qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

pnv_lpc.c (26955B)


      1 /*
      2  * QEMU PowerPC PowerNV LPC controller
      3  *
      4  * Copyright (c) 2016, IBM Corporation.
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2.1 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 
     20 #include "qemu/osdep.h"
     21 #include "target/ppc/cpu.h"
     22 #include "qapi/error.h"
     23 #include "qemu/log.h"
     24 #include "qemu/module.h"
     25 #include "hw/irq.h"
     26 #include "hw/isa/isa.h"
     27 #include "hw/qdev-properties.h"
     28 #include "hw/ppc/pnv.h"
     29 #include "hw/ppc/pnv_lpc.h"
     30 #include "hw/ppc/pnv_xscom.h"
     31 #include "hw/ppc/fdt.h"
     32 
     33 #include <libfdt.h>
     34 
     35 enum {
     36     ECCB_CTL    = 0,
     37     ECCB_RESET  = 1,
     38     ECCB_STAT   = 2,
     39     ECCB_DATA   = 3,
     40 };
     41 
     42 /* OPB Master LS registers */
     43 #define OPB_MASTER_LS_ROUTE0    0x8
     44 #define OPB_MASTER_LS_ROUTE1    0xC
     45 #define OPB_MASTER_LS_IRQ_STAT  0x50
     46 #define   OPB_MASTER_IRQ_LPC            0x00000800
     47 #define OPB_MASTER_LS_IRQ_MASK  0x54
     48 #define OPB_MASTER_LS_IRQ_POL   0x58
     49 #define OPB_MASTER_LS_IRQ_INPUT 0x5c
     50 
     51 /* LPC HC registers */
     52 #define LPC_HC_FW_SEG_IDSEL     0x24
     53 #define LPC_HC_FW_RD_ACC_SIZE   0x28
     54 #define   LPC_HC_FW_RD_1B               0x00000000
     55 #define   LPC_HC_FW_RD_2B               0x01000000
     56 #define   LPC_HC_FW_RD_4B               0x02000000
     57 #define   LPC_HC_FW_RD_16B              0x04000000
     58 #define   LPC_HC_FW_RD_128B             0x07000000
     59 #define LPC_HC_IRQSER_CTRL      0x30
     60 #define   LPC_HC_IRQSER_EN              0x80000000
     61 #define   LPC_HC_IRQSER_QMODE           0x40000000
     62 #define   LPC_HC_IRQSER_START_MASK      0x03000000
     63 #define   LPC_HC_IRQSER_START_4CLK      0x00000000
     64 #define   LPC_HC_IRQSER_START_6CLK      0x01000000
     65 #define   LPC_HC_IRQSER_START_8CLK      0x02000000
     66 #define LPC_HC_IRQMASK          0x34    /* same bit defs as LPC_HC_IRQSTAT */
     67 #define LPC_HC_IRQSTAT          0x38
     68 #define   LPC_HC_IRQ_SERIRQ0            0x80000000 /* all bits down to ... */
     69 #define   LPC_HC_IRQ_SERIRQ16           0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */
     70 #define   LPC_HC_IRQ_SERIRQ_ALL         0xffff8000
     71 #define   LPC_HC_IRQ_LRESET             0x00000400
     72 #define   LPC_HC_IRQ_SYNC_ABNORM_ERR    0x00000080
     73 #define   LPC_HC_IRQ_SYNC_NORESP_ERR    0x00000040
     74 #define   LPC_HC_IRQ_SYNC_NORM_ERR      0x00000020
     75 #define   LPC_HC_IRQ_SYNC_TIMEOUT_ERR   0x00000010
     76 #define   LPC_HC_IRQ_SYNC_TARG_TAR_ERR  0x00000008
     77 #define   LPC_HC_IRQ_SYNC_BM_TAR_ERR    0x00000004
     78 #define   LPC_HC_IRQ_SYNC_BM0_REQ       0x00000002
     79 #define   LPC_HC_IRQ_SYNC_BM1_REQ       0x00000001
     80 #define LPC_HC_ERROR_ADDRESS    0x40
     81 
     82 #define LPC_OPB_SIZE            0x100000000ull
     83 
     84 #define ISA_IO_SIZE             0x00010000
     85 #define ISA_MEM_SIZE            0x10000000
     86 #define ISA_FW_SIZE             0x10000000
     87 #define LPC_IO_OPB_ADDR         0xd0010000
     88 #define LPC_IO_OPB_SIZE         0x00010000
