qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

ctrl.c (225624B)


      1 /*
      2  * QEMU NVM Express Controller
      3  *
      4  * Copyright (c) 2012, Intel Corporation
      5  *
      6  * Written by Keith Busch <keith.busch@intel.com>
      7  *
      8  * This code is licensed under the GNU GPL v2 or later.
      9  */
     10 
     11 /**
     12  * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
     13  *
     14  *  https://nvmexpress.org/developers/nvme-specification/
     15  *
     16  *
     17  * Notes on coding style
     18  * ---------------------
     19  * While QEMU coding style prefers lowercase hexadecimals in constants, the
     20  * NVMe subsystem use thes format from the NVMe specifications in the comments
     21  * (i.e. 'h' suffix instead of '0x' prefix).
     22  *
     23  * Usage
     24  * -----
     25  * See docs/system/nvme.rst for extensive documentation.
     26  *
     27  * Add options:
     28  *      -drive file=<file>,if=none,id=<drive_id>
     29  *      -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
     30  *      -device nvme,serial=<serial>,id=<bus_name>, \
     31  *              cmb_size_mb=<cmb_size_mb[optional]>, \
     32  *              [pmrdev=<mem_backend_file_id>,] \
     33  *              max_ioqpairs=<N[optional]>, \
     34  *              aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
     35  *              mdts=<N[optional]>,vsl=<N[optional]>, \
     36  *              zoned.zasl=<N[optional]>, \
     37  *              zoned.auto_transition=<on|off[optional]>, \
     38  *              sriov_max_vfs=<N[optional]> \
     39  *              sriov_vq_flexible=<N[optional]> \
     40  *              sriov_vi_flexible=<N[optional]> \
     41  *              sriov_max_vi_per_vf=<N[optional]> \
     42  *              sriov_max_vq_per_vf=<N[optional]> \
     43  *              subsys=<subsys_id>
     44  *      -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
     45  *              zoned=<true|false[optional]>, \
     46  *              subsys=<subsys_id>,detached=<true|false[optional]>
     47  *
     48  * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
     49  * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
     50  * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
     51  * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
     52  *
     53  * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
     54  * For example:
     55  * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
     56  *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
     57  *
     58  * The PMR will use BAR 4/5 exclusively.
     59  *
     60  * To place controller(s) and namespace(s) to a subsystem, then provide
     61  * nvme-subsys device as above.
     62  *
     63  * nvme subsystem device parameters
     64  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     65  * - `nqn`
     66  *   This parameter provides the `<nqn_id>` part of the string
     67  *   `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
     68  *   of subsystem controllers. Note that `<nqn_id>` should be unique per
     69  *   subsystem, but this is not enforced by QEMU. If not specified, it will
     70  *   default to the value of the `id` parameter (`<subsys_id>`).
     71  *
     72  * nvme device parameters
     73  * ~~~~~~~~~~~~~~~~~~~~~~
     74  * - `subsys`
     75  *   Specifying this parameter attaches the controller to the subsystem and
     76  *   the SUBNQN field in the controller will report the NQN of the subsystem
     77  *   device. This also enables multi controller capability represented in
     78  *   Identify Controller data structure in CMIC (Controller Multi-path I/O and
     79  *   Namespace Sharing Capabilities).
     80  *
     81  * - `aerl`
     82  *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
     83  *   of concurrently outstanding Asynchronous Event Request commands support
     84  *   by the controller. This is a 0's based value.
     85  *
     86  * - `aer_max_queued`
     87  *   This is the maximum number of events that the device will enqueue for
     88  *   completion when there are no outstanding AERs. When the maximum number of
     89  *   enqueued events are reached, subsequent events will be dropped.
     90  *
     91  * - `mdts`
     92  *   Indicates the maximum data transfer size for a command that transfers data
     93  *   between host-accessible memory and the controller. The value is specified
     94  *   as a power of two (2^n) and is in units of the minimum memory page size
     95  *   (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
     96  *
     97  * - `vsl`
     98  *   Indicates the maximum data size limit for the Verify command. Like `mdts`,
     99  *   this value is specified as a power of two (2^n) and is in units of the
    100  *   minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
    101  *   KiB).
    102  *
    103  * - `zoned.zasl`
    104  *   Indicates the maximum data transfer size for the Zone Append command. Like
    105  *   `mdts`, the value is specified as a power of two (2^n) and is in units of
    106  *   the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
    107  *   defaulting to the value of `mdts`).
    108  *
    109  * - `zoned.auto_transition`
    110  *   Indicates if zones in zone state implicitly opened can be automatically
    111  *   transitioned to zone state closed for resource management purposes.
    112  *   Defaults to 'on'.
    113  *
    114  * - `sriov_max_vfs`
    115  *   Indicates the maximum number of PCIe virtual functions supported
    116  *   by the controller. The default value is 0. Specifying a non-zero value
    117  *   enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
    118  *   Virtual function controllers will not report SR-IOV capability.
    119  *
    120  *   NOTE: Single Root I/O Virtualization support is experimental.
    121  *   All the related parameters may be subject to change.
    122  *
    123  * - `sriov_vq_flexible`
    124  *   Indicates the total number of flexible queue resources assignable to all
    125  *   the secondary controllers. Implicitly sets the number of primary
    126  *   controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
    127  *
    128  * - `sriov_vi_flexible`
    129  *   Indicates the total number of flexible interrupt resources assignable to
    130  *   all the secondary controllers. Implicitly sets the number of primary
    131  *   controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
    132  *
    133  * - `sriov_max_vi_per_vf`
    134  *   Indicates the maximum number of virtual interrupt resources assignable
    135  *   to a secondary controller. The default 0 resolves to
    136  *   `(sriov_vi_flexible / sriov_max_vfs)`.
    137  *
    138  * - `sriov_max_vq_per_vf`
    139  *   Indicates the maximum number of virtual queue resources assignable to
    140  *   a secondary controller. The default 0 resolves to
    141  *   `(sriov_vq_flexible / sriov_max_vfs)`.
    142  *
    143  * nvme namespace device parameters
    144  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    145  * - `shared`
    146  *   When the parent nvme device (as defined explicitly by the 'bus' parameter
    147  *   or implicitly by the most recently defined NvmeBus) is linked to an
    148  *   nvme-subsys device, the namespace will be attached to all controllers in
    149  *   the subsystem. If set to 'off' (the default), the namespace will remain a
    150  *   private namespace and may only be attached to a single controller at a
    151  *   time.
    152  *
    153  * - `detached`
    154  *   This parameter is only valid together with the `subsys` parameter. If left
    155  *   at the default value (`false/off`), the namespace will be attached to all
    156  *   controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
    157  *   namespace will be available in the subsystem but not attached to any
    158  *   controllers.
    159  *
    160  * Setting `zoned` to true selects Zoned Command Set at the namespace.
    161  * In this case, the following namespace properties are available to configure
    162  * zoned operation:
    163  *     zoned.zone_size=<zone size in bytes, default: 128MiB>
    164  *         The number may be followed by K, M, G as in kilo-, mega- or giga-.
    165  *
    166  *     zoned.zone_capacity=<zone capacity in bytes, default: zone size>
    167  *         The value 0 (default) forces zone capacity to be the same as zone
    168  *         size. The value of this property may not exceed zone size.
    169  *
    170  *     zoned.descr_ext_size=<zone descriptor extension size, default 0>
    171  *         This value needs to be specified in 64B units. If it is zero,
    172  *         namespace(s) will not support zone descriptor extensions.
    173  *
    174  *     zoned.max_active=<Maximum Active Resources (zones), default: 0>
    175  *         The default value means there is no limit to the number of
    176  *         concurrently active zones.
    177  *
    178  *     zoned.max_open=<Maximum Open Resources (zones), default: 0>
    179  *         The default value means there is no limit to the number of
    180  *         concurrently open zones.
    181  *
    182  *     zoned.cross_read=<enable RAZB, default: false>
    183  *         Setting this property to true enables Read Across Zone Boundaries.
    184  */
    185 
    186 #include "qemu/osdep.h"
    187 #include "qemu/cutils.h"
    188 #include "qemu/error-report.h"
    189 #include "qemu/log.h"
    190 #include "qemu/units.h"
    191 #include "qemu/range.h"
    192 #include "qapi/error.h"
    193 #include "qapi/visitor.h"
    194 #include "sysemu/sysemu.h"
    195 #include "sysemu/block-backend.h"
    196 #include "sysemu/hostmem.h"
    197 #include "hw/pci/msix.h"
    198 #include "hw/pci/pcie_sriov.h"
    199 #include "migration/vmstate.h"
    200 
    201 #include "nvme.h"
    202 #include "dif.h"
    203 #include "trace.h"
    204 
    205 #define NVME_MAX_IOQPAIRS 0xffff
    206 #define NVME_DB_SIZE  4
    207 #define NVME_SPEC_VER 0x00010400
    208 #define NVME_CMB_BIR 2
    209 #define NVME_PMR_BIR 4
    210 #define NVME_TEMPERATURE 0x143
    211 #define NVME_TEMPERATURE_WARNING 0x157
    212 #define NVME_TEMPERATURE_CRITICAL 0x175
    213 #define NVME_NUM_FW_SLOTS 1
    214 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
    215 #define NVME_MAX_VFS 127
    216 #define NVME_VF_RES_GRANULARITY 1
    217 #define NVME_VF_OFFSET 0x1
    218 #define NVME_VF_STRIDE 1
    219 
    220 #define NVME_GUEST_ERR(trace, fmt, ...) \
    221     do { \
    222         (trace_##trace)(__VA_ARGS__); \
    223         qemu_log_mask(LOG_GUEST_ERROR, #trace \
    224             " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
    225     } while (0)
    226 
    227 static const bool nvme_feature_support[NVME_FID_MAX] = {
    228     [NVME_ARBITRATION]              = true,
    229     [NVME_POWER_MANAGEMENT]         = true,
    230     [NVME_TEMPERATURE_THRESHOLD]    = true,
    231     [NVME_ERROR_RECOVERY]           = true,
    232     [NVME_VOLATILE_WRITE_CACHE]     = true,
    233     [NVME_NUMBER_OF_QUEUES]         = true,
    234     [NVME_INTERRUPT_COALESCING]     = true,
    235     [NVME_INTERRUPT_VECTOR_CONF]    = true,
    236     [NVME_WRITE_ATOMICITY]          = true,
    237     [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
    238     [NVME_TIMESTAMP]                = true,
    239     [NVME_HOST_BEHAVIOR_SUPPORT]    = true,
    240     [NVME_COMMAND_SET_PROFILE]      = true,
    241 };
    242 
    243 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
    244     [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
    245     [NVME_ERROR_RECOVERY]           = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
    246     [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
    247     [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
    248     [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
    249     [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
    250     [NVME_HOST_BEHAVIOR_SUPPORT]    = NVME_FEAT_CAP_CHANGE,
    251     [NVME_COMMAND_SET_PROFILE]      = NVME_FEAT_CAP_CHANGE,
    252 };
    253 
    254 static const uint32_t nvme_cse_acs[256] = {
    255     [NVME_ADM_CMD_DELETE_SQ]        = NVME_CMD_EFF_CSUPP,
    256     [NVME_ADM_CMD_CREATE_SQ]        = NVME_CMD_EFF_CSUPP,
    257     [NVME_ADM_CMD_GET_LOG_PAGE]     = NVME_CMD_EFF_CSUPP,
    258     [NVME_ADM_CMD_DELETE_CQ]        = NVME_CMD_EFF_CSUPP,
    259     [NVME_ADM_CMD_CREATE_CQ]        = NVME_CMD_EFF_CSUPP,
    260     [NVME_ADM_CMD_IDENTIFY]         = NVME_CMD_EFF_CSUPP,
    261     [NVME_ADM_CMD_ABORT]            = NVME_CMD_EFF_CSUPP,
    262     [NVME_ADM_CMD_SET_FEATURES]     = NVME_CMD_EFF_CSUPP,
    263     [NVME_ADM_CMD_GET_FEATURES]     = NVME_CMD_EFF_CSUPP,
    264     [NVME_ADM_CMD_ASYNC_EV_REQ]     = NVME_CMD_EFF_CSUPP,
    265     [NVME_ADM_CMD_NS_ATTACHMENT]    = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
    266     [NVME_ADM_CMD_VIRT_MNGMT]       = NVME_CMD_EFF_CSUPP,
    267     [NVME_ADM_CMD_DBBUF_CONFIG]     = NVME_CMD_EFF_CSUPP,
    268     [NVME_ADM_CMD_FORMAT_NVM]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
    269 };
    270 
    271 static const uint32_t nvme_cse_iocs_none[256];
    272 
    273 static const uint32_t nvme_cse_iocs_nvm[256] = {
    274     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
    275     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
    276     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
    277     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
    278     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
    279     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
    280     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
    281     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
    282 };
    283 
    284 static const uint32_t nvme_cse_iocs_zoned[256] = {
    285     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
    286     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
    287     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
    288     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
    289     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
    290     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
    291     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
    292     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
    293     [NVME_CMD_ZONE_APPEND]          = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
    294     [NVME_CMD_ZONE_MGMT_SEND]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
    295     [NVME_CMD_ZONE_MGMT_RECV]       = NVME_CMD_EFF_CSUPP,
    296 };
    297 
    298 static void nvme_process_sq(void *opaque);
    299 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
    300 
    301 static uint16_t nvme_sqid(NvmeRequest *req)
    302 {
    303     return le16_to_cpu(req->sq->sqid);
    304 }
    305 
    306 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
    307                                    NvmeZoneState state)
    308 {
    309     if (QTAILQ_IN_USE(zone, entry)) {
    310         switch (nvme_get_zone_state(zone)) {
    311         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
    312             QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
    313             break;
    314         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
    315             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
    316             break;
    317         case NVME_ZONE_STATE_CLOSED:
    318             QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
    319             break;
    320         case NVME_ZONE_STATE_FULL:
    321             QTAILQ_REMOVE(&ns->full_zones, zone, entry);
    322         default:
    323             ;
    324         }
    325     }
    326 
    327     nvme_set_zone_state(zone, state);
    328 
    329     switch (state) {
    330     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
    331         QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
    332         break;
    333     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
    334         QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
    335         break;
    336     case NVME_ZONE_STATE_CLOSED:
    337         QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
    338         break;
    339     case NVME_ZONE_STATE_FULL:
    340         QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
    341     case NVME_ZONE_STATE_READ_ONLY:
    342         break;
    343     default:
    344         zone->d.za = 0;
    345     }
    346 }
    347 
    348 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
    349                                          uint32_t opn, uint32_t zrwa)
    350 {
    351     if (ns->params.max_active_zones != 0 &&
    352         ns->nr_active_zones + act > ns->params.max_active_zones) {
    353         trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
    354         return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
    355     }
    356 
    357     if (ns->params.max_open_zones != 0 &&
    358         ns->nr_open_zones + opn > ns->params.max_open_zones) {
    359         trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
    360         return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
    361     }
    362 
    363     if (zrwa > ns->zns.numzrwa) {
    364         return NVME_NOZRWA | NVME_DNR;
    365     }
    366 
    367     return NVME_SUCCESS;
    368 }
    369 
    370 /*
    371  * Check if we can open a zone without exceeding open/active limits.
