_win_pciaddr =
   1876             SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
   1877         sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
   1878     }
   1879 
   1880     if (spapr_pci_find_phb(spapr, sphb->buid)) {
   1881         SpaprPhbState *s;
   1882 
   1883         error_setg(errp, "PCI host bridges must have unique indexes");
   1884         error_append_hint(errp, "The following indexes are already in use:");
   1885         QLIST_FOREACH(s, &spapr->phbs, list) {
   1886             error_append_hint(errp, " %d", s->index);
   1887         }
   1888         error_append_hint(errp, "\nTry another value for the index property\n");
   1889         return;
   1890     }
   1891 
   1892     if (sphb->numa_node != -1 &&
   1893         (sphb->numa_node >= MAX_NODES ||
   1894          !ms->numa_state->nodes[sphb->numa_node].present)) {
   1895         error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
   1896         return;
   1897     }
   1898 
   1899     sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
   1900 
   1901     /* Initialize memory regions */
   1902     namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
   1903     memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
   1904     g_free(namebuf);
   1905 
   1906     namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
   1907     memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
   1908                              namebuf, &sphb->memspace,
   1909                              SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
   1910     g_free(namebuf);
   1911     memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
   1912                                 &sphb->mem32window);
   1913 
   1914     if (sphb->mem64_win_size != 0) {
   1915         namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
   1916         memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
   1917                                  namebuf, &sphb->memspace,
   1918                                  sphb->mem64_win_pciaddr, sphb->mem64_win_size);
   1919         g_free(namebuf);
   1920 
   1921         memory_region_add_subregion(get_system_memory(),
   1922                                     sphb->mem64_win_addr,
   1923                                     &sphb->mem64window);
   1924     }
   1925 
   1926     /* Initialize IO regions */
   1927     namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
   1928     memory_region_init(&sphb->iospace, OBJECT(sphb),
   1929                        namebuf, SPAPR_PCI_IO_WIN_SIZE);
   1930     g_free(namebuf);
   1931 
   1932     namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
   1933     memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
   1934                              &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
   1935     g_free(namebuf);
   1936     memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
   1937                                 &sphb->iowindow);
   1938 
   1939     bus = pci_register_root_bus(dev, NULL,
   1940                                 pci_spapr_set_irq, pci_swizzle_map_irq_fn, sphb,
   1941                                 &sphb->memspace, &sphb->iospace,
   1942                                 PCI_DEVFN(0, 0), PCI_NUM_PINS,
   1943                                 TYPE_PCI_BUS);
   1944 
   1945     /*
   1946      * Despite resembling a vanilla PCI bus in most ways, the PAPR
   1947      * para-virtualized PCI bus *does* permit PCI-E extended config
   1948      * space access
   1949      */
   1950     if (sphb->pcie_ecs) {
   1951         bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
   1952     }
   1953     phb->bus = bus;
   1954     qbus_set_hotplug_handler(BUS(phb->bus), OBJECT(sphb));
   1955 
   1956     /*
   1957      * Initialize PHB address space.
   1958      * By default there will be at least one subregion for default
   1959      * 32bit DMA window.
   1960      * Later the guest might want to create another DMA window
   1961      * which will become another memory subregion.
   1962      */
   1963     namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
   1964     memory_region_init(&sphb->iommu_root, OBJECT(sphb),
   1965                        namebuf, UINT64_MAX);
   1966     g_free(namebuf);
   1967     address_space_init(&sphb->iommu_as, &sphb->iommu_root,
   1968                        sphb->dtbusname);
   1969 
   1970     /*
   1971      * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
   1972      * we need to allocate some memory to catch those writes coming
   1973      * from msi_notify()/msix_notify().
   1974      * As MSIMessage:addr is going to be the same and MSIMessage:data
   1975      * is going to be a VIRQ number, 4 bytes of the MSI MR will only
   1976      * be used.
   1977      *
   1978      * For KVM we want to ensure that this memory is a full page so that
   1979      * our memory slot is of page size granularity.