     89 #define LPC_MEM_OPB_ADDR        0xe0000000
     90 #define LPC_MEM_OPB_SIZE        0x10000000
     91 #define LPC_FW_OPB_ADDR         0xf0000000
     92 #define LPC_FW_OPB_SIZE         0x10000000
     93 
     94 #define LPC_OPB_REGS_OPB_ADDR   0xc0010000
     95 #define LPC_OPB_REGS_OPB_SIZE   0x00000060
     96 #define LPC_OPB_REGS_OPBA_ADDR  0xc0011000
     97 #define LPC_OPB_REGS_OPBA_SIZE  0x00000008
     98 #define LPC_HC_REGS_OPB_ADDR    0xc0012000
     99 #define LPC_HC_REGS_OPB_SIZE    0x00000100
    100 
    101 static int pnv_lpc_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
    102 {
    103     const char compat[] = "ibm,power8-lpc\0ibm,lpc";
    104     char *name;
    105     int offset;
    106     uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE;
    107     uint32_t reg[] = {
    108         cpu_to_be32(lpc_pcba),
    109         cpu_to_be32(PNV_XSCOM_LPC_SIZE)
    110     };
    111 
    112     name = g_strdup_printf("isa@%x", lpc_pcba);
    113     offset = fdt_add_subnode(fdt, xscom_offset, name);
    114     _FDT(offset);
    115     g_free(name);
    116 
    117     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
    118     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
    119     _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
    120     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
    121     return 0;
    122 }
    123 
    124 /* POWER9 only */
    125 int pnv_dt_lpc(PnvChip *chip, void *fdt, int root_offset, uint64_t lpcm_addr,
    126                uint64_t lpcm_size)
    127 {
    128     const char compat[] = "ibm,power9-lpcm-opb\0simple-bus";
    129     const char lpc_compat[] = "ibm,power9-lpc\0ibm,lpc";
    130     char *name;
    131     int offset, lpcm_offset;
    132     uint32_t opb_ranges[8] = { 0,
    133                                cpu_to_be32(lpcm_addr >> 32),
    134                                cpu_to_be32((uint32_t)lpcm_addr),
    135                                cpu_to_be32(lpcm_size / 2),
    136                                cpu_to_be32(lpcm_size / 2),
    137                                cpu_to_be32(lpcm_addr >> 32),
    138                                cpu_to_be32(lpcm_size / 2),
    139                                cpu_to_be32(lpcm_size / 2),
    140     };
    141     uint32_t opb_reg[4] = { cpu_to_be32(lpcm_addr >> 32),
    142                             cpu_to_be32((uint32_t)lpcm_addr),
    143                             cpu_to_be32(lpcm_size >> 32),
    144                             cpu_to_be32((uint32_t)lpcm_size),
    145     };
    146     uint32_t lpc_ranges[12] = { 0, 0,
    147                                 cpu_to_be32(LPC_MEM_OPB_ADDR),
    148                                 cpu_to_be32(LPC_MEM_OPB_SIZE),
    149                                 cpu_to_be32(1), 0,
    150                                 cpu_to_be32(LPC_IO_OPB_ADDR),
    151                                 cpu_to_be32(LPC_IO_OPB_SIZE),
    152                                 cpu_to_be32(3), 0,
    153                                 cpu_to_be32(LPC_FW_OPB_ADDR),
    154                                 cpu_to_be32(LPC_FW_OPB_SIZE),
    155     };
    156     uint32_t reg[2];
    157 
    158     /*
    159      * OPB bus
    160      */
    161     name = g_strdup_printf("lpcm-opb@%"PRIx64, lpcm_addr);