    372  * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
    373  */
    374 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
    375 {
    376     return nvme_zns_check_resources(ns, act, opn, 0);
    377 }
    378 
    379 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
    380 {
    381     hwaddr hi, lo;
    382 
    383     if (!n->cmb.cmse) {
    384         return false;
    385     }
    386 
    387     lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
    388     hi = lo + int128_get64(n->cmb.mem.size);
    389 
    390     return addr >= lo && addr < hi;
    391 }
    392 
    393 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
    394 {
    395     hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
    396     return &n->cmb.buf[addr - base];
    397 }
    398 
    399 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
    400 {
    401     hwaddr hi;
    402 
    403     if (!n->pmr.cmse) {
    404         return false;
    405     }
    406 
    407     hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
    408 
    409     return addr >= n->pmr.cba && addr < hi;
    410 }
    411 
    412 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
    413 {
    414     return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
    415 }
    416 
    417 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
    418 {
    419     hwaddr hi, lo;
    420 
    421     /*
    422      * The purpose of this check is to guard against invalid "local" access to
    423      * the iomem (i.e. controller registers). Thus, we check against the range
    424      * covered by the 'bar0' MemoryRegion since that is currently composed of
    425      * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
    426      * that if the device model is ever changed to allow the CMB to be located
    427      * in BAR0 as well, then this must be changed.
    428      */
    429     lo = n->bar0.addr;
    430     hi = lo + int128_get64(n->bar0.size);
    431 
    432     return addr >= lo && addr < hi;
    433 }
    434 
    435 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
    436 {
    437     hwaddr hi = addr + size - 1;
    438     if (hi < addr) {
    439         return 1;
    440     }
    441 
    442     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
    443         memcpy(buf, nvme_addr_to_cmb(n, addr), size);
    444         return 0;
    445     }
    446 
    447     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
    448         memcpy(buf, nvme_addr_to_pmr(n, addr), size);
    449         return 0;
    450     }
    451 
    452     return pci_dma_read(&n->parent_obj, addr, buf, size);
    453 }
    454 
    455 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
    456 {
    457     hwaddr hi = addr + size - 1;
    458     if (hi < addr) {
    459         return 1;
    460     }
    461 
    462     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
    463         memcpy(nvme_addr_to_cmb(n, addr), buf, size);
    464         return 0;
    465     }
    466 
    467     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
    468         memcpy(nvme_addr_to_pmr(n, addr), buf, size);
    469         return 0;
    470     }
    471 
    472     return pci_dma_write(&n->parent_obj, addr, buf, size);
    473 }
    474 
    475 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
    476 {
    477     return nsid &&
    478         (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
    479 }
    480 
    481 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
    482 {
    483     return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
    484 }
    485 
    486 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
    487 {
    488     return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
    489 }
    490 
    491 static void nvme_inc_cq_tail(NvmeCQueue *cq)
    492 {
    493     cq->tail++;
    494     if (cq->tail >= cq->size) {
    495         cq->tail = 0;
    496         cq->phase = !cq->phase;
    497     }
    498 }
    499 
    500 static void nvme_inc_sq_head(NvmeSQueue *sq)
    501 {
    502     sq->head = (sq->head + 1) % sq->size;
    503 }
    504 
    505 static uint8_t nvme_cq_full(NvmeCQueue *cq)
    506 {
    507     return (cq->tail + 1) % cq->size == cq->head;
    508 }
    509 
    510 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
    511 {
    512     return sq->head == sq->tail;
    513 }
    514 
    515 static void nvme_irq_check(NvmeCtrl *n)
    516 {
    517     uint32_t intms = ldl_le_p(&n->bar.intms);
    518 
    519     if (msix_enabled(&(n->parent_obj))) {
    520         return;
    521     }
    522     if (~intms & n->irq_status) {
    523         pci_irq_assert(&n->parent_obj);
    524     } else {
    525         pci_irq_deassert(&n->parent_obj);
    526     }
    527 }
    528 
    529 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
    530 {
    531     if (cq->irq_enabled) {
    532         if (msix_enabled(&(n->parent_obj))) {
    533             trace_pci_nvme_irq_msix(cq->vector);
    534             msix_notify(&(n->parent_obj), cq->vector);
    535         } else {
    536             trace_pci_nvme_irq_pin();
    537             assert(cq->vector < 32);
    538             n->irq_status |= 1 << cq->vector;
    539             nvme_irq_check(n);
    540         }
    541     } else {
    542         trace_pci_nvme_irq_masked();
    543     }
    544 }
    545 
    546 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
    547 {
    548     if (cq->irq_enabled) {
    549         if (msix_enabled(&(n->parent_obj))) {
    550             return;
    551         } else {
    552             assert(cq->vector < 32);
    553             if (!n->cq_pending) {
    554                 n->irq_status &= ~(1 << cq->vector);
    555             }
    556             nvme_irq_check(n);
    557         }
    558     }
    559 }
    560 
    561 static void nvme_req_clear(NvmeRequest *req)
    562 {
    563     req->ns = NULL;
    564     req->opaque = NULL;
    565     req->aiocb = NULL;
    566     memset(&req->cqe, 0x0, sizeof(req->cqe));
    567     req->status = NVME_SUCCESS;
    568 }
    569 
    570 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
    571 {
    572     if (dma) {
    573         pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
    574         sg->flags = NVME_SG_DMA;
    575     } else {
    576         qemu_iovec_init(&sg->iov, 0);
    577     }
    578 
    579     sg->flags |= NVME_SG_ALLOC;
    580 }
    581 
    582 static inline void nvme_sg_unmap(NvmeSg *sg)
    583 {
    584     if (!(sg->flags & NVME_SG_ALLOC)) {
    585         return;
    586     }
    587 
    588     if (sg->flags & NVME_SG_DMA) {
    589         qemu_sglist_destroy(&sg->qsg);
    590     } else {
    591         qemu_iovec_destroy(&sg->iov);
    592     }
    593 
    594     memset(sg, 0x0, sizeof(*sg));
    595 }
    596 
    597 /*
    598  * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
    599  * holds both data and metadata. This function splits the data and metadata
    600  * into two separate QSG/IOVs.
    601  */
    602 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
    603                           NvmeSg *mdata)
    604 {
    605     NvmeSg *dst = data;
    606     uint32_t trans_len, count = ns->lbasz;
    607     uint64_t offset = 0;
    608     bool dma = sg->flags & NVME_SG_DMA;
    609     size_t sge_len;
    610     size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
    611     int sg_idx = 0;
    612 
    613     assert(sg->flags & NVME_SG_ALLOC);
    614 
    615     while (sg_len) {
    616         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
    617 
    618         trans_len = MIN(sg_len, count);
    619         trans_len = MIN(trans_len, sge_len - offset);
    620 
    621         if (dst) {
    622             if (dma) {
    623                 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
    624                                 trans_len);
    625             } else {
    626                 qemu_iovec_add(&dst->iov,
    627                                sg->iov.iov[sg_idx].iov_base + offset,
    628                                trans_len);
    629             }
    630         }
    631 
    632         sg_len -= trans_len;
    633         count -= trans_len;
    634         offset += trans_len;
    635 
    636         if (count == 0) {
    637             dst = (dst == data) ? mdata : data;
    638             count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
    639         }
    640 
    641         if (sge_len == offset) {
    642             offset = 0;
    643             sg_idx++;
    644         }
    645     }
    646 }
    647 
    648 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
    649                                   size_t len)
    650 {
    651     if (!len) {
    652         return NVME_SUCCESS;
    653     }
    654 
    655     trace_pci_nvme_map_addr_cmb(addr, len);
    656 
    657     if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
    658         return NVME_DATA_TRAS_ERROR;
    659     }
    660 
    661     qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
    662 
    663     return NVME_SUCCESS;
    664 }
    665 
    666 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
    667                                   size_t len)
    668 {
    669     if (!len) {
    670         return NVME_SUCCESS;
    671     }
    672 
    673     if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
    674         return NVME_DATA_TRAS_ERROR;
    675     }
    676 
    677     qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
    678 
    679     return NVME_SUCCESS;
    680 }
    681 
    682 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
    683 {
    684     bool cmb = false, pmr = false;
    685 
    686     if (!len) {
    687         return NVME_SUCCESS;
    688     }
    689 
    690     trace_pci_nvme_map_addr(addr, len);
    691 
    692     if (nvme_addr_is_iomem(n, addr)) {
    693         return NVME_DATA_TRAS_ERROR;
    694     }
    695 
    696     if (nvme_addr_is_cmb(n, addr)) {
    697         cmb = true;
    698     } else if (nvme_addr_is_pmr(n, addr)) {
    699         pmr = true;
    700     }
    701 
    702     if (cmb || pmr) {
    703         if (sg->flags & NVME_SG_DMA) {
    704             return NVME_INVALID_USE_OF_CMB | NVME_DNR;
    705         }
    706 
    707         if (sg->iov.niov + 1 > IOV_MAX) {
    708             goto max_mappings_exceeded;
    709         }
    710 
    711         if (cmb) {
    712             return nvme_map_addr_cmb(n, &sg->iov, addr, len);
    713         } else {
    714             return nvme_map_addr_pmr(n, &sg->iov, addr, len);
    715         }
    716     }
    717 
    718     if (!(sg->flags & NVME_SG_DMA)) {
    719         return NVME_INVALID_USE_OF_CMB | NVME_DNR;
    720     }
    721 
    722     if (sg->qsg.nsg + 1 > IOV_MAX) {
    723         goto max_mappings_exceeded;
    724     }
    725 
    726     qemu_sglist_add(&sg->qsg, addr, len);
    727 
    728     return NVME_SUCCESS;
    729 
    730 max_mappings_exceeded:
    731     NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
    732                    "number of mappings exceed 1024");
    733     return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
    734 }
    735 
    736 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
    737 {
    738     return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
    739 }
    740 
    741 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
    742                              uint64_t prp2, uint32_t len)
    743 {
    744     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
    745     trans_len = MIN(len, trans_len);
    746     int num_prps = (len >> n->page_bits) + 1;
    747     uint16_t status;
    748     int ret;
    749 
    750     trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
    751 
    752     nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
    753 
    754     status = nvme_map_addr(n, sg, prp1, trans_len);
    755     if (status) {
    756         goto unmap;
    757     }
    758 
    759     len -= trans_len;
    760     if (len) {
    761         if (len > n->page_size) {
    762             uint64_t prp_list[n->max_prp_ents];
    763             uint32_t nents, prp_trans;
    764             int i = 0;
    765 
    766             /*
    767              * The first PRP list entry, pointed to by PRP2 may contain offset.