   1980      */
   1981     if (kvm_enabled()) {
   1982         msi_window_size = qemu_real_host_page_size();
   1983     }
   1984 
   1985     memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
   1986                           "msi", msi_window_size);
   1987     memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
   1988                                 &sphb->msiwindow);
   1989 
   1990     pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
   1991 
   1992     pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
   1993 
   1994     QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
   1995 
   1996     /* Initialize the LSI table */
   1997     for (i = 0; i < PCI_NUM_PINS; i++) {
   1998         int irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i;
   1999 
   2000         if (smc->legacy_irq_allocation) {
   2001             irq = spapr_irq_findone(spapr, errp);
   2002             if (irq < 0) {
   2003                 error_prepend(errp, "can't allocate LSIs: ");
   2004                 /*
   2005                  * Older machines will never support PHB hotplug, ie, this is an
   2006                  * init only path and QEMU will terminate. No need to rollback.
   2007                  */
   2008                 return;
   2009             }
   2010         }
   2011 
   2012         if (spapr_irq_claim(spapr, irq, true, errp) < 0) {
   2013             error_prepend(errp, "can't allocate LSIs: ");
   2014             goto unrealize;
   2015         }
   2016 
   2017         sphb->lsi_table[i].irq = irq;
   2018     }
   2019 
   2020     /* allocate connectors for child PCI devices */
   2021     add_drcs(sphb, phb->bus);
   2022 
   2023     /* DMA setup */
   2024     for (i = 0; i < windows_supported; ++i) {
   2025         tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
   2026         if (!tcet) {
   2027             error_setg(errp, "Creating window#%d failed for %s",
   2028                        i, sphb->dtbusname);
   2029             goto unrealize;
   2030         }
   2031         memory_region_add_subregion(&sphb->iommu_root, 0,
   2032                                     spapr_tce_get_iommu(tcet));
   2033     }
   2034 
   2035     sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free,
   2036                                       spapr_phb_destroy_msi);
   2037     return;
   2038 
   2039 unrealize:
   2040     spapr_phb_unrealize(dev);
   2041 }
   2042 
   2043 static int spapr_phb_children_reset(Object *child, void *opaque)
   2044 {
   2045     DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
   2046 
   2047     if (dev) {
   2048         device_cold_reset(dev);
   2049     }
   2050 
   2051     return 0;
   2052 }
   2053 
   2054 void spapr_phb_dma_reset(SpaprPhbState *sphb)
   2055 {
   2056     int i;
   2057     SpaprTceTable *tcet;
   2058 
   2059     for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
   2060         tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
   2061 
   2062         if (tcet && tcet->nb_table) {
   2063             spapr_tce_table_disable(tcet);
   2064         }
   2065     }
   2066 
   2067     /* Register default 32bit DMA window */
   2068     tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
   2069     spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
   2070                            sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
   2071     tcet->def_win = true;
   2072 }
   2073 
   2074 static void spapr_phb_reset(DeviceState *qdev)
   2075 {
   2076     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
   2077     Error *err = NULL;
   2078 
   2079     spapr_phb_dma_reset(sphb);
   2080     spapr_phb_nvgpu_free(sphb);
   2081     spapr_phb_nvgpu_setup(sphb, &err);
   2082     if (err) {
   2083         error_report_err(err);
   2084     }
   2085 
   2086     /* Reset the IOMMU state */
   2087     object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
   2088 
   2089     if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
   2090         spapr_phb_vfio_reset(qdev);
   2091     }
   2092 
   2093     g_hash_table_remove_all(sphb->msi);
   2094 }
   2095 
   2096 static Property spapr_phb_properties[] = {
   2097     DEFINE_PROP_UINT32("index", SpaprPhbState, index, -1),
   2098     DEFINE_PROP_UINT64("mem_win_size", SpaprPhbState, mem_win_size,
   2099                        SPAPR_PCI_MEM32_WIN_SIZE),
   2100     DEFINE_PROP_UINT64("mem64_win_size", SpaprPhbState, mem64_win_size,
   2101                        SPAPR_PCI_MEM64_WIN_SIZE),
   2102     DEFINE_PROP_UINT64("io_win_size", SpaprPhbState, io_win_size,