    162     lpcm_offset = fdt_add_subnode(fdt, root_offset, name);
    163     _FDT(lpcm_offset);
    164     g_free(name);
    165 
    166     _FDT((fdt_setprop(fdt, lpcm_offset, "reg", opb_reg, sizeof(opb_reg))));
    167     _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#address-cells", 1)));
    168     _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#size-cells", 1)));
    169     _FDT((fdt_setprop(fdt, lpcm_offset, "compatible", compat, sizeof(compat))));
    170     _FDT((fdt_setprop_cell(fdt, lpcm_offset, "ibm,chip-id", chip->chip_id)));
    171     _FDT((fdt_setprop(fdt, lpcm_offset, "ranges", opb_ranges,
    172                       sizeof(opb_ranges))));
    173 
    174     /*
    175      * OPB Master registers
    176      */
    177     name = g_strdup_printf("opb-master@%x", LPC_OPB_REGS_OPB_ADDR);
    178     offset = fdt_add_subnode(fdt, lpcm_offset, name);
    179     _FDT(offset);
    180     g_free(name);
    181 
    182     reg[0] = cpu_to_be32(LPC_OPB_REGS_OPB_ADDR);
    183     reg[1] = cpu_to_be32(LPC_OPB_REGS_OPB_SIZE);
    184     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
    185     _FDT((fdt_setprop_string(fdt, offset, "compatible",
    186                              "ibm,power9-lpcm-opb-master")));
    187 
    188     /*
    189      * OPB arbitrer registers
    190      */
    191     name = g_strdup_printf("opb-arbitrer@%x", LPC_OPB_REGS_OPBA_ADDR);
    192     offset = fdt_add_subnode(fdt, lpcm_offset, name);
    193     _FDT(offset);
    194     g_free(name);
    195 
    196     reg[0] = cpu_to_be32(LPC_OPB_REGS_OPBA_ADDR);
    197     reg[1] = cpu_to_be32(LPC_OPB_REGS_OPBA_SIZE);
    198     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
    199     _FDT((fdt_setprop_string(fdt, offset, "compatible",
    200                              "ibm,power9-lpcm-opb-arbiter")));
    201 
    202     /*
    203      * LPC Host Controller registers
    204      */
    205     name = g_strdup_printf("lpc-controller@%x", LPC_HC_REGS_OPB_ADDR);
    206     offset = fdt_add_subnode(fdt, lpcm_offset, name);
    207     _FDT(offset);
    208     g_free(name);
    209 
    210     reg[0] = cpu_to_be32(LPC_HC_REGS_OPB_ADDR);
    211     reg[1] = cpu_to_be32(LPC_HC_REGS_OPB_SIZE);
    212     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
    213     _FDT((fdt_setprop_string(fdt, offset, "compatible",
    214                              "ibm,power9-lpc-controller")));
    215 
    216     name = g_strdup_printf("lpc@0");
    217     offset = fdt_add_subnode(fdt, lpcm_offset, name);
    218     _FDT(offset);
    219     g_free(name);
    220     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
    221     _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
    222     _FDT((fdt_setprop(fdt, offset, "compatible", lpc_compat,
    223                       sizeof(lpc_compat))));
    224     _FDT((fdt_setprop(fdt, offset, "ranges", lpc_ranges,
    225                       sizeof(lpc_ranges))));
    226 
    227     return 0;
    228 }
    229 
    230 /*
    231  * These read/write handlers of the OPB address space should be common
    232  * with the P9 LPC Controller which uses direct MMIOs.
    233  *
    234  * TODO: rework to use address_space_stq() and address_space_ldq()
    235  * instead.