    768              * Hence, we need to calculate the number of entries in based on
    769              * that offset.
    770              */
    771             nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
    772             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
    773             ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
    774             if (ret) {
    775                 trace_pci_nvme_err_addr_read(prp2);
    776                 status = NVME_DATA_TRAS_ERROR;
    777                 goto unmap;
    778             }
    779             while (len != 0) {
    780                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
    781 
    782                 if (i == nents - 1 && len > n->page_size) {
    783                     if (unlikely(prp_ent & (n->page_size - 1))) {
    784                         trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
    785                         status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
    786                         goto unmap;
    787                     }
    788 
    789                     i = 0;
    790                     nents = (len + n->page_size - 1) >> n->page_bits;
    791                     nents = MIN(nents, n->max_prp_ents);
    792                     prp_trans = nents * sizeof(uint64_t);
    793                     ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
    794                                          prp_trans);
    795                     if (ret) {
    796                         trace_pci_nvme_err_addr_read(prp_ent);
    797                         status = NVME_DATA_TRAS_ERROR;
    798                         goto unmap;
    799                     }
    800                     prp_ent = le64_to_cpu(prp_list[i]);
    801                 }
    802 
    803                 if (unlikely(prp_ent & (n->page_size - 1))) {
    804                     trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
    805                     status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
    806                     goto unmap;
    807                 }
    808 
    809                 trans_len = MIN(len, n->page_size);
    810                 status = nvme_map_addr(n, sg, prp_ent, trans_len);
    811                 if (status) {
    812                     goto unmap;
    813                 }
    814 
    815                 len -= trans_len;
    816                 i++;
    817             }
    818         } else {
    819             if (unlikely(prp2 & (n->page_size - 1))) {
    820                 trace_pci_nvme_err_invalid_prp2_align(prp2);
    821                 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
    822                 goto unmap;
    823             }
    824             status = nvme_map_addr(n, sg, prp2, len);
    825             if (status) {
    826                 goto unmap;
    827             }
    828         }
    829     }
    830 
    831     return NVME_SUCCESS;
    832 
    833 unmap:
    834     nvme_sg_unmap(sg);
    835     return status;
    836 }
    837 
    838 /*
    839  * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
    840  * number of bytes mapped in len.
    841  */
    842 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
    843                                   NvmeSglDescriptor *segment, uint64_t nsgld,
    844                                   size_t *len, NvmeCmd *cmd)
    845 {
    846     dma_addr_t addr, trans_len;
    847     uint32_t dlen;
    848     uint16_t status;
    849 
    850     for (int i = 0; i < nsgld; i++) {
    851         uint8_t type = NVME_SGL_TYPE(segment[i].type);
    852 
    853         switch (type) {
    854         case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
    855             break;
    856         case NVME_SGL_DESCR_TYPE_SEGMENT:
    857         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
    858             return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
    859         default:
    860             return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
    861         }
    862 
    863         dlen = le32_to_cpu(segment[i].len);
    864 
    865         if (!dlen) {
    866             continue;
    867         }
    868 
    869         if (*len == 0) {
    870             /*
    871              * All data has been mapped, but the SGL contains additional
    872              * segments and/or descriptors. The controller might accept
    873              * ignoring the rest of the SGL.
    874              */
    875             uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
    876             if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
    877                 break;
    878             }
    879 
    880             trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
    881             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
    882         }
    883 
    884         trans_len = MIN(*len, dlen);
    885 
    886         addr = le64_to_cpu(segment[i].addr);
    887 
    888         if (UINT64_MAX - addr < dlen) {
    889             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
    890         }
    891 
    892         status = nvme_map_addr(n, sg, addr, trans_len);
    893         if (status) {
    894             return status;
    895         }
    896 
    897         *len -= trans_len;
    898     }
    899 
    900     return NVME_SUCCESS;
    901 }
    902 
    903 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
    904                              size_t len, NvmeCmd *cmd)
    905 {
    906     /*
    907      * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
    908      * dynamically allocating a potentially huge SGL. The spec allows the SGL
    909      * to be larger (as in number of bytes required to describe the SGL
    910      * descriptors and segment chain) than the command transfer size, so it is
    911      * not bounded by MDTS.
    912      */
    913     const int SEG_CHUNK_SIZE = 256;
    914 
    915     NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
    916     uint64_t nsgld;
    917     uint32_t seg_len;
    918     uint16_t status;
    919     hwaddr addr;
    920     int ret;
    921 
    922     sgld = &sgl;
    923     addr = le64_to_cpu(sgl.addr);
    924 
    925     trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
    926 
    927     nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
    928 
    929     /*
    930      * If the entire transfer can be described with a single data block it can
    931      * be mapped directly.
    932      */
    933     if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
    934         status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
    935         if (status) {
    936             goto unmap;
    937         }
    938 
    939         goto out;
    940     }
    941 
    942     for (;;) {
    943         switch (NVME_SGL_TYPE(sgld->type)) {
    944         case NVME_SGL_DESCR_TYPE_SEGMENT:
    945         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
    946             break;
    947         default:
    948             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
    949         }
    950 
    951         seg_len = le32_to_cpu(sgld->len);
    952 
    953         /* check the length of the (Last) Segment descriptor */
    954         if (!seg_len || seg_len & 0xf) {
    955             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
    956         }
    957 
    958         if (UINT64_MAX - addr < seg_len) {
    959             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
    960         }
    961 
    962         nsgld = seg_len / sizeof(NvmeSglDescriptor);
    963 
    964         while (nsgld > SEG_CHUNK_SIZE) {
    965             if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
    966                 trace_pci_nvme_err_addr_read(addr);
    967                 status = NVME_DATA_TRAS_ERROR;
    968                 goto unmap;
    969             }
    970 
    971             status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
    972                                        &len, cmd);
    973             if (status) {
    974                 goto unmap;
    975             }
    976 
    977             nsgld -= SEG_CHUNK_SIZE;
    978             addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
    979         }
    980 
    981         ret = nvme_addr_read(n, addr, segment, nsgld *
    982                              sizeof(NvmeSglDescriptor));
    983         if (ret) {
    984             trace_pci_nvme_err_addr_read(addr);
    985             status = NVME_DATA_TRAS_ERROR;
    986             goto unmap;
    987         }
    988 
    989         last_sgld = &segment[nsgld - 1];
    990 
    991         /*
    992          * If the segment ends with a Data Block, then we are done.
    993          */
    994         if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
    995             status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
    996             if (status) {
    997                 goto unmap;
    998             }
    999 
   1000             goto out;
   1001         }
   1002 
   1003         /*
   1004          * If the last descriptor was not a Data Block, then the current
   1005          * segment must not be a Last Segment.
   1006          */
   1007         if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
   1008             status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
   1009             goto unmap;
   1010         }
   1011 
   1012         sgld = last_sgld;
   1013         addr = le64_to_cpu(sgld->addr);
   1014 
   1015         /*
   1016          * Do not map the last descriptor; it will be a Segment or Last Segment
   1017          * descriptor and is handled by the next iteration.
   1018          */
   1019         status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
   1020         if (status) {
   1021             goto unmap;
   1022         }
   1023     }
   1024 
   1025 out:
   1026     /* if there is any residual left in len, the SGL was too short */
   1027     if (len) {
   1028         status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
   1029         goto unmap;
   1030     }
   1031 
   1032     return NVME_SUCCESS;
   1033 
   1034 unmap:
   1035     nvme_sg_unmap(sg);
   1036     return status;
   1037 }
   1038 
   1039 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
   1040                        NvmeCmd *cmd)
   1041 {
   1042     uint64_t prp1, prp2;
   1043 
   1044     switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
   1045     case NVME_PSDT_PRP:
   1046         prp1 = le64_to_cpu(cmd->dptr.prp1);
   1047         prp2 = le64_to_cpu(cmd->dptr.prp2);
   1048 
   1049         return nvme_map_prp(n, sg, prp1, prp2, len);
   1050     case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
   1051     case NVME_PSDT_SGL_MPTR_SGL:
   1052         return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
   1053     default:
   1054         return NVME_INVALID_FIELD;
   1055     }
   1056 }
   1057 
   1058 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
   1059                               NvmeCmd *cmd)
   1060 {
   1061     int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
   1062     hwaddr mptr = le64_to_cpu(cmd->mptr);
   1063     uint16_t status;
   1064 
   1065     if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
   1066         NvmeSglDescriptor sgl;
   1067 
   1068         if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
   1069             return NVME_DATA_TRAS_ERROR;
   1070         }
   1071 
   1072         status = nvme_map_sgl(n, sg, sgl, len, cmd);
   1073         if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
   1074             status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
   1075         }
   1076 
   1077         return status;
   1078     }
   1079 
   1080     nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
   1081     status = nvme_map_addr(n, sg, mptr, len);
   1082     if (status) {
   1083         nvme_sg_unmap(sg);
   1084     }
   1085 
   1086     return status;
   1087 }
   1088 
   1089 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
   1090 {
   1091     NvmeNamespace *ns = req->ns;
   1092     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
   1093     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
   1094     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
   1095     size_t len = nvme_l2b(ns, nlb);
   1096     uint16_t status;
   1097 
   1098     if (nvme_ns_ext(ns) &&
   1099         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
   1100         NvmeSg sg;
   1101 
   1102         len += nvme_m2b(ns, nlb);
   1103 
   1104         status = nvme_map_dptr(n, &sg, len, &req->cmd);
   1105         if (status) {
   1106             return status;
   1107         }
   1108 
   1109         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
   1110         nvme_sg_split(&sg, ns, &req->sg, NULL);
   1111         nvme_sg_unmap(&sg);
   1112 
   1113         return NVME_SUCCESS;
   1114     }
   1115 
   1116     return nvme_map_dptr(n, &req->sg, len, &req->cmd);
   1117 }
   1118 
   1119 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
   1120 {
   1121     NvmeNamespace *ns = req->ns;
   1122     size_t len = nvme_m2b(ns, nlb);
   1123     uint16_t status;
   1124 
   1125     if (nvme_ns_ext(ns)) {
   1126         NvmeSg sg;
   1127 
   1128         len += nvme_l2b(ns, nlb);
   1129 
   1130         status = nvme_map_dptr(n, &sg, len, &req->cmd);
   1131         if (status) {
   1132             return status;
   1133         }
   1134 
   1135         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
   1136         nvme_sg_split(&sg, ns, NULL, &req->sg);
   1137         nvme_sg_unmap(&sg);
   1138 
   1139         return NVME_SUCCESS;
   1140     }
   1141 
   1142     return nvme_map_mptr(n, &req->sg, len, &req->cmd);
   1143 }
   1144 
   1145 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
   1146                                     uint32_t len, uint32_t bytes,
   1147                                     int32_t skip_bytes, int64_t offset,
   1148                                     NvmeTxDirection dir)
   1149 {
   1150     hwaddr addr;
   1151     uint32_t trans_len, count = bytes;
   1152     bool dma = sg->flags & NVME_SG_DMA;
   1153     int64_t sge_len;
   1154     int sg_idx = 0;
   1155     int ret;
   1156 
   1157     assert(sg->flags & NVME_SG_ALLOC);
   1158 
   1159     while (len) {
   1160         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
   1161 
   1162         if (sge_len - offset < 0) {
   1163             offset -= sge_len;
   1164             sg_idx++;
   1165             continue;
   1166         }
   1167 
   1168         if (sge_len == offset) {
   1169             offset = 0;
   1170             sg_idx++;
   1171             continue;
   1172         }
   1173 
   1174         trans_len = MIN(len, count);
   1175         trans_len = MIN(trans_len, sge_len - offset);
   1176 
   1177         if (dma) {
   1178             addr = sg->qsg.sg[sg_idx].base + offset;
   1179         } else {
   1180             addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
   1181         }
   1182 
   1183         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