   2103                        SPAPR_PCI_IO_WIN_SIZE),
   2104     DEFINE_PROP_BOOL("dynamic-reconfiguration", SpaprPhbState, dr_enabled,
   2105                      true),
   2106     /* Default DMA window is 0..1GB */
   2107     DEFINE_PROP_UINT64("dma_win_addr", SpaprPhbState, dma_win_addr, 0),
   2108     DEFINE_PROP_UINT64("dma_win_size", SpaprPhbState, dma_win_size, 0x40000000),
   2109     DEFINE_PROP_UINT64("dma64_win_addr", SpaprPhbState, dma64_win_addr,
   2110                        0x800000000000000ULL),
   2111     DEFINE_PROP_BOOL("ddw", SpaprPhbState, ddw_enabled, true),
   2112     DEFINE_PROP_UINT64("pgsz", SpaprPhbState, page_size_mask,
   2113                        (1ULL << 12) | (1ULL << 16)
   2114                        | (1ULL << 21) | (1ULL << 24)),
   2115     DEFINE_PROP_UINT32("numa_node", SpaprPhbState, numa_node, -1),
   2116     DEFINE_PROP_BOOL("pre-2.8-migration", SpaprPhbState,
   2117                      pre_2_8_migration, false),
   2118     DEFINE_PROP_BOOL("pcie-extended-configuration-space", SpaprPhbState,
   2119                      pcie_ecs, true),
   2120     DEFINE_PROP_UINT64("gpa", SpaprPhbState, nv2_gpa_win_addr, 0),
   2121     DEFINE_PROP_UINT64("atsd", SpaprPhbState, nv2_atsd_win_addr, 0),
   2122     DEFINE_PROP_BOOL("pre-5.1-associativity", SpaprPhbState,
   2123                      pre_5_1_assoc, false),
   2124     DEFINE_PROP_END_OF_LIST(),
   2125 };
   2126 
   2127 static const VMStateDescription vmstate_spapr_pci_lsi = {
   2128     .name = "spapr_pci/lsi",
   2129     .version_id = 1,
   2130     .minimum_version_id = 1,
   2131     .fields = (VMStateField[]) {
   2132         VMSTATE_UINT32_EQUAL(irq, SpaprPciLsi, NULL),
   2133 
   2134         VMSTATE_END_OF_LIST()
   2135     },
   2136 };
   2137 
   2138 static const VMStateDescription vmstate_spapr_pci_msi = {
   2139     .name = "spapr_pci/msi",
   2140     .version_id = 1,
   2141     .minimum_version_id = 1,
   2142     .fields = (VMStateField []) {
   2143         VMSTATE_UINT32(key, SpaprPciMsiMig),
   2144         VMSTATE_UINT32(value.first_irq, SpaprPciMsiMig),
   2145         VMSTATE_UINT32(value.num, SpaprPciMsiMig),
   2146         VMSTATE_END_OF_LIST()
   2147     },
   2148 };
   2149 
   2150 static int spapr_pci_pre_save(void *opaque)
   2151 {
   2152     SpaprPhbState *sphb = opaque;
   2153     GHashTableIter iter;
   2154     gpointer key, value;
   2155     int i;
   2156 
   2157     if (sphb->pre_2_8_migration) {
   2158         sphb->mig_liobn = sphb->dma_liobn[0];
   2159         sphb->mig_mem_win_addr = sphb->mem_win_addr;
   2160         sphb->mig_mem_win_size = sphb->mem_win_size;
   2161         sphb->mig_io_win_addr = sphb->io_win_addr;
   2162         sphb->mig_io_win_size = sphb->io_win_size;
   2163 
   2164         if ((sphb->mem64_win_size != 0)
   2165             && (sphb->mem64_win_addr
   2166                 == (sphb->mem_win_addr + sphb->mem_win_size))) {
   2167             sphb->mig_mem_win_size += sphb->mem64_win_size;
   2168         }
   2169     }
   2170 
   2171     g_free(sphb->msi_devs);
   2172     sphb->msi_devs = NULL;
   2173     sphb->msi_devs_num = g_hash_table_size(sphb->msi);
   2174     if (!sphb->msi_devs_num) {
   2175         return 0;
   2176     }
   2177     sphb->msi_devs = g_new(SpaprPciMsiMig, sphb->msi_devs_num);
   2178 
   2179     g_hash_table_iter_init(&iter, sphb->msi);
   2180     for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
   2181         sphb->msi_devs[i].key = *(uint32_t *) key;
   2182         sphb->msi_devs[i].value = *(SpaprPciMsi *) value;
   2183     }
   2184 
   2185     return 0;
   2186 }
   2187 
   2188 static int spapr_pci_post_save(void *opaque)
   2189 {
   2190     SpaprPhbState *sphb = opaque;
   2191 
   2192     g_free(sphb->msi_devs);
   2193     sphb->msi_devs = NULL;
   2194     sphb->msi_devs_num = 0;
   2195     return 0;
   2196 }
   2197 
   2198 static int spapr_pci_post_load(void *opaque, int version_id)
   2199 {
   2200     SpaprPhbState *sphb = opaque;
   2201     gpointer key, value;
   2202     int i;
   2203 
   2204     for (i = 0; i < sphb->msi_devs_num; ++i) {
   2205         key = g_memdup(&sphb->msi_devs[i].key,
   2206                        sizeof(sphb->msi_devs[i].key));
   2207         value = g_memdup(&sphb->msi_devs[i].value,
   2208                          sizeof(sphb->msi_devs[i].value));
   2209         g_hash_table_insert(sphb->msi, key, value);
   2210     }
   2211     g_free(sphb->msi_devs);
   2212     sphb->msi_devs = NULL;
   2213     sphb->msi_devs_num = 0;
   2214 
   2215     return 0;