    236  */
    237 static bool opb_read(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
    238                      int sz)
    239 {
    240     /* XXX Handle access size limits and FW read caching here */
    241     return !address_space_read(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
    242                                data, sz);
    243 }
    244 
    245 static bool opb_write(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
    246                       int sz)
    247 {
    248     /* XXX Handle access size limits here */
    249     return !address_space_write(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
    250                                 data, sz);
    251 }
    252 
    253 #define ECCB_CTL_READ           PPC_BIT(15)
    254 #define ECCB_CTL_SZ_LSH         (63 - 7)
    255 #define ECCB_CTL_SZ_MASK        PPC_BITMASK(4, 7)
    256 #define ECCB_CTL_ADDR_MASK      PPC_BITMASK(32, 63)
    257 
    258 #define ECCB_STAT_OP_DONE       PPC_BIT(52)
    259 #define ECCB_STAT_OP_ERR        PPC_BIT(52)
    260 #define ECCB_STAT_RD_DATA_LSH   (63 - 37)
    261 #define ECCB_STAT_RD_DATA_MASK  (0xffffffff << ECCB_STAT_RD_DATA_LSH)
    262 
    263 static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd)
    264 {
    265     /* XXX Check for magic bits at the top, addr size etc... */
    266     unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH;
    267     uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK;
    268     uint8_t data[8];
    269     bool success;
    270 
    271     if (sz > sizeof(data)) {
    272         qemu_log_mask(LOG_GUEST_ERROR,
    273             "ECCB: invalid operation at @0x%08x size %d\n", opb_addr, sz);
    274         return;
    275     }
    276 
    277     if (cmd & ECCB_CTL_READ) {
    278         success = opb_read(lpc, opb_addr, data, sz);
    279         if (success) {
    280             lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
    281                     (((uint64_t)data[0]) << 24 |
    282                      ((uint64_t)data[1]) << 16 |
    283                      ((uint64_t)data[2]) <<  8 |
    284                      ((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH;
    285         } else {
    286             lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
    287                     (0xffffffffull << ECCB_STAT_RD_DATA_LSH);
    288         }
    289     } else {
    290         data[0] = lpc->eccb_data_reg >> 24;
    291         data[1] = lpc->eccb_data_reg >> 16;
    292         data[2] = lpc->eccb_data_reg >>  8;
    293         data[3] = lpc->eccb_data_reg;
    294 
    295         success = opb_write(lpc, opb_addr, data, sz);
    296         lpc->eccb_stat_reg = ECCB_STAT_OP_DONE;
    297     }
    298     /* XXX Which error bit (if any) to signal OPB error ? */
    299 }
    300 
    301 static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size)
    302 {
    303     PnvLpcController *lpc = PNV_LPC(opaque);
    304     uint32_t offset = addr >> 3;
    305     uint64_t val = 0;
    306 
    307     switch (offset & 3) {
    308     case ECCB_CTL:
    309     case ECCB_RESET:
    310         val = 0;
    311         break;
    312     case ECCB_STAT:
    313         val = lpc->eccb_stat_reg;
    314         lpc->eccb_stat_reg = 0;
    315         break;
    316     case ECCB_DATA:
    317         val = ((uint64_t)lpc->eccb_data_reg) << 32;
    318         break;
    319     }
    320     return val;
    321 }
    322 
    323 static void pnv_lpc_xscom_write(void *opaque, hwaddr addr,
    324                                 uint64_t val, unsigned size)
    325 {
    326     PnvLpcController *lpc = PNV_LPC(opaque);
    327     uint32_t offset = addr >> 3;
    328 
    329     switch (offset & 3) {
    330     case ECCB_CTL:
    331         pnv_lpc_do_eccb(lpc, val);
    332         break;
    333     case ECCB_RESET:
    334         /*  XXXX  */
    335         break;
    336     case ECCB_STAT:
    337         break;
    338     case ECCB_DATA:
    339         lpc->eccb_data_reg = val >> 32;
    340         break;
    341     }
    342 }
    343 
    344 static const MemoryRegionOps pnv_lpc_xscom_ops = {
    345     .read = pnv_lpc_xscom_read,
    346     .write = pnv_lpc_xscom_write,
    347     .valid.min_access_size = 8,
    348     .valid.max_access_size = 8,