   1184             ret = nvme_addr_read(n, addr, ptr, trans_len);
   1185         } else {
   1186             ret = nvme_addr_write(n, addr, ptr, trans_len);
   1187         }
   1188 
   1189         if (ret) {
   1190             return NVME_DATA_TRAS_ERROR;
   1191         }
   1192 
   1193         ptr += trans_len;
   1194         len -= trans_len;
   1195         count -= trans_len;
   1196         offset += trans_len;
   1197 
   1198         if (count == 0) {
   1199             count = bytes;
   1200             offset += skip_bytes;
   1201         }
   1202     }
   1203 
   1204     return NVME_SUCCESS;
   1205 }
   1206 
   1207 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
   1208                         NvmeTxDirection dir)
   1209 {
   1210     assert(sg->flags & NVME_SG_ALLOC);
   1211 
   1212     if (sg->flags & NVME_SG_DMA) {
   1213         const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
   1214         dma_addr_t residual;
   1215 
   1216         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
   1217             dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
   1218         } else {
   1219             dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
   1220         }
   1221 
   1222         if (unlikely(residual)) {
   1223             trace_pci_nvme_err_invalid_dma();
   1224             return NVME_INVALID_FIELD | NVME_DNR;
   1225         }
   1226     } else {
   1227         size_t bytes;
   1228 
   1229         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
   1230             bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
   1231         } else {
   1232             bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
   1233         }
   1234 
   1235         if (unlikely(bytes != len)) {
   1236             trace_pci_nvme_err_invalid_dma();
   1237             return NVME_INVALID_FIELD | NVME_DNR;
   1238         }
   1239     }
   1240 
   1241     return NVME_SUCCESS;
   1242 }
   1243 
   1244 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
   1245                                 NvmeRequest *req)
   1246 {
   1247     uint16_t status;
   1248 
   1249     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
   1250     if (status) {
   1251         return status;
   1252     }
   1253 
   1254     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
   1255 }
   1256 
   1257 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
   1258                                 NvmeRequest *req)
   1259 {
   1260     uint16_t status;
   1261 
   1262     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
   1263     if (status) {
   1264         return status;
   1265     }
   1266 
   1267     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
   1268 }
   1269 
   1270 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
   1271                           NvmeTxDirection dir, NvmeRequest *req)
   1272 {
   1273     NvmeNamespace *ns = req->ns;
   1274     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
   1275     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
   1276     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
   1277 
   1278     if (nvme_ns_ext(ns) &&
   1279         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
   1280         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
   1281                                    ns->lbaf.ms, 0, dir);
   1282     }
   1283 
   1284     return nvme_tx(n, &req->sg, ptr, len, dir);
   1285 }
   1286 
   1287 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
   1288                            NvmeTxDirection dir, NvmeRequest *req)
   1289 {
   1290     NvmeNamespace *ns = req->ns;
   1291     uint16_t status;
   1292 
   1293     if (nvme_ns_ext(ns)) {
   1294         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
   1295                                    ns->lbasz, ns->lbasz, dir);
   1296     }
   1297 
   1298     nvme_sg_unmap(&req->sg);
   1299 
   1300     status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
   1301     if (status) {
   1302         return status;
   1303     }
   1304 
   1305     return nvme_tx(n, &req->sg, ptr, len, dir);
   1306 }
   1307 
   1308 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
   1309                                  BlockCompletionFunc *cb, NvmeRequest *req)
   1310 {
   1311     assert(req->sg.flags & NVME_SG_ALLOC);
   1312 
   1313     if (req->sg.flags & NVME_SG_DMA) {
   1314         req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
   1315                                   cb, req);
   1316     } else {
   1317         req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
   1318     }
   1319 }
   1320 
   1321 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
   1322                                   BlockCompletionFunc *cb, NvmeRequest *req)
   1323 {
   1324     assert(req->sg.flags & NVME_SG_ALLOC);
   1325 
   1326     if (req->sg.flags & NVME_SG_DMA) {
   1327         req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
   1328                                    cb, req);
   1329     } else {
   1330         req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
   1331     }
   1332 }
   1333 
   1334 static void nvme_update_cq_head(NvmeCQueue *cq)
   1335 {
   1336     pci_dma_read(&cq->ctrl->parent_obj, cq->db_addr, &cq->head,
   1337             sizeof(cq->head));
   1338     trace_pci_nvme_shadow_doorbell_cq(cq->cqid, cq->head);
   1339 }
   1340 
   1341 static void nvme_post_cqes(void *opaque)
   1342 {
   1343     NvmeCQueue *cq = opaque;
   1344     NvmeCtrl *n = cq->ctrl;
   1345     NvmeRequest *req, *next;
   1346     bool pending = cq->head != cq->tail;
   1347     int ret;
   1348 
   1349     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
   1350         NvmeSQueue *sq;
   1351         hwaddr addr;
   1352 
   1353         if (n->dbbuf_enabled) {
   1354             nvme_update_cq_head(cq);
   1355         }
   1356 
   1357         if (nvme_cq_full(cq)) {
   1358             break;
   1359         }
   1360 
   1361         sq = req->sq;
   1362         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
   1363         req->cqe.sq_id = cpu_to_le16(sq->sqid);
   1364         req->cqe.sq_head = cpu_to_le16(sq->head);
   1365         addr = cq->dma_addr + cq->tail * n->cqe_size;
   1366         ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
   1367                             sizeof(req->cqe));
   1368         if (ret) {
   1369             trace_pci_nvme_err_addr_write(addr);
   1370             trace_pci_nvme_err_cfs();
   1371             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
   1372             break;
   1373         }
   1374         QTAILQ_REMOVE(&cq->req_list, req, entry);
   1375         nvme_inc_cq_tail(cq);
   1376         nvme_sg_unmap(&req->sg);
   1377         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
   1378     }
   1379     if (cq->tail != cq->head) {
   1380         if (cq->irq_enabled && !pending) {
   1381             n->cq_pending++;
   1382         }
   1383 
   1384         nvme_irq_assert(n, cq);
   1385     }
   1386 }
   1387 
   1388 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
   1389 {
   1390     assert(cq->cqid == req->sq->cqid);
   1391     trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
   1392                                           le32_to_cpu(req->cqe.result),
   1393                                           le32_to_cpu(req->cqe.dw1),
   1394                                           req->status);
   1395 
   1396     if (req->status) {
   1397         trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
   1398                                       req->status, req->cmd.opcode);
   1399     }
   1400 
   1401     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
   1402     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
   1403 
   1404     qemu_bh_schedule(cq->bh);
   1405 }
   1406 
   1407 static void nvme_process_aers(void *opaque)
   1408 {
   1409     NvmeCtrl *n = opaque;
   1410     NvmeAsyncEvent *event, *next;
   1411 
   1412     trace_pci_nvme_process_aers(n->aer_queued);
   1413 
   1414     QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
   1415         NvmeRequest *req;
   1416         NvmeAerResult *result;
   1417 
   1418         /* can't post cqe if there is nothing to complete */
   1419         if (!n->outstanding_aers) {
   1420             trace_pci_nvme_no_outstanding_aers();
   1421             break;
   1422         }
   1423 
   1424         /* ignore if masked (cqe posted, but event not cleared) */
   1425         if (n->aer_mask & (1 << event->result.event_type)) {
   1426             trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
   1427             continue;
   1428         }
   1429 
   1430         QTAILQ_REMOVE(&n->aer_queue, event, entry);
   1431         n->aer_queued--;
   1432 
   1433         n->aer_mask |= 1 << event->result.event_type;
   1434         n->outstanding_aers--;
   1435 
   1436         req = n->aer_reqs[n->outstanding_aers];
   1437 
   1438         result = (NvmeAerResult *) &req->cqe.result;
   1439         result->event_type = event->result.event_type;
   1440         result->event_info = event->result.event_info;
   1441         result->log_page = event->result.log_page;
   1442         g_free(event);
   1443 
   1444         trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
   1445                                     result->log_page);
   1446 
   1447         nvme_enqueue_req_completion(&n->admin_cq, req);
   1448     }
   1449 }
   1450 
   1451 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
   1452                                uint8_t event_info, uint8_t log_page)
   1453 {
   1454     NvmeAsyncEvent *event;
   1455 
   1456     trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
   1457 
   1458     if (n->aer_queued == n->params.aer_max_queued) {
   1459         trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
   1460         return;
   1461     }
   1462 
   1463     event = g_new(NvmeAsyncEvent, 1);
   1464     event->result = (NvmeAerResult) {
   1465         .event_type = event_type,
   1466         .event_info = event_info,
   1467         .log_page   = log_page,
   1468     };
   1469 
   1470     QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
   1471     n->aer_queued++;
   1472 
   1473     nvme_process_aers(n);
   1474 }
   1475 
   1476 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
   1477 {
   1478     uint8_t aer_info;
   1479 
   1480     /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
   1481     if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
   1482         return;
   1483     }
   1484 
   1485     switch (event) {
   1486     case NVME_SMART_SPARE:
   1487         aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
   1488         break;
   1489     case NVME_SMART_TEMPERATURE:
   1490         aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
   1491         break;
   1492     case NVME_SMART_RELIABILITY:
   1493     case NVME_SMART_MEDIA_READ_ONLY:
   1494     case NVME_SMART_FAILED_VOLATILE_MEDIA:
   1495     case NVME_SMART_PMR_UNRELIABLE:
   1496         aer_info = NVME_AER_INFO_SMART_RELIABILITY;
   1497         break;
   1498     default:
   1499         return;
   1500     }
   1501 
   1502     nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
   1503 }
   1504 
   1505 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
   1506 {
   1507     n->aer_mask &= ~(1 << event_type);
   1508     if (!QTAILQ_EMPTY(&n->aer_queue)) {
   1509         nvme_process_aers(n);
   1510     }
   1511 }
   1512 
   1513 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
   1514 {
   1515     uint8_t mdts = n->params.mdts;
   1516 
   1517     if (mdts && len > n->page_size << mdts) {
   1518         trace_pci_nvme_err_mdts(len);
   1519         return NVME_INVALID_FIELD | NVME_DNR;
   1520     }
   1521 
   1522     return NVME_SUCCESS;
   1523 }
   1524 
   1525 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
   1526                                          uint32_t nlb)
   1527 {
   1528     uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
   1529 
   1530     if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
   1531         trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
   1532         return NVME_LBA_RANGE | NVME_DNR;
   1533     }
   1534 
   1535     return NVME_SUCCESS;
   1536 }
   1537 
   1538 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
   1539                                  uint32_t nlb, int flags)
   1540 {
   1541     BlockDriverState *bs = blk_bs(ns->blkconf.blk);
   1542 
   1543     int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
   1544     int64_t offset = nvme_l2b(ns, slba);
   1545     int ret;
   1546 
   1547     /*
   1548      * `pnum` holds the number of bytes after offset that shares the same
   1549      * allocation status as the byte at offset. If `pnum` is different from
   1550      * `bytes`, we should check the allocation status of the next range and
   1551      * continue this until all bytes have been checked.
   1552      */
   1553     do {
   1554         bytes -= pnum;
   1555 
   1556         ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
   1557         if (ret < 0) {
   1558             return ret;
   1559         }
   1560 
   1561 
   1562         trace_pci_nvme_block_status(offset, bytes, pnum, ret,
   1563                                     !!(ret & BDRV_BLOCK_ZERO));
   1564 
   1565         if (!(ret & flags)) {
   1566             return 1;
   1567         }
   1568 
   1569         offset += pnum;
   1570     } while (pnum != bytes);
   1571 
   1572     return 0;
   1573 }
   1574 
   1575 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
   1576                                  uint32_t nlb)
   1577 {
   1578     int ret;
   1579     Error *err = NULL;
   1580 
   1581     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
   1582     if (ret) {
   1583         if (ret < 0) {
   1584             error_setg_errno(&err, -ret, "unable to get block status");
   1585             error_report_err(err);
   1586 
   1587             return NVME_INTERNAL_DEV_ERROR;
   1588         }
   1589 
   1590         return NVME_DULB;
   1591     }
   1592 
   1593     return NVME_SUCCESS;
   1594 }
   1595 
   1596 static void nvme_aio_err(NvmeRequest *req, int ret)
   1597 {
   1598     uint16_t status = NVME_SUCCESS;
   1599     Error *local_err = NULL;
   1600 
   1601     switch (req->cmd.opcode) {
   1602     case NVME_CMD_READ:
   1603         status = NVME_UNRECOVERED_READ;
   1604         break;
   1605     case NVME_CMD_FLUSH:
   1606     case NVME_CMD_WRITE:
   1607     case NVME_CMD_WRITE_ZEROES:
   1608     case NVME_CMD_ZONE_APPEND:
   1609         status = NVME_WRITE_FAULT;
   1610         break;
   1611     default:
   1612         status = NVME_INTERNAL_DEV_ERROR;
   1613         break;
   1614     }
   1615 
   1616     trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
   1617 
   1618     error_setg_errno(&local_err, -ret, "aio failed");
   1619     error_report_err(local_err);
   1620 
   1621     /*
   1622      * Set the command status code to the first encountered error but allow a
   1623      * subsequent Internal Device Error to trump it.