   2216 }
   2217 
   2218 static bool pre_2_8_migration(void *opaque, int version_id)
   2219 {
   2220     SpaprPhbState *sphb = opaque;
   2221 
   2222     return sphb->pre_2_8_migration;
   2223 }
   2224 
   2225 static const VMStateDescription vmstate_spapr_pci = {
   2226     .name = "spapr_pci",
   2227     .version_id = 2,
   2228     .minimum_version_id = 2,
   2229     .pre_save = spapr_pci_pre_save,
   2230     .post_save = spapr_pci_post_save,
   2231     .post_load = spapr_pci_post_load,
   2232     .fields = (VMStateField[]) {
   2233         VMSTATE_UINT64_EQUAL(buid, SpaprPhbState, NULL),
   2234         VMSTATE_UINT32_TEST(mig_liobn, SpaprPhbState, pre_2_8_migration),
   2235         VMSTATE_UINT64_TEST(mig_mem_win_addr, SpaprPhbState, pre_2_8_migration),
   2236         VMSTATE_UINT64_TEST(mig_mem_win_size, SpaprPhbState, pre_2_8_migration),
   2237         VMSTATE_UINT64_TEST(mig_io_win_addr, SpaprPhbState, pre_2_8_migration),
   2238         VMSTATE_UINT64_TEST(mig_io_win_size, SpaprPhbState, pre_2_8_migration),
   2239         VMSTATE_STRUCT_ARRAY(lsi_table, SpaprPhbState, PCI_NUM_PINS, 0,
   2240                              vmstate_spapr_pci_lsi, SpaprPciLsi),
   2241         VMSTATE_INT32(msi_devs_num, SpaprPhbState),
   2242         VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, SpaprPhbState, msi_devs_num, 0,
   2243                                     vmstate_spapr_pci_msi, SpaprPciMsiMig),
   2244         VMSTATE_END_OF_LIST()
   2245     },
   2246 };
   2247 
   2248 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
   2249                                            PCIBus *rootbus)
   2250 {
   2251     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
   2252 
   2253     return sphb->dtbusname;
   2254 }
   2255 
   2256 static void spapr_phb_class_init(ObjectClass *klass, void *data)
   2257 {
   2258     PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
   2259     DeviceClass *dc = DEVICE_CLASS(klass);
   2260     HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
   2261 
   2262     hc->root_bus_path = spapr_phb_root_bus_path;
   2263     dc->realize = spapr_phb_realize;
   2264     dc->unrealize = spapr_phb_unrealize;
   2265     device_class_set_props(dc, spapr_phb_properties);
   2266     dc->reset = spapr_phb_reset;
   2267     dc->vmsd = &vmstate_spapr_pci;
   2268     /* Supported by TYPE_SPAPR_MACHINE */
   2269     dc->user_creatable = true;
   2270     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
   2271     hp->pre_plug = spapr_pci_pre_plug;
   2272     hp->plug = spapr_pci_plug;
   2273     hp->unplug = spapr_pci_unplug;
   2274     hp->unplug_request = spapr_pci_unplug_request;
   2275 }
   2276 
   2277 static const TypeInfo spapr_phb_info = {
   2278     .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
   2279     .parent        = TYPE_PCI_HOST_BRIDGE,
   2280     .instance_size = sizeof(SpaprPhbState),
   2281     .instance_finalize = spapr_phb_finalizefn,
   2282     .class_init    = spapr_phb_class_init,
   2283     .interfaces    = (InterfaceInfo[]) {
   2284         { TYPE_HOTPLUG_HANDLER },
   2285         { }
   2286     }
   2287 };
   2288 
   2289 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
   2290                                            void *opaque)
   2291 {
   2292     unsigned int *bus_no = opaque;
   2293     PCIBus *sec_bus = NULL;
   2294 
   2295     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
   2296          PCI_HEADER_TYPE_BRIDGE)) {
   2297         return;
   2298     }
   2299 
   2300     (*bus_no)++;
   2301     pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1);
   2302     pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
   2303     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
   2304 
   2305     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
   2306     if (!sec_bus) {
   2307         return;
   2308     }
   2309 
   2310     pci_for_each_device_under_bus(sec_bus, spapr_phb_pci_enumerate_bridge,
   2311                                   bus_no);
   2312     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
   2313 }
   2314 
   2315 static void spapr_phb_pci_enumerate(SpaprPhbState *phb)
   2316 {
   2317     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
   2318     unsigned int bus_no = 0;
   2319 
   2320     pci_for_each_device_under_bus(bus, spapr_phb_pci_enumerate_bridge,
   2321                                   &bus_no);
   2322 
   2323 }
   2324 
   2325 int spapr_dt_phb(SpaprMachineState *spapr, SpaprPhbState *phb,
   2326                  uint32_t intc_phandle, void *fdt, int *node_offset)