    349     .impl.min_access_size = 8,
    350     .impl.max_access_size = 8,
    351     .endianness = DEVICE_BIG_ENDIAN,
    352 };
    353 
    354 static uint64_t pnv_lpc_mmio_read(void *opaque, hwaddr addr, unsigned size)
    355 {
    356     PnvLpcController *lpc = PNV_LPC(opaque);
    357     uint64_t val = 0;
    358     uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
    359     MemTxResult result;
    360 
    361     switch (size) {
    362     case 4:
    363         val = address_space_ldl(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
    364                                 &result);
    365         break;
    366     case 1:
    367         val = address_space_ldub(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
    368                                  &result);
    369         break;
    370     default:
    371         qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
    372                       HWADDR_PRIx " invalid size %d\n", addr, size);
    373         return 0;
    374     }
    375 
    376     if (result != MEMTX_OK) {
    377         qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
    378                       HWADDR_PRIx "\n", addr);
    379     }
    380 
    381     return val;
    382 }
    383 
    384 static void pnv_lpc_mmio_write(void *opaque, hwaddr addr,
    385                                 uint64_t val, unsigned size)
    386 {
    387     PnvLpcController *lpc = PNV_LPC(opaque);
    388     uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
    389     MemTxResult result;
    390 
    391     switch (size) {
    392     case 4:
    393         address_space_stl(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
    394                           &result);
    395          break;
    396     case 1:
    397         address_space_stb(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
    398                           &result);
    399         break;
    400     default:
    401         qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
    402                       HWADDR_PRIx " invalid size %d\n", addr, size);
    403         return;
    404     }
    405 
    406     if (result != MEMTX_OK) {
    407         qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
    408                       HWADDR_PRIx "\n", addr);
    409     }
    410 }
    411 
    412 static const MemoryRegionOps pnv_lpc_mmio_ops = {
    413     .read = pnv_lpc_mmio_read,
    414     .write = pnv_lpc_mmio_write,
    415     .impl = {
    416         .min_access_size = 1,
    417         .max_access_size = 4,
    418     },
    419     .endianness = DEVICE_BIG_ENDIAN,
    420 };
    421 
    422 static void pnv_lpc_eval_irqs(PnvLpcController *lpc)
    423 {
    424     bool lpc_to_opb_irq = false;
    425 
    426     /* Update LPC controller to OPB line */
    427     if (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_EN) {
    428         uint32_t irqs;
    429 
    430         irqs = lpc->lpc_hc_irqstat & lpc->lpc_hc_irqmask;
    431         lpc_to_opb_irq = (irqs != 0);
    432     }
    433 
    434     /* We don't honor the polarity register, it's pointless and unused
    435      * anyway
    436      */
    437     if (lpc_to_opb_irq) {
    438         lpc->opb_irq_input |= OPB_MASTER_IRQ_LPC;
    439     } else {
    440         lpc->opb_irq_input &= ~OPB_MASTER_IRQ_LPC;
    441     }
    442 
    443     /* Update OPB internal latch */
    444     lpc->opb_irq_stat |= lpc->opb_irq_input & lpc->opb_irq_mask;
    445 
    446     /* Reflect the interrupt */
    447     qemu_set_irq(lpc->psi_irq, lpc->opb_irq_stat != 0);
    448 }
    449 
    450 static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size)
    451 {
    452     PnvLpcController *lpc = opaque;
    453     uint64_t val = 0xfffffffffffffffful;
    454 
    455     switch (addr) {
    456     case LPC_HC_FW_SEG_IDSEL:
    457         val =  lpc->lpc_hc_fw_seg_idsel;
    458         break;
    459     case LPC_HC_FW_RD_ACC_SIZE:
    460         val =  lpc->lpc_hc_fw_rd_acc_size;
    461         break;
    462     case LPC_HC_IRQSER_CTRL:
    463         val =  lpc->lpc_hc_irqser_ctrl;
    464         break;
    465     case LPC_HC_IRQMASK:
    466         val =  lpc->lpc_hc_irqmask;
    467         break;
    468     case LPC_HC_IRQSTAT:
    469         val =  lpc->lpc_hc_irqstat;