   1624      */
   1625     if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
   1626         return;
   1627     }
   1628 
   1629     req->status = status;
   1630 }
   1631 
   1632 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
   1633 {
   1634     return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
   1635                                     slba / ns->zone_size;
   1636 }
   1637 
   1638 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
   1639 {
   1640     uint32_t zone_idx = nvme_zone_idx(ns, slba);
   1641 
   1642     if (zone_idx >= ns->num_zones) {
   1643         return NULL;
   1644     }
   1645 
   1646     return &ns->zone_array[zone_idx];
   1647 }
   1648 
   1649 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
   1650 {
   1651     uint64_t zslba = zone->d.zslba;
   1652 
   1653     switch (nvme_get_zone_state(zone)) {
   1654     case NVME_ZONE_STATE_EMPTY:
   1655     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
   1656     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
   1657     case NVME_ZONE_STATE_CLOSED:
   1658         return NVME_SUCCESS;
   1659     case NVME_ZONE_STATE_FULL:
   1660         trace_pci_nvme_err_zone_is_full(zslba);
   1661         return NVME_ZONE_FULL;
   1662     case NVME_ZONE_STATE_OFFLINE:
   1663         trace_pci_nvme_err_zone_is_offline(zslba);
   1664         return NVME_ZONE_OFFLINE;
   1665     case NVME_ZONE_STATE_READ_ONLY:
   1666         trace_pci_nvme_err_zone_is_read_only(zslba);
   1667         return NVME_ZONE_READ_ONLY;
   1668     default:
   1669         assert(false);
   1670     }
   1671 
   1672     return NVME_INTERNAL_DEV_ERROR;
   1673 }
   1674 
   1675 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
   1676                                       uint64_t slba, uint32_t nlb)
   1677 {
   1678     uint64_t zcap = nvme_zone_wr_boundary(zone);
   1679     uint16_t status;
   1680 
   1681     status = nvme_check_zone_state_for_write(zone);
   1682     if (status) {
   1683         return status;
   1684     }
   1685 
   1686     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
   1687         uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
   1688 
   1689         if (slba < zone->w_ptr || slba + nlb > ezrwa) {
   1690             trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
   1691             return NVME_ZONE_INVALID_WRITE;
   1692         }
   1693     } else {
   1694         if (unlikely(slba != zone->w_ptr)) {
   1695             trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
   1696                                                zone->w_ptr);
   1697             return NVME_ZONE_INVALID_WRITE;
   1698         }
   1699     }
   1700 
   1701     if (unlikely((slba + nlb) > zcap)) {
   1702         trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
   1703         return NVME_ZONE_BOUNDARY_ERROR;
   1704     }
   1705 
   1706     return NVME_SUCCESS;
   1707 }
   1708 
   1709 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
   1710 {
   1711     switch (nvme_get_zone_state(zone)) {
   1712     case NVME_ZONE_STATE_EMPTY:
   1713     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
   1714     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
   1715     case NVME_ZONE_STATE_FULL:
   1716     case NVME_ZONE_STATE_CLOSED:
   1717     case NVME_ZONE_STATE_READ_ONLY:
   1718         return NVME_SUCCESS;
   1719     case NVME_ZONE_STATE_OFFLINE:
   1720         trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
   1721         return NVME_ZONE_OFFLINE;
   1722     default:
   1723         assert(false);
   1724     }
   1725 
   1726     return NVME_INTERNAL_DEV_ERROR;
   1727 }
   1728 
   1729 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
   1730                                      uint32_t nlb)
   1731 {
   1732     NvmeZone *zone;
   1733     uint64_t bndry, end;
   1734     uint16_t status;
   1735 
   1736     zone = nvme_get_zone_by_slba(ns, slba);
   1737     assert(zone);
   1738 
   1739     bndry = nvme_zone_rd_boundary(ns, zone);
   1740     end = slba + nlb;
   1741 
   1742     status = nvme_check_zone_state_for_read(zone);
   1743     if (status) {
   1744         ;
   1745     } else if (unlikely(end > bndry)) {
   1746         if (!ns->params.cross_zone_read) {
   1747             status = NVME_ZONE_BOUNDARY_ERROR;
   1748         } else {
   1749             /*
   1750              * Read across zone boundary - check that all subsequent
   1751              * zones that are being read have an appropriate state.
   1752              */
   1753             do {
   1754                 zone++;
   1755                 status = nvme_check_zone_state_for_read(zone);
   1756                 if (status) {
   1757                     break;
   1758                 }
   1759             } while (end > nvme_zone_rd_boundary(ns, zone));
   1760         }
   1761     }
   1762 
   1763     return status;
   1764 }
   1765 
   1766 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
   1767 {
   1768     switch (nvme_get_zone_state(zone)) {
   1769     case NVME_ZONE_STATE_FULL:
   1770         return NVME_SUCCESS;
   1771 
   1772     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
   1773     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
   1774         nvme_aor_dec_open(ns);
   1775         /* fallthrough */
   1776     case NVME_ZONE_STATE_CLOSED:
   1777         nvme_aor_dec_active(ns);
   1778 
   1779         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
   1780             zone->d.za &= ~NVME_ZA_ZRWA_VALID;
   1781             if (ns->params.numzrwa) {
   1782                 ns->zns.numzrwa++;
   1783             }
   1784         }
   1785 
   1786         /* fallthrough */
   1787     case NVME_ZONE_STATE_EMPTY:
   1788         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
   1789         return NVME_SUCCESS;
   1790 
   1791     default:
   1792         return NVME_ZONE_INVAL_TRANSITION;
   1793     }
   1794 }
   1795 
   1796 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
   1797 {
   1798     switch (nvme_get_zone_state(zone)) {
   1799     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
   1800     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
   1801         nvme_aor_dec_open(ns);
   1802         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
   1803         /* fall through */
   1804     case NVME_ZONE_STATE_CLOSED:
   1805         return NVME_SUCCESS;
   1806 
   1807     default:
   1808         return NVME_ZONE_INVAL_TRANSITION;
   1809     }
   1810 }
   1811 
   1812 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
   1813 {
   1814     switch (nvme_get_zone_state(zone)) {
   1815     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
   1816     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
   1817         nvme_aor_dec_open(ns);
   1818         /* fallthrough */
   1819     case NVME_ZONE_STATE_CLOSED:
   1820         nvme_aor_dec_active(ns);
   1821 
   1822         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
   1823             if (ns->params.numzrwa) {
   1824                 ns->zns.numzrwa++;
   1825             }
   1826         }
   1827 
   1828         /* fallthrough */
   1829     case NVME_ZONE_STATE_FULL:
   1830         zone->w_ptr = zone->d.zslba;
   1831         zone->d.wp = zone->w_ptr;
   1832         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
   1833         /* fallthrough */
   1834     case NVME_ZONE_STATE_EMPTY:
   1835         return NVME_SUCCESS;
   1836 
   1837     default:
   1838         return NVME_ZONE_INVAL_TRANSITION;
   1839     }
   1840 }
   1841 
   1842 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
   1843 {
   1844     NvmeZone *zone;
   1845 
   1846     if (ns->params.max_open_zones &&
   1847         ns->nr_open_zones == ns->params.max_open_zones) {
   1848         zone = QTAILQ_FIRST(&ns->imp_open_zones);
   1849         if (zone) {
   1850             /*
   1851              * Automatically close this implicitly open zone.
   1852              */
   1853             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
   1854             nvme_zrm_close(ns, zone);
   1855         }
   1856     }
   1857 }
   1858 
   1859 enum {
   1860     NVME_ZRM_AUTO = 1 << 0,
   1861     NVME_ZRM_ZRWA = 1 << 1,
   1862 };
   1863 
   1864 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
   1865                                     NvmeZone *zone, int flags)
   1866 {
   1867     int act = 0;
   1868     uint16_t status;
   1869 
   1870     switch (nvme_get_zone_state(zone)) {
   1871     case NVME_ZONE_STATE_EMPTY:
   1872         act = 1;
   1873 
   1874         /* fallthrough */
   1875 
   1876     case NVME_ZONE_STATE_CLOSED:
   1877         if (n->params.auto_transition_zones) {
   1878             nvme_zrm_auto_transition_zone(ns);
   1879         }
   1880         status = nvme_zns_check_resources(ns, act, 1,
   1881                                           (flags & NVME_ZRM_ZRWA) ? 1 : 0);
   1882         if (status) {
   1883             return status;
   1884         }
   1885 
   1886         if (act) {
   1887             nvme_aor_inc_active(ns);
   1888         }
   1889 
   1890         nvme_aor_inc_open(ns);
   1891 
   1892         if (flags & NVME_ZRM_AUTO) {
   1893             nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
   1894             return NVME_SUCCESS;
   1895         }
   1896 
   1897         /* fallthrough */
   1898 
   1899     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
   1900         if (flags & NVME_ZRM_AUTO) {
   1901             return NVME_SUCCESS;
   1902         }
   1903 
   1904         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
   1905 
   1906         /* fallthrough */
   1907 
   1908     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
   1909         if (flags & NVME_ZRM_ZRWA) {
   1910             ns->zns.numzrwa--;
   1911 
   1912             zone->d.za |= NVME_ZA_ZRWA_VALID;
   1913         }
   1914 
   1915         return NVME_SUCCESS;
   1916 
   1917     default:
   1918         return NVME_ZONE_INVAL_TRANSITION;
   1919     }
   1920 }
   1921 
   1922 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
   1923                                      NvmeZone *zone)
   1924 {
   1925     return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
   1926 }
   1927 
   1928 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
   1929                                  uint32_t nlb)
   1930 {
   1931     zone->d.wp += nlb;
   1932 
   1933     if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
   1934         nvme_zrm_finish(ns, zone);
   1935     }
   1936 }
   1937 
   1938 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
   1939                                            uint32_t nlbc)
   1940 {
   1941     uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
   1942 
   1943     nlbc = nzrwafgs * ns->zns.zrwafg;
   1944 
   1945     trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
   1946 
   1947     zone->w_ptr += nlbc;
   1948 
   1949     nvme_advance_zone_wp(ns, zone, nlbc);
   1950 }
   1951 
   1952 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
   1953 {
   1954     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
   1955     NvmeZone *zone;
   1956     uint64_t slba;
   1957     uint32_t nlb;
   1958 
   1959     slba = le64_to_cpu(rw->slba);
   1960     nlb = le16_to_cpu(rw->nlb) + 1;
   1961     zone = nvme_get_zone_by_slba(ns, slba);
   1962     assert(zone);
   1963 
   1964     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
   1965         uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
   1966         uint64_t elba = slba + nlb - 1;
   1967 
   1968         if (elba > ezrwa) {
   1969             nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
   1970         }
   1971 
   1972         return;
   1973     }
   1974 
   1975     nvme_advance_zone_wp(ns, zone, nlb);
   1976 }
   1977 
   1978 static inline bool nvme_is_write(NvmeRequest *req)
   1979 {
   1980     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
   1981 
   1982     return rw->opcode == NVME_CMD_WRITE ||
   1983            rw->opcode == NVME_CMD_ZONE_APPEND ||
   1984            rw->opcode == NVME_CMD_WRITE_ZEROES;
   1985 }
   1986 
   1987 static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
   1988 {
   1989     return qemu_get_aio_context();
   1990 }
   1991 
   1992 static void nvme_misc_cb(void *opaque, int ret)
   1993 {
   1994     NvmeRequest *req = opaque;
   1995 
   1996     trace_pci_nvme_misc_cb(nvme_cid(req));
   1997 
   1998     if (ret) {
   1999         nvme_aio_err(req, ret);
   2000     }
   2001 
   2002     nvme_enqueue_req_completion(nvme_cq(req), req);
   2003 }
   2004 
   2005 void nvme_rw_complete_cb(void *opaque, int ret)
   2006 {
   2007     NvmeRequest *req = opaque;
   2008     NvmeNamespace *ns = req->ns;
   2009     BlockBackend *blk = ns->blkconf.blk;
   2010     BlockAcctCookie *acct = &req->acct;