   2327 {
   2328     int bus_off, i, j, ret;
   2329     uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
   2330     struct {
   2331         uint32_t hi;
   2332         uint64_t child;
   2333         uint64_t parent;
   2334         uint64_t size;
   2335     } QEMU_PACKED ranges[] = {
   2336         {
   2337             cpu_to_be32(b_ss(1)), cpu_to_be64(0),
   2338             cpu_to_be64(phb->io_win_addr),
   2339             cpu_to_be64(memory_region_size(&phb->iospace)),
   2340         },
   2341         {
   2342             cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
   2343             cpu_to_be64(phb->mem_win_addr),
   2344             cpu_to_be64(phb->mem_win_size),
   2345         },
   2346         {
   2347             cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
   2348             cpu_to_be64(phb->mem64_win_addr),
   2349             cpu_to_be64(phb->mem64_win_size),
   2350         },
   2351     };
   2352     const unsigned sizeof_ranges =
   2353         (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
   2354     uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
   2355     uint32_t interrupt_map_mask[] = {
   2356         cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
   2357     uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
   2358     uint32_t ddw_applicable[] = {
   2359         cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
   2360         cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
   2361         cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
   2362     };
   2363     uint32_t ddw_extensions[] = {
   2364         cpu_to_be32(2),
   2365         cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW),
   2366         cpu_to_be32(1), /* 1: ibm,query-pe-dma-window 6 outputs, PAPR 2.8 */
   2367     };
   2368     SpaprTceTable *tcet;
   2369     SpaprDrc *drc;
   2370     Error *err = NULL;
   2371 
   2372     /* Start populating the FDT */
   2373     _FDT(bus_off = fdt_add_subnode(fdt, 0, phb->dtbusname));
   2374     if (node_offset) {
   2375         *node_offset = bus_off;
   2376     }
   2377 
   2378     /* Write PHB properties */
   2379     _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
   2380     _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
   2381     _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
   2382     _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
   2383     _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
   2384     _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
   2385     _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
   2386     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
   2387     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi",
   2388                           spapr_irq_nr_msis(spapr)));
   2389 
   2390     /* Dynamic DMA window */
   2391     if (phb->ddw_enabled) {
   2392         _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
   2393                          sizeof(ddw_applicable)));
   2394         _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
   2395                          &ddw_extensions, sizeof(ddw_extensions)));
   2396     }
   2397 
   2398     /* Advertise NUMA via ibm,associativity */
   2399     if (phb->numa_node != -1) {
   2400         spapr_numa_write_associativity_dt(spapr, fdt, bus_off, phb->numa_node);
   2401     }
   2402 
   2403     /* Build the interrupt-map, this must matches what is done
   2404      * in pci_swizzle_map_irq_fn
   2405      */
   2406     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
   2407                      &interrupt_map_mask, sizeof(interrupt_map_mask)));
   2408     for (i = 0; i < PCI_SLOT_MAX; i++) {
   2409         for (j = 0; j < PCI_NUM_PINS; j++) {
   2410             uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
   2411             int lsi_num = pci_swizzle(i, j);
   2412 
   2413             irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
   2414             irqmap[1] = 0;
   2415             irqmap[2] = 0;
   2416             irqmap[3] = cpu_to_be32(j+1);
   2417             irqmap[4] = cpu_to_be32(intc_phandle);
   2418             spapr_dt_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
   2419         }
   2420     }
   2421     /* Write interrupt map */
   2422     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
   2423                      sizeof(interrupt_map)));
   2424 
   2425     tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
   2426     if (!tcet) {
   2427         return -1;