    470         break;
    471     case LPC_HC_ERROR_ADDRESS:
    472         val =  lpc->lpc_hc_error_addr;
    473         break;
    474     default:
    475         qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
    476                       HWADDR_PRIx "\n", addr);
    477     }
    478     return val;
    479 }
    480 
    481 static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val,
    482                          unsigned size)
    483 {
    484     PnvLpcController *lpc = opaque;
    485 
    486     /* XXX Filter out reserved bits */
    487 
    488     switch (addr) {
    489     case LPC_HC_FW_SEG_IDSEL:
    490         /* XXX Actually figure out how that works as this impact
    491          * memory regions/aliases
    492          */
    493         lpc->lpc_hc_fw_seg_idsel = val;
    494         break;
    495     case LPC_HC_FW_RD_ACC_SIZE:
    496         lpc->lpc_hc_fw_rd_acc_size = val;
    497         break;
    498     case LPC_HC_IRQSER_CTRL:
    499         lpc->lpc_hc_irqser_ctrl = val;
    500         pnv_lpc_eval_irqs(lpc);
    501         break;
    502     case LPC_HC_IRQMASK:
    503         lpc->lpc_hc_irqmask = val;
    504         pnv_lpc_eval_irqs(lpc);
    505         break;
    506     case LPC_HC_IRQSTAT:
    507         lpc->lpc_hc_irqstat &= ~val;
    508         pnv_lpc_eval_irqs(lpc);
    509         break;
    510     case LPC_HC_ERROR_ADDRESS:
    511         break;
    512     default:
    513         qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
    514                       HWADDR_PRIx "\n", addr);
    515     }
    516 }
    517 
    518 static const MemoryRegionOps lpc_hc_ops = {
    519     .read = lpc_hc_read,
    520     .write = lpc_hc_write,
    521     .endianness = DEVICE_BIG_ENDIAN,
    522     .valid = {
    523         .min_access_size = 4,
    524         .max_access_size = 4,
    525     },
    526     .impl = {
    527         .min_access_size = 4,
    528         .max_access_size = 4,
    529     },
    530 };
    531 
    532 static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size)
    533 {
    534     PnvLpcController *lpc = opaque;
    535     uint64_t val = 0xfffffffffffffffful;
    536 
    537     switch (addr) {
    538     case OPB_MASTER_LS_ROUTE0: /* TODO */
    539         val = lpc->opb_irq_route0;
    540         break;
    541     case OPB_MASTER_LS_ROUTE1: /* TODO */
    542         val = lpc->opb_irq_route1;
    543         break;
    544     case OPB_MASTER_LS_IRQ_STAT:
    545         val = lpc->opb_irq_stat;
    546         break;
    547     case OPB_MASTER_LS_IRQ_MASK:
    548         val = lpc->opb_irq_mask;
    549         break;
    550     case OPB_MASTER_LS_IRQ_POL:
    551         val = lpc->opb_irq_pol;
    552         break;
    553     case OPB_MASTER_LS_IRQ_INPUT:
    554         val = lpc->opb_irq_input;
    555         break;
    556     default:
    557         qemu_log_mask(LOG_UNIMP, "OPBM: read on unimplemented register: 0x%"
    558                       HWADDR_PRIx "\n", addr);
    559     }
    560 
    561     return val;
    562 }
    563 
    564 static void opb_master_write(void *opaque, hwaddr addr,
    565                              uint64_t val, unsigned size)
    566 {
    567     PnvLpcController *lpc = opaque;
    568 
    569     switch (addr) {
    570     case OPB_MASTER_LS_ROUTE0: /* TODO */
    571         lpc->opb_irq_route0 = val;
    572         break;
    573     case OPB_MASTER_LS_ROUTE1: /* TODO */
    574         lpc->opb_irq_route1 = val;
    575         break;
    576     case OPB_MASTER_LS_IRQ_STAT:
    577         lpc->opb_irq_stat &= ~val;
    578         pnv_lpc_eval_irqs(lpc);
    579         break;
    580     case OPB_MASTER_LS_IRQ_MASK:
    581         lpc->opb_irq_mask = val;
    582         pnv_lpc_eval_irqs(lpc);
    583         break;
    584     case OPB_MASTER_LS_IRQ_POL:
    585         lpc->opb_irq_pol = val;
    586         pnv_lpc_eval_irqs(lpc);
    587         break;
    588     case OPB_MASTER_LS_IRQ_INPUT:
    589         /* Read only */
    590         break;
    591     default:
    592         qemu_log_mask(LOG_UNIMP, "OPBM: write on unimplemented register: 0x%"
    593                       HWADDR_PRIx " val=0x%08"PRIx64"\n", addr, val);
    594     }
    595 }
    596 