   2011     BlockAcctStats *stats = blk_get_stats(blk);
   2012 
   2013     trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
   2014 
   2015     if (ret) {
   2016         block_acct_failed(stats, acct);
   2017         nvme_aio_err(req, ret);
   2018     } else {
   2019         block_acct_done(stats, acct);
   2020     }
   2021 
   2022     if (ns->params.zoned && nvme_is_write(req)) {
   2023         nvme_finalize_zoned_write(ns, req);
   2024     }
   2025 
   2026     nvme_enqueue_req_completion(nvme_cq(req), req);
   2027 }
   2028 
   2029 static void nvme_rw_cb(void *opaque, int ret)
   2030 {
   2031     NvmeRequest *req = opaque;
   2032     NvmeNamespace *ns = req->ns;
   2033 
   2034     BlockBackend *blk = ns->blkconf.blk;
   2035 
   2036     trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
   2037 
   2038     if (ret) {
   2039         goto out;
   2040     }
   2041 
   2042     if (ns->lbaf.ms) {
   2043         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
   2044         uint64_t slba = le64_to_cpu(rw->slba);
   2045         uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
   2046         uint64_t offset = nvme_moff(ns, slba);
   2047 
   2048         if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
   2049             size_t mlen = nvme_m2b(ns, nlb);
   2050 
   2051             req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
   2052                                                BDRV_REQ_MAY_UNMAP,
   2053                                                nvme_rw_complete_cb, req);
   2054             return;
   2055         }
   2056 
   2057         if (nvme_ns_ext(ns) || req->cmd.mptr) {
   2058             uint16_t status;
   2059 
   2060             nvme_sg_unmap(&req->sg);
   2061             status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
   2062             if (status) {
   2063                 ret = -EFAULT;
   2064                 goto out;
   2065             }
   2066 
   2067             if (req->cmd.opcode == NVME_CMD_READ) {
   2068                 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
   2069             }
   2070 
   2071             return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
   2072         }
   2073     }
   2074 
   2075 out:
   2076     nvme_rw_complete_cb(req, ret);
   2077 }
   2078 
   2079 static void nvme_verify_cb(void *opaque, int ret)
   2080 {
   2081     NvmeBounceContext *ctx = opaque;
   2082     NvmeRequest *req = ctx->req;
   2083     NvmeNamespace *ns = req->ns;
   2084     BlockBackend *blk = ns->blkconf.blk;
   2085     BlockAcctCookie *acct = &req->acct;
   2086     BlockAcctStats *stats = blk_get_stats(blk);
   2087     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
   2088     uint64_t slba = le64_to_cpu(rw->slba);
   2089     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
   2090     uint16_t apptag = le16_to_cpu(rw->apptag);
   2091     uint16_t appmask = le16_to_cpu(rw->appmask);
   2092     uint64_t reftag = le32_to_cpu(rw->reftag);
   2093     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
   2094     uint16_t status;
   2095 
   2096     reftag |= cdw3 << 32;
   2097 
   2098     trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
   2099 
   2100     if (ret) {
   2101         block_acct_failed(stats, acct);
   2102         nvme_aio_err(req, ret);
   2103         goto out;
   2104     }
   2105 
   2106     block_acct_done(stats, acct);
   2107 
   2108     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
   2109         status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
   2110                                        ctx->mdata.iov.size, slba);
   2111         if (status) {
   2112             req->status = status;
   2113             goto out;
   2114         }
   2115 
   2116         req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
   2117                                      ctx->mdata.bounce, ctx->mdata.iov.size,
   2118                                      prinfo, slba, apptag, appmask, &reftag);
   2119     }
   2120 
   2121 out:
   2122     qemu_iovec_destroy(&ctx->data.iov);
   2123     g_free(ctx->data.bounce);
   2124 
   2125     qemu_iovec_destroy(&ctx->mdata.iov);
   2126     g_free(ctx->mdata.bounce);
   2127 
   2128     g_free(ctx);
   2129 
   2130     nvme_enqueue_req_completion(nvme_cq(req), req);
   2131 }
   2132 
   2133 
   2134 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
   2135 {
   2136     NvmeBounceContext *ctx = opaque;
   2137     NvmeRequest *req = ctx->req;
   2138     NvmeNamespace *ns = req->ns;
   2139     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
   2140     uint64_t slba = le64_to_cpu(rw->slba);
   2141     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
   2142     size_t mlen = nvme_m2b(ns, nlb);
   2143     uint64_t offset = nvme_moff(ns, slba);
   2144     BlockBackend *blk = ns->blkconf.blk;
   2145 
   2146     trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
   2147 
   2148     if (ret) {
   2149         goto out;
   2150     }
   2151 
   2152     ctx->mdata.bounce = g_malloc(mlen);
   2153 
   2154     qemu_iovec_reset(&ctx->mdata.iov);
   2155     qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
   2156 
   2157     req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
   2158                                 nvme_verify_cb, ctx);
   2159     return;
   2160 
   2161 out:
   2162     nvme_verify_cb(ctx, ret);
   2163 }
   2164 
   2165 struct nvme_compare_ctx {
   2166     struct {
   2167         QEMUIOVector iov;
   2168         uint8_t *bounce;
   2169     } data;
   2170 
   2171     struct {
   2172         QEMUIOVector iov;
   2173         uint8_t *bounce;
   2174     } mdata;
   2175 };
   2176 
   2177 static void nvme_compare_mdata_cb(void *opaque, int ret)
   2178 {
   2179     NvmeRequest *req = opaque;
   2180     NvmeNamespace *ns = req->ns;
   2181     NvmeCtrl *n = nvme_ctrl(req);
   2182     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
   2183     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
   2184     uint16_t apptag = le16_to_cpu(rw->apptag);
   2185     uint16_t appmask = le16_to_cpu(rw->appmask);
   2186     uint64_t reftag = le32_to_cpu(rw->reftag);
   2187     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
   2188     struct nvme_compare_ctx *ctx = req->opaque;
   2189     g_autofree uint8_t *buf = NULL;
   2190     BlockBackend *blk = ns->blkconf.blk;
   2191     BlockAcctCookie *acct = &req->acct;
   2192     BlockAcctStats *stats = blk_get_stats(blk);
   2193     uint16_t status = NVME_SUCCESS;
   2194 
   2195     reftag |= cdw3 << 32;
   2196 
   2197     trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
   2198 
   2199     if (ret) {
   2200         block_acct_failed(stats, acct);
   2201         nvme_aio_err(req, ret);
   2202         goto out;
   2203     }
   2204 
   2205     buf = g_malloc(ctx->mdata.iov.size);
   2206 
   2207     status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
   2208                                NVME_TX_DIRECTION_TO_DEVICE, req);
   2209     if (status) {
   2210         req->status = status;
   2211         goto out;
   2212     }
   2213 
   2214     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
   2215         uint64_t slba = le64_to_cpu(rw->slba);
   2216         uint8_t *bufp;
   2217         uint8_t *mbufp = ctx->mdata.bounce;
   2218         uint8_t *end = mbufp + ctx->mdata.iov.size;
   2219         int16_t pil = 0;
   2220 
   2221         status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
   2222                                 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
   2223                                 slba, apptag, appmask, &reftag);
   2224         if (status) {
   2225             req->status = status;
   2226             goto out;
   2227         }
   2228 
   2229         /*
   2230          * When formatted with protection information, do not compare the DIF
   2231          * tuple.
   2232          */
   2233         if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
   2234             pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
   2235         }
   2236 
   2237         for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
   2238             if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
   2239                 req->status = NVME_CMP_FAILURE;
   2240                 goto out;
   2241             }
   2242         }
   2243 
   2244         goto out;
   2245     }
   2246 
   2247     if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
   2248         req->status = NVME_CMP_FAILURE;
   2249         goto out;
   2250     }
   2251 
   2252     block_acct_done(stats, acct);
   2253 
   2254 out:
   2255     qemu_iovec_destroy(&ctx->data.iov);
   2256     g_free(ctx->data.bounce);
   2257 
   2258     qemu_iovec_destroy(&ctx->mdata.iov);
   2259     g_free(ctx->mdata.bounce);
   2260 
   2261     g_free(ctx);
   2262 
   2263     nvme_enqueue_req_completion(nvme_cq(req), req);
   2264 }
   2265 
   2266 static void nvme_compare_data_cb(void *opaque, int ret)
   2267 {
   2268     NvmeRequest *req = opaque;
   2269     NvmeCtrl *n = nvme_ctrl(req);
   2270     NvmeNamespace *ns = req->ns;
   2271     BlockBackend *blk = ns->blkconf.blk;
   2272     BlockAcctCookie *acct = &req->acct;
   2273     BlockAcctStats *stats = blk_get_stats(blk);
   2274 
   2275     struct nvme_compare_ctx *ctx = req->opaque;
   2276     g_autofree uint8_t *buf = NULL;
   2277     uint16_t status;
   2278 
   2279     trace_pci_nvme_compare_data_cb(nvme_cid(req));
   2280 
   2281     if (ret) {
   2282         block_acct_failed(stats, acct);
   2283         nvme_aio_err(req, ret);
   2284         goto out;
   2285     }
   2286 
   2287     buf = g_malloc(ctx->data.iov.size);
   2288 
   2289     status = nvme_bounce_data(n, buf, ctx->data.iov.size,
   2290                               NVME_TX_DIRECTION_TO_DEVICE, req);
   2291     if (status) {
   2292         req->status = status;
   2293         goto out;
   2294     }
   2295 
   2296     if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
   2297         req->status = NVME_CMP_FAILURE;
   2298         goto out;
   2299     }
   2300 
   2301     if (ns->lbaf.ms) {
   2302         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
   2303         uint64_t slba = le64_to_cpu(rw->slba);
   2304         uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
   2305         size_t mlen = nvme_m2b(ns, nlb);
   2306         uint64_t offset = nvme_moff(ns, slba);
   2307 
   2308         ctx->mdata.bounce = g_malloc(mlen);
   2309 
   2310         qemu_iovec_init(&ctx->mdata.iov, 1);
   2311         qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
   2312 
   2313         req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
   2314                                     nvme_compare_mdata_cb, req);
   2315         return;
   2316     }
   2317 
   2318     block_acct_done(stats, acct);
   2319 
   2320 out:
   2321     qemu_iovec_destroy(&ctx->data.iov);
   2322     g_free(ctx->data.bounce);
   2323     g_free(ctx);
   2324 
   2325     nvme_enqueue_req_completion(nvme_cq(req), req);
   2326 }
   2327 
   2328 typedef struct NvmeDSMAIOCB {
   2329     BlockAIOCB common;
   2330     BlockAIOCB *aiocb;
   2331     NvmeRequest *req;
   2332     int ret;
   2333 
   2334     NvmeDsmRange *range;
   2335     unsigned int nr;
   2336     unsigned int idx;
   2337 } NvmeDSMAIOCB;
   2338 
   2339 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
   2340 {
   2341     NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
   2342 
   2343     /* break nvme_dsm_cb loop */
   2344     iocb->idx = iocb->nr;
   2345     iocb->ret = -ECANCELED;
   2346 
   2347     if (iocb->aiocb) {
   2348         blk_aio_cancel_async(iocb->aiocb);
   2349         iocb->aiocb = NULL;
   2350     } else {
   2351         /*
   2352          * We only reach this if nvme_dsm_cancel() has already been called or
   2353          * the command ran to completion.
   2354          */
   2355         assert(iocb->idx == iocb->nr);
   2356     }
   2357 }
   2358 
   2359 static const AIOCBInfo nvme_dsm_aiocb_info = {
   2360     .aiocb_size   = sizeof(NvmeDSMAIOCB),
   2361     .cancel_async = nvme_dsm_cancel,
   2362 };
   2363 
   2364 static void nvme_dsm_cb(void *opaque, int ret);
   2365 
   2366 static void nvme_dsm_md_cb(void *opaque, int ret)
   2367 {
   2368     NvmeDSMAIOCB *iocb = opaque;
   2369     NvmeRequest *req = iocb->req;
   2370     NvmeNamespace *ns = req->ns;
   2371     NvmeDsmRange *range;
   2372     uint64_t slba;
   2373     uint32_t nlb;
   2374 
   2375     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
   2376         goto done;
   2377     }
   2378 
   2379     range = &iocb->range[iocb->idx - 1];
   2380     slba = le64_to_cpu(range->slba);
   2381     nlb = le32_to_cpu(range->nlb);
   2382 
   2383     /*
   2384      * Check that all block were discarded (zeroed); otherwise we do not zero
   2385      * the metadata.