   2428     }
   2429     spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
   2430                  tcet->liobn, tcet->bus_offset,
   2431                  tcet->nb_table << tcet->page_shift);
   2432 
   2433     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, phb->index);
   2434     if (drc) {
   2435         uint32_t drc_index = cpu_to_be32(spapr_drc_index(drc));
   2436 
   2437         _FDT(fdt_setprop(fdt, bus_off, "ibm,my-drc-index", &drc_index,
   2438                          sizeof(drc_index)));
   2439     }
   2440 
   2441     /* Walk the bridges and program the bus numbers*/
   2442     spapr_phb_pci_enumerate(phb);
   2443     _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
   2444 
   2445     /* Walk the bridge and subordinate buses */
   2446     ret = spapr_dt_pci_bus(phb, PCI_HOST_BRIDGE(phb)->bus, fdt, bus_off);
   2447     if (ret < 0) {
   2448         return ret;
   2449     }
   2450 
   2451     spapr_phb_nvgpu_populate_dt(phb, fdt, bus_off, &err);
   2452     if (err) {
   2453         error_report_err(err);
   2454     }
   2455     spapr_phb_nvgpu_ram_populate_dt(phb, fdt);
   2456 
   2457     return 0;
   2458 }
   2459 
   2460 void spapr_pci_rtas_init(void)
   2461 {
   2462     spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
   2463                         rtas_read_pci_config);
   2464     spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
   2465                         rtas_write_pci_config);
   2466     spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
   2467                         rtas_ibm_read_pci_config);
   2468     spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
   2469                         rtas_ibm_write_pci_config);
   2470     if (msi_nonbroken) {
   2471         spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
   2472                             "ibm,query-interrupt-source-number",
   2473                             rtas_ibm_query_interrupt_source_number);
   2474         spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
   2475                             rtas_ibm_change_msi);
   2476     }
   2477 
   2478     spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
   2479                         "ibm,set-eeh-option",
   2480                         rtas_ibm_set_eeh_option);
   2481     spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
   2482                         "ibm,get-config-addr-info2",
   2483                         rtas_ibm_get_config_addr_info2);
   2484     spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
   2485                         "ibm,read-slot-reset-state2",
   2486                         rtas_ibm_read_slot_reset_state2);
   2487     spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
   2488                         "ibm,set-slot-reset",
   2489                         rtas_ibm_set_slot_reset);
   2490     spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
   2491                         "ibm,configure-pe",
   2492                         rtas_ibm_configure_pe);
   2493     spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
   2494                         "ibm,slot-error-detail",
   2495                         rtas_ibm_slot_error_detail);
   2496 }
   2497 
   2498 static void spapr_pci_register_types(void)
   2499 {
   2500     type_register_static(&spapr_phb_info);
   2501 }
   2502 
   2503 type_init(spapr_pci_register_types)
   2504 
   2505 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
   2506 {
   2507     bool be = *(bool *)opaque;
   2508 
   2509     if (object_dynamic_cast(OBJECT(dev), "VGA")
   2510         || object_dynamic_cast(OBJECT(dev), "secondary-vga")
   2511         || object_dynamic_cast(OBJECT(dev), "bochs-display")
   2512         || object_dynamic_cast(OBJECT(dev), "virtio-vga")) {
   2513         object_property_set_bool(OBJECT(dev), "big-endian-framebuffer", be,
   2514                                  &error_abort);
   2515     }
   2516     return 0;
   2517 }
   2518 
   2519 void spapr_pci_switch_vga(SpaprMachineState *spapr, bool big_endian)
   2520 {
   2521     SpaprPhbState *sphb;
   2522 
   2523     /*
   2524      * For backward compatibility with existing guests, we switch
   2525      * the endianness of the VGA controller when changing the guest
   2526      * interrupt mode
   2527      */
   2528     QLIST_FOREACH(sphb, &spapr->phbs, list) {
   2529         BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
   2530         qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
   2531                            &big_endian);
   2532     }
   2533 }