    597 static const MemoryRegionOps opb_master_ops = {
    598     .read = opb_master_read,
    599     .write = opb_master_write,
    600     .endianness = DEVICE_BIG_ENDIAN,
    601     .valid = {
    602         .min_access_size = 4,
    603         .max_access_size = 4,
    604     },
    605     .impl = {
    606         .min_access_size = 4,
    607         .max_access_size = 4,
    608     },
    609 };
    610 
    611 static void pnv_lpc_power8_realize(DeviceState *dev, Error **errp)
    612 {
    613     PnvLpcController *lpc = PNV_LPC(dev);
    614     PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
    615     Error *local_err = NULL;
    616 
    617     plc->parent_realize(dev, &local_err);
    618     if (local_err) {
    619         error_propagate(errp, local_err);
    620         return;
    621     }
    622 
    623     /* P8 uses a XSCOM region for LPC registers */
    624     pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(lpc),
    625                           &pnv_lpc_xscom_ops, lpc, "xscom-lpc",
    626                           PNV_XSCOM_LPC_SIZE);
    627 }
    628 
    629 static void pnv_lpc_power8_class_init(ObjectClass *klass, void *data)
    630 {
    631     DeviceClass *dc = DEVICE_CLASS(klass);
    632     PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
    633     PnvLpcClass *plc = PNV_LPC_CLASS(klass);
    634 
    635     dc->desc = "PowerNV LPC Controller POWER8";
    636 
    637     xdc->dt_xscom = pnv_lpc_dt_xscom;
    638 
    639     device_class_set_parent_realize(dc, pnv_lpc_power8_realize,
    640                                     &plc->parent_realize);
    641 }
    642 
    643 static const TypeInfo pnv_lpc_power8_info = {
    644     .name          = TYPE_PNV8_LPC,
    645     .parent        = TYPE_PNV_LPC,
    646     .class_init    = pnv_lpc_power8_class_init,
    647     .interfaces = (InterfaceInfo[]) {
    648         { TYPE_PNV_XSCOM_INTERFACE },
    649         { }
    650     }
    651 };
    652 
    653 static void pnv_lpc_power9_realize(DeviceState *dev, Error **errp)
    654 {
    655     PnvLpcController *lpc = PNV_LPC(dev);
    656     PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
    657     Error *local_err = NULL;
    658 
    659     plc->parent_realize(dev, &local_err);
    660     if (local_err) {
    661         error_propagate(errp, local_err);
    662         return;
    663     }
    664 
    665     /* P9 uses a MMIO region */
    666     memory_region_init_io(&lpc->xscom_regs, OBJECT(lpc), &pnv_lpc_mmio_ops,
    667                           lpc, "lpcm", PNV9_LPCM_SIZE);
    668 }
    669 
    670 static void pnv_lpc_power9_class_init(ObjectClass *klass, void *data)
    671 {
    672     DeviceClass *dc = DEVICE_CLASS(klass);
    673     PnvLpcClass *plc = PNV_LPC_CLASS(klass);
    674 
    675     dc->desc = "PowerNV LPC Controller POWER9";
    676 
    677     device_class_set_parent_realize(dc, pnv_lpc_power9_realize,
    678                                     &plc->parent_realize);
    679 }
    680 
    681 static const TypeInfo pnv_lpc_power9_info = {
    682     .name          = TYPE_PNV9_LPC,
    683     .parent        = TYPE_PNV_LPC,
    684     .class_init    = pnv_lpc_power9_class_init,
    685 };
    686 
    687 static void pnv_lpc_power10_class_init(ObjectClass *klass, void *data)
    688 {
    689     DeviceClass *dc = DEVICE_CLASS(klass);
    690 
    691     dc->desc = "PowerNV LPC Controller POWER10";
    692 }
    693 
    694 static const TypeInfo pnv_lpc_power10_info = {
    695     .name          = TYPE_PNV10_LPC,
    696     .parent        = TYPE_PNV9_LPC,
    697     .class_init    = pnv_lpc_power10_class_init,
    698 };
    699 
    700 static void pnv_lpc_realize(DeviceState *dev, Error **errp)
    701 {
    702     PnvLpcController *lpc = PNV_LPC(dev);
    703 
    704     /* Reg inits */
    705     lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B;
    706 
    707     /* Create address space and backing MR for the OPB bus */
    708     memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull);
    709     address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb");
    710 
    711     /* Create ISA IO and Mem space regions which are the root of
    712      * the ISA bus (ie, ISA address spaces). We don't create a
    713      * separate one for FW which we alias to memory.