   2386      */
   2387 
   2388     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
   2389     if (ret) {
   2390         if (ret < 0) {
   2391             goto done;
   2392         }
   2393 
   2394         nvme_dsm_cb(iocb, 0);
   2395         return;
   2396     }
   2397 
   2398     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
   2399                                         nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
   2400                                         nvme_dsm_cb, iocb);
   2401     return;
   2402 
   2403 done:
   2404     nvme_dsm_cb(iocb, ret);
   2405 }
   2406 
   2407 static void nvme_dsm_cb(void *opaque, int ret)
   2408 {
   2409     NvmeDSMAIOCB *iocb = opaque;
   2410     NvmeRequest *req = iocb->req;
   2411     NvmeCtrl *n = nvme_ctrl(req);
   2412     NvmeNamespace *ns = req->ns;
   2413     NvmeDsmRange *range;
   2414     uint64_t slba;
   2415     uint32_t nlb;
   2416 
   2417     if (iocb->ret < 0) {
   2418         goto done;
   2419     } else if (ret < 0) {
   2420         iocb->ret = ret;
   2421         goto done;
   2422     }
   2423 
   2424 next:
   2425     if (iocb->idx == iocb->nr) {
   2426         goto done;
   2427     }
   2428 
   2429     range = &iocb->range[iocb->idx++];
   2430     slba = le64_to_cpu(range->slba);
   2431     nlb = le32_to_cpu(range->nlb);
   2432 
   2433     trace_pci_nvme_dsm_deallocate(slba, nlb);
   2434 
   2435     if (nlb > n->dmrsl) {
   2436         trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
   2437         goto next;
   2438     }
   2439 
   2440     if (nvme_check_bounds(ns, slba, nlb)) {
   2441         trace_pci_nvme_err_invalid_lba_range(slba, nlb,
   2442                                              ns->id_ns.nsze);
   2443         goto next;
   2444     }
   2445 
   2446     iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
   2447                                    nvme_l2b(ns, nlb),
   2448                                    nvme_dsm_md_cb, iocb);
   2449     return;
   2450 
   2451 done:
   2452     iocb->aiocb = NULL;
   2453     iocb->common.cb(iocb->common.opaque, iocb->ret);
   2454     qemu_aio_unref(iocb);
   2455 }
   2456 
   2457 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
   2458 {
   2459     NvmeNamespace *ns = req->ns;
   2460     NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
   2461     uint32_t attr = le32_to_cpu(dsm->attributes);
   2462     uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
   2463     uint16_t status = NVME_SUCCESS;
   2464 
   2465     trace_pci_nvme_dsm(nr, attr);
   2466 
   2467     if (attr & NVME_DSMGMT_AD) {
   2468         NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
   2469                                          nvme_misc_cb, req);
   2470 
   2471         iocb->req = req;
   2472         iocb->ret = 0;
   2473         iocb->range = g_new(NvmeDsmRange, nr);
   2474         iocb->nr = nr;
   2475         iocb->idx = 0;
   2476 
   2477         status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
   2478                           req);
   2479         if (status) {
   2480             return status;
   2481         }
   2482 
   2483         req->aiocb = &iocb->common;
   2484         nvme_dsm_cb(iocb, 0);
   2485 
   2486         return NVME_NO_COMPLETE;
   2487     }
   2488 
   2489     return status;
   2490 }
   2491 
   2492 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
   2493 {
   2494     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
   2495     NvmeNamespace *ns = req->ns;
   2496     BlockBackend *blk = ns->blkconf.blk;
   2497     uint64_t slba = le64_to_cpu(rw->slba);
   2498     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
   2499     size_t len = nvme_l2b(ns, nlb);
   2500     int64_t offset = nvme_l2b(ns, slba);
   2501     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
   2502     uint32_t reftag = le32_to_cpu(rw->reftag);
   2503     NvmeBounceContext *ctx = NULL;
   2504     uint16_t status;
   2505 
   2506     trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
   2507 
   2508     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
   2509         status = nvme_check_prinfo(ns, prinfo, slba, reftag);
   2510         if (status) {
   2511             return status;
   2512         }
   2513 
   2514         if (prinfo & NVME_PRINFO_PRACT) {
   2515             return NVME_INVALID_PROT_INFO | NVME_DNR;
   2516         }
   2517     }
   2518 
   2519     if (len > n->page_size << n->params.vsl) {
   2520         return NVME_INVALID_FIELD | NVME_DNR;
   2521     }
   2522 
   2523     status = nvme_check_bounds(ns, slba, nlb);
   2524     if (status) {
   2525         return status;
   2526     }
   2527 
   2528     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
   2529         status = nvme_check_dulbe(ns, slba, nlb);
   2530         if (status) {
   2531             return status;
   2532         }
   2533     }
   2534 
   2535     ctx = g_new0(NvmeBounceContext, 1);
   2536     ctx->req = req;
   2537 
   2538     ctx->data.bounce = g_malloc(len);
   2539 
   2540     qemu_iovec_init(&ctx->data.iov, 1);
   2541     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
   2542 
   2543     block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
   2544                      BLOCK_ACCT_READ);
   2545 
   2546     req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
   2547                                 nvme_verify_mdata_in_cb, ctx);
   2548     return NVME_NO_COMPLETE;
   2549 }
   2550 
   2551 typedef struct NvmeCopyAIOCB {
   2552     BlockAIOCB common;
   2553     BlockAIOCB *aiocb;
   2554     NvmeRequest *req;
   2555     int ret;
   2556 
   2557     void *ranges;
   2558     unsigned int format;
   2559     int nr;
   2560     int idx;
   2561 
   2562     uint8_t *bounce;
   2563     QEMUIOVector iov;
   2564     struct {
   2565         BlockAcctCookie read;
   2566         BlockAcctCookie write;
   2567     } acct;
   2568 
   2569     uint64_t reftag;
   2570     uint64_t slba;
   2571 
   2572     NvmeZone *zone;
   2573 } NvmeCopyAIOCB;
   2574 
   2575 static void nvme_copy_cancel(BlockAIOCB *aiocb)
   2576 {
   2577     NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
   2578 
   2579     iocb->ret = -ECANCELED;
   2580 
   2581     if (iocb->aiocb) {
   2582         blk_aio_cancel_async(iocb->aiocb);
   2583         iocb->aiocb = NULL;
   2584     }
   2585 }
   2586 
   2587 static const AIOCBInfo nvme_copy_aiocb_info = {
   2588     .aiocb_size   = sizeof(NvmeCopyAIOCB),
   2589     .cancel_async = nvme_copy_cancel,
   2590 };
   2591 
   2592 static void nvme_copy_done(NvmeCopyAIOCB *iocb)
   2593 {
   2594     NvmeRequest *req = iocb->req;
   2595     NvmeNamespace *ns = req->ns;
   2596     BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
   2597 
   2598     if (iocb->idx != iocb->nr) {
   2599         req->cqe.result = cpu_to_le32(iocb->idx);
   2600     }
   2601 
   2602     qemu_iovec_destroy(&iocb->iov);
   2603     g_free(iocb->bounce);
   2604 
   2605     if (iocb->ret < 0) {
   2606         block_acct_failed(stats, &iocb->acct.read);
   2607         block_acct_failed(stats, &iocb->acct.write);
   2608     } else {
   2609         block_acct_done(stats, &iocb->acct.read);
   2610         block_acct_done(stats, &iocb->acct.write);
   2611     }
   2612 
   2613     iocb->common.cb(iocb->common.opaque, iocb->ret);
   2614     qemu_aio_unref(iocb);
   2615 }
   2616 
   2617 static void nvme_do_copy(NvmeCopyAIOCB *iocb);
   2618 
   2619 static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
   2620                                                  uint64_t *slba, uint32_t *nlb,
   2621                                                  uint16_t *apptag,
   2622                                                  uint16_t *appmask,
   2623                                                  uint64_t *reftag)
   2624 {
   2625     NvmeCopySourceRangeFormat0 *_ranges = ranges;
   2626 
   2627     if (slba) {
   2628         *slba = le64_to_cpu(_ranges[idx].slba);
   2629     }
   2630 
   2631     if (nlb) {
   2632         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
   2633     }
   2634 
   2635     if (apptag) {
   2636         *apptag = le16_to_cpu(_ranges[idx].apptag);
   2637     }
   2638 
   2639     if (appmask) {
   2640         *appmask = le16_to_cpu(_ranges[idx].appmask);
   2641     }
   2642 
   2643     if (reftag) {
   2644         *reftag = le32_to_cpu(_ranges[idx].reftag);
   2645     }
   2646 }
   2647 
   2648 static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
   2649                                                  uint64_t *slba, uint32_t *nlb,
   2650                                                  uint16_t *apptag,
   2651                                                  uint16_t *appmask,
   2652                                                  uint64_t *reftag)
   2653 {
   2654     NvmeCopySourceRangeFormat1 *_ranges = ranges;
   2655 
   2656     if (slba) {
   2657         *slba = le64_to_cpu(_ranges[idx].slba);
   2658     }
   2659 
   2660     if (nlb) {
   2661         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
   2662     }
   2663 
   2664     if (apptag) {
   2665         *apptag = le16_to_cpu(_ranges[idx].apptag);
   2666     }
   2667 
   2668     if (appmask) {
   2669         *appmask = le16_to_cpu(_ranges[idx].appmask);
   2670     }
   2671 
   2672     if (reftag) {
   2673         *reftag = 0;
   2674 
   2675         *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
   2676         *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
   2677         *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
   2678         *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
   2679         *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
   2680         *reftag |= (uint64_t)_ranges[idx].sr[9];
   2681     }
   2682 }
   2683 
   2684 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
   2685                                          uint64_t *slba, uint32_t *nlb,
   2686                                          uint16_t *apptag, uint16_t *appmask,
   2687                                          uint64_t *reftag)
   2688 {
   2689     switch (format) {
   2690     case NVME_COPY_FORMAT_0:
   2691         nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
   2692                                              appmask, reftag);
   2693         break;
   2694 
   2695     case NVME_COPY_FORMAT_1:
   2696         nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
   2697                                              appmask, reftag);
   2698         break;
   2699 
   2700     default:
   2701         abort();
   2702     }
   2703 }
   2704 
   2705 static void nvme_copy_out_completed_cb(void *opaque, int ret)
   2706 {
   2707     NvmeCopyAIOCB *iocb = opaque;
   2708     NvmeRequest *req = iocb->req;
   2709     NvmeNamespace *ns = req->ns;
   2710     uint32_t nlb;
   2711 
   2712     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
   2713                                  &nlb, NULL, NULL, NULL);
   2714 
   2715     if (ret < 0) {
   2716         iocb->ret = ret;
   2717         goto out;
   2718     } else if (iocb->ret < 0) {
   2719         goto out;
   2720     }
   2721 
   2722     if (ns->params.zoned) {
   2723         nvme_advance_zone_wp(ns, iocb->zone, nlb);
   2724     }
   2725 
   2726     iocb->idx++;
   2727     iocb->slba += nlb;
   2728 out:
   2729     nvme_do_copy(iocb);
   2730 }
   2731 
   2732 static void nvme_copy_out_cb(void *opaque, int ret)
   2733 {
   2734     NvmeCopyAIOCB *iocb = opaque;
   2735     NvmeRequest *req = iocb->req;
   2736     NvmeNamespace *ns = req->ns;
   2737     uint32_t nlb;
   2738     size_t mlen;
   2739     uint8_t *mbounce;
   2740 
   2741     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
   2742         goto out;
   2743     }
   2744 
   2745     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
   2746                                  &nlb, NULL, NULL, NULL);
   2747 
   2748     mlen = nvme_m2b(ns, nlb);
   2749     mbounce = iocb->bounce + nvme_l2b(ns, nlb);
   2750 
   2751     qemu_iovec_reset(&iocb->iov);
   2752     qemu_iovec_add(&iocb->iov, mbounce, mlen);
   2753 
   2754     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
   2755                                   &iocb->iov, 0, nvme_copy_out_completed_cb,
   2756                                   iocb);
   2757 
   2758     return;
   2759 
   2760 out:
   2761     nvme_copy_out_completed_cb(iocb, ret);
   2762 }
   2763 
   2764 static void nvme_copy_in_completed_cb(void *opaque, int ret)
   2765 {
   2766     NvmeCopyAIOCB *iocb = opaque;
   2767     NvmeRequest *req = iocb->req;
   2768     NvmeNamespace *ns = req->ns;
   2769     uint32_t nlb;
   2770     uint64_t slba;
   2771     uint16_t apptag, appmask;
   2772     uint64_t reftag;
   2773     size_t len;
   2774     uint16_t status;
   2775 
   2776     if (ret < 0) {
   2777         iocb->ret = ret;
   2778         goto out;
   2779     } else if (iocb->ret < 0) {
   2780         goto out;
   2781     }
   2782 
   2783     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
   2784                                  &nlb, &apptag, &appmask, &reftag);
   2785     len = nvme_l2b(ns, nlb);
   2786 
   2787     trace_pci_nvme_copy_out(iocb->slba, nlb);
   2788 
   2789     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
   2790         NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
   2791 
   2792         uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
   2793         uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
   2794 
   2795         size_t mlen = nvme_m2b(ns, nlb);
   2796         uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
   2797 
   2798         status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
   2799         if (status) {
   2800             goto invalid;