    714      */
    715     memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE);
    716     memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE);
    717     memory_region_init(&lpc->isa_fw, OBJECT(dev),  "isa-fw", ISA_FW_SIZE);
    718 
    719     /* Create windows from the OPB space to the ISA space */
    720     memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io",
    721                              &lpc->isa_io, 0, LPC_IO_OPB_SIZE);
    722     memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR,
    723                                 &lpc->opb_isa_io);
    724     memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem",
    725                              &lpc->isa_mem, 0, LPC_MEM_OPB_SIZE);
    726     memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR,
    727                                 &lpc->opb_isa_mem);
    728     memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw",
    729                              &lpc->isa_fw, 0, LPC_FW_OPB_SIZE);
    730     memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR,
    731                                 &lpc->opb_isa_fw);
    732 
    733     /* Create MMIO regions for LPC HC and OPB registers */
    734     memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops,
    735                           lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE);
    736     memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR,
    737                                 &lpc->opb_master_regs);
    738     memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc,
    739                           "lpc-hc", LPC_HC_REGS_OPB_SIZE);
    740     memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR,
    741                                 &lpc->lpc_hc_regs);
    742 
    743     qdev_init_gpio_out(DEVICE(dev), &lpc->psi_irq, 1);
    744 }
    745 
    746 static void pnv_lpc_class_init(ObjectClass *klass, void *data)
    747 {
    748     DeviceClass *dc = DEVICE_CLASS(klass);
    749 
    750     dc->realize = pnv_lpc_realize;
    751     dc->desc = "PowerNV LPC Controller";
    752     dc->user_creatable = false;
    753 }
    754 
    755 static const TypeInfo pnv_lpc_info = {
    756     .name          = TYPE_PNV_LPC,
    757     .parent        = TYPE_DEVICE,
    758     .instance_size = sizeof(PnvLpcController),
    759     .class_init    = pnv_lpc_class_init,
    760     .class_size    = sizeof(PnvLpcClass),
    761     .abstract      = true,
    762 };
    763 
    764 static void pnv_lpc_register_types(void)
    765 {
    766     type_register_static(&pnv_lpc_info);
    767     type_register_static(&pnv_lpc_power8_info);
    768     type_register_static(&pnv_lpc_power9_info);
    769     type_register_static(&pnv_lpc_power10_info);
    770 }
    771 
    772 type_init(pnv_lpc_register_types)
    773 
    774 /* If we don't use the built-in LPC interrupt deserializer, we need
    775  * to provide a set of qirqs for the ISA bus or things will go bad.
    776  *
    777  * Most machines using pre-Naples chips (without said deserializer)
    778  * have a CPLD that will collect the SerIRQ and shoot them as a
    779  * single level interrupt to the P8 chip. So let's setup a hook
    780  * for doing just that.
    781  */
    782 static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level)
    783 {
    784     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
    785     uint32_t old_state = pnv->cpld_irqstate;
    786     PnvLpcController *lpc = PNV_LPC(opaque);
    787 
    788     if (level) {
    789         pnv->cpld_irqstate |= 1u << n;
    790     } else {
    791         pnv->cpld_irqstate &= ~(1u << n);
    792     }
    793 
    794     if (pnv->cpld_irqstate != old_state) {
    795         qemu_set_irq(lpc->psi_irq, pnv->cpld_irqstate != 0);
    796     }
    797 }
    798 
    799 static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level)
    800 {
    801     PnvLpcController *lpc = PNV_LPC(opaque);
    802 
    803     /* The Naples HW latches the 1 levels, clearing is done by SW */
    804     if (level) {
    805         lpc->lpc_hc_irqstat |= LPC_HC_IRQ_SERIRQ0 >> n;
    806         pnv_lpc_eval_irqs(lpc);
    807     }
    808 }
    809 
    810 ISABus *pnv_lpc_isa_create(PnvLpcController *lpc, bool use_cpld, Error **errp)
    811 {
    812     Error *local_err = NULL;
    813     ISABus *isa_bus;
    814     qemu_irq *irqs;
    815     qemu_irq_handler handler;
    816 
    817     /* let isa_bus_new() create its own bridge on SysBus otherwise
    818      * devices specified on the command line won't find the bus and
    819      * will fail to create.
    820      */
    821     isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &local_err);
    822     if (local_err) {
    823         error_propagate(errp, local_err);
    824         return NULL;
    825     }
    826 
    827     /* Not all variants have a working serial irq decoder. If not,
    828      * handling of LPC interrupts becomes a platform issue (some
    829      * platforms have a CPLD to do it).
    830      */
    831     if (use_cpld) {
    832         handler = pnv_lpc_isa_irq_handler_cpld;
    833     } else {
    834         handler = pnv_lpc_isa_irq_handler;
    835     }
    836 
    837     irqs = qemu_allocate_irqs(handler, lpc, ISA_NUM_IRQS);
    838 
    839     isa_bus_irqs(isa_bus, irqs);
    840 
    841     return isa_bus;
    842 }