   2801         }
   2802         status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
   2803                                 slba, apptag, appmask, &reftag);
   2804         if (status) {
   2805             goto invalid;
   2806         }
   2807 
   2808         apptag = le16_to_cpu(copy->apptag);
   2809         appmask = le16_to_cpu(copy->appmask);
   2810 
   2811         if (prinfow & NVME_PRINFO_PRACT) {
   2812             status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
   2813             if (status) {
   2814                 goto invalid;
   2815             }
   2816 
   2817             nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
   2818                                         apptag, &iocb->reftag);
   2819         } else {
   2820             status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
   2821                                     prinfow, iocb->slba, apptag, appmask,
   2822                                     &iocb->reftag);
   2823             if (status) {
   2824                 goto invalid;
   2825             }
   2826         }
   2827     }
   2828 
   2829     status = nvme_check_bounds(ns, iocb->slba, nlb);
   2830     if (status) {
   2831         goto invalid;
   2832     }
   2833 
   2834     if (ns->params.zoned) {
   2835         status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
   2836         if (status) {
   2837             goto invalid;
   2838         }
   2839 
   2840         if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
   2841             iocb->zone->w_ptr += nlb;
   2842         }
   2843     }
   2844 
   2845     qemu_iovec_reset(&iocb->iov);
   2846     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
   2847 
   2848     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
   2849                                   &iocb->iov, 0, nvme_copy_out_cb, iocb);
   2850 
   2851     return;
   2852 
   2853 invalid:
   2854     req->status = status;
   2855     iocb->ret = -1;
   2856 out:
   2857     nvme_do_copy(iocb);
   2858 }
   2859 
   2860 static void nvme_copy_in_cb(void *opaque, int ret)
   2861 {
   2862     NvmeCopyAIOCB *iocb = opaque;
   2863     NvmeRequest *req = iocb->req;
   2864     NvmeNamespace *ns = req->ns;
   2865     uint64_t slba;
   2866     uint32_t nlb;
   2867 
   2868     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
   2869         goto out;
   2870     }
   2871 
   2872     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
   2873                                  &nlb, NULL, NULL, NULL);
   2874 
   2875     qemu_iovec_reset(&iocb->iov);
   2876     qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
   2877                    nvme_m2b(ns, nlb));
   2878 
   2879     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
   2880                                  &iocb->iov, 0, nvme_copy_in_completed_cb,
   2881                                  iocb);
   2882     return;
   2883 
   2884 out:
   2885     nvme_copy_in_completed_cb(iocb, ret);
   2886 }
   2887 
   2888 static void nvme_do_copy(NvmeCopyAIOCB *iocb)
   2889 {
   2890     NvmeRequest *req = iocb->req;
   2891     NvmeNamespace *ns = req->ns;
   2892     uint64_t slba;
   2893     uint32_t nlb;
   2894     size_t len;
   2895     uint16_t status;
   2896 
   2897     if (iocb->ret < 0) {
   2898         goto done;
   2899     }
   2900 
   2901     if (iocb->idx == iocb->nr) {
   2902         goto done;
   2903     }
   2904 
   2905     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
   2906                                  &nlb, NULL, NULL, NULL);
   2907     len = nvme_l2b(ns, nlb);
   2908 
   2909     trace_pci_nvme_copy_source_range(slba, nlb);
   2910 
   2911     if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
   2912         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
   2913         goto invalid;
   2914     }
   2915 
   2916     status = nvme_check_bounds(ns, slba, nlb);
   2917     if (status) {
   2918         goto invalid;
   2919     }
   2920 
   2921     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
   2922         status = nvme_check_dulbe(ns, slba, nlb);
   2923         if (status) {
   2924             goto invalid;
   2925         }
   2926     }
   2927 
   2928     if (ns->params.zoned) {
   2929         status = nvme_check_zone_read(ns, slba, nlb);
   2930         if (status) {
   2931             goto invalid;
   2932         }
   2933     }
   2934 
   2935     qemu_iovec_reset(&iocb->iov);
   2936     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
   2937 
   2938     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
   2939                                  &iocb->iov, 0, nvme_copy_in_cb, iocb);
   2940     return;
   2941 
   2942 invalid:
   2943     req->status = status;
   2944     iocb->ret = -1;
   2945 done:
   2946     nvme_copy_done(iocb);
   2947 }
   2948 
   2949 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
   2950 {
   2951     NvmeNamespace *ns = req->ns;
   2952     NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
   2953     NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
   2954                                       nvme_misc_cb, req);
   2955     uint16_t nr = copy->nr + 1;
   2956     uint8_t format = copy->control[0] & 0xf;
   2957     uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
   2958     uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
   2959     size_t len = sizeof(NvmeCopySourceRangeFormat0);
   2960 
   2961     uint16_t status;
   2962 
   2963     trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
   2964 
   2965     iocb->ranges = NULL;
   2966     iocb->zone = NULL;
   2967 
   2968     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
   2969         ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
   2970         status = NVME_INVALID_FIELD | NVME_DNR;
   2971         goto invalid;
   2972     }
   2973 
   2974     if (!(n->id_ctrl.ocfs & (1 << format))) {
   2975         trace_pci_nvme_err_copy_invalid_format(format);
   2976         status = NVME_INVALID_FIELD | NVME_DNR;
   2977         goto invalid;
   2978     }
   2979 
   2980     if (nr > ns->id_ns.msrc + 1) {
   2981         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
   2982         goto invalid;
   2983     }
   2984 
   2985     if ((ns->pif == 0x0 && format != 0x0) ||
   2986         (ns->pif != 0x0 && format != 0x1)) {
   2987         status = NVME_INVALID_FORMAT | NVME_DNR;
   2988         goto invalid;
   2989     }
   2990 
   2991     if (ns->pif) {
   2992         len = sizeof(NvmeCopySourceRangeFormat1);
   2993     }
   2994 
   2995     iocb->format = format;
   2996     iocb->ranges = g_malloc_n(nr, len);
   2997     status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
   2998     if (status) {
   2999         goto invalid;
   3000     }
   3001 
   3002     iocb->slba = le64_to_cpu(copy->sdlba);
   3003 
   3004     if (ns->params.zoned) {
   3005         iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
   3006         if (!iocb->zone) {
   3007             status = NVME_LBA_RANGE | NVME_DNR;
   3008             goto invalid;
   3009         }
   3010 
   3011         status = nvme_zrm_auto(n, ns, iocb->zone);
   3012         if (status) {
   3013             goto invalid;
   3014         }
   3015     }
   3016 
   3017     iocb->req = req;
   3018     iocb->ret = 0;
   3019     iocb->nr = nr;
   3020     iocb->idx = 0;
   3021     iocb->reftag = le32_to_cpu(copy->reftag);
   3022     iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
   3023     iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
   3024                               ns->lbasz + ns->lbaf.ms);
   3025 
   3026     qemu_iovec_init(&iocb->iov, 1);
   3027 
   3028     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
   3029                      BLOCK_ACCT_READ);
   3030     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
   3031                      BLOCK_ACCT_WRITE);
   3032 
   3033     req->aiocb = &iocb->common;
   3034     nvme_do_copy(iocb);
   3035 
   3036     return NVME_NO_COMPLETE;
   3037 
   3038 invalid:
   3039     g_free(iocb->ranges);
   3040     qemu_aio_unref(iocb);
   3041     return status;
   3042 }
   3043 
   3044 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
   3045 {
   3046     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
   3047     NvmeNamespace *ns = req->ns;
   3048     BlockBackend *blk = ns->blkconf.blk;
   3049     uint64_t slba = le64_to_cpu(rw->slba);
   3050     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
   3051     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
   3052     size_t data_len = nvme_l2b(ns, nlb);
   3053     size_t len = data_len;
   3054     int64_t offset = nvme_l2b(ns, slba);
   3055     struct nvme_compare_ctx *ctx = NULL;
   3056     uint16_t status;
   3057 
   3058     trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
   3059 
   3060     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
   3061         return NVME_INVALID_PROT_INFO | NVME_DNR;
   3062     }
   3063 
   3064     if (nvme_ns_ext(ns)) {
   3065         len += nvme_m2b(ns, nlb);
   3066     }
   3067 
   3068     status = nvme_check_mdts(n, len);
   3069     if (status) {
   3070         return status;
   3071     }
   3072 
   3073     status = nvme_check_bounds(ns, slba, nlb);
   3074     if (status) {
   3075         return status;
   3076     }
   3077 
   3078     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
   3079         status = nvme_check_dulbe(ns, slba, nlb);
   3080         if (status) {
   3081             return status;
   3082         }
   3083     }
   3084 
   3085     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
   3086     if (status) {
   3087         return status;
   3088     }
   3089 
   3090     ctx = g_new(struct nvme_compare_ctx, 1);
   3091     ctx->data.bounce = g_malloc(data_len);
   3092 
   3093     req->opaque = ctx;
   3094 
   3095     qemu_iovec_init(&ctx->data.iov, 1);
   3096     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
   3097 
   3098     block_acct_start(blk_get_stats(blk), &req->acct, data_len,
   3099                      BLOCK_ACCT_READ);
   3100     req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
   3101                                 nvme_compare_data_cb, req);
   3102 
   3103     return NVME_NO_COMPLETE;
   3104 }
   3105 
   3106 typedef struct NvmeFlushAIOCB {
   3107     BlockAIOCB common;
   3108     BlockAIOCB *aiocb;
   3109     NvmeRequest *req;
   3110     int ret;
   3111 
   3112     NvmeNamespace *ns;
   3113     uint32_t nsid;
   3114     bool broadcast;
   3115 } NvmeFlushAIOCB;
   3116 
   3117 static void nvme_flush_cancel(BlockAIOCB *acb)
   3118 {
   3119     NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
   3120 
   3121     iocb->ret = -ECANCELED;
   3122 
   3123     if (iocb->aiocb) {
   3124         blk_aio_cancel_async(iocb->aiocb);
   3125         iocb->aiocb = NULL;
   3126     }
   3127 }
   3128 
   3129 static const AIOCBInfo nvme_flush_aiocb_info = {
   3130     .aiocb_size = sizeof(NvmeFlushAIOCB),
   3131     .cancel_async = nvme_flush_cancel,
   3132     .get_aio_context = nvme_get_aio_context,
   3133 };
   3134 
   3135 static void nvme_do_flush(NvmeFlushAIOCB *iocb);
   3136 
   3137 static void nvme_flush_ns_cb(void *opaque, int ret)
   3138 {
   3139     NvmeFlushAIOCB *iocb = opaque;
   3140     NvmeNamespace *ns = iocb->ns;
   3141 
   3142     if (ret < 0) {
   3143         iocb->ret = ret;
   3144         goto out;
   3145     } else if (iocb->ret < 0) {
   3146         goto out;
   3147     }
   3148 
   3149     if (ns) {
   3150         trace_pci_nvme_flush_ns(iocb->nsid);
   3151 
   3152         iocb->ns = NULL;
   3153         iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
   3154         return;
   3155     }
   3156 
   3157 out:
   3158     nvme_do_flush(iocb);
   3159 }
   3160 
   3161 static void nvme_do_flush(NvmeFlushAIOCB *iocb)
   3162 {
   3163     NvmeRequest *req = iocb->req;
   3164     NvmeCtrl *n = nvme_ctrl(req);
   3165     int i;
   3166 
   3167     if (iocb->ret < 0) {
   3168         goto done;
   3169     }
   3170 
   3171     if (iocb->broadcast) {
   3172         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
   3173             iocb->ns = nvme_ns(n, i);
   3174             if (iocb->ns) {
   3175                 iocb->nsid = i;
   3176                 break;
   3177             }
   3178         }
   3179     }
   3180 
   3181     if (!iocb->ns) {
   3182         goto done;
   3183     }
   3184 
   3185     nvme_flush_ns_cb(iocb, 0);
   3186     return;
   3187 
   3188 done:
   3189     iocb->common.cb(iocb->common.opaque, iocb->ret);
   3190     qemu_aio_unref(iocb);
   3191 }
   3192 
   3193 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
   3194 {
   3195     NvmeFlushAIOCB *iocb;
   3196     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
   3197     uint16_t status;
   3198 
   3199     iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
   3200 
   3201     iocb->req = req;
   3202     iocb->ret = 0;
   3203     iocb->ns = NULL;
   3204     iocb->nsid = 0;
   3205     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
   3206 
   3207     if (!iocb->broadcast) {
   3208         if (!nvme_nsid_valid(n, nsid)) {
   3209             status = NVME_INVALID_NSID | NVME_DNR;
   3210             goto out;
   3211         }
   3212 
   3213         iocb->ns = nvme_ns(n, nsid);
   3214         if (!iocb->ns) {
   3215             status = NVME_INVALID_FIELD | NVME_DNR;
   3216             goto out;
   3217         }
   3218 
   3219         iocb->nsid = nsid;
   3220     }
   3221 
   3222     req->aiocb = &iocb->common;
   3223     nvme_do_flush(iocb);
   3224 
   3225     return NVME_NO_COMPLETE;
   3226 
   3227 out:
   3228     qemu_aio_unref(iocb);
   3229 
   3230     return status;
   3231 }
   3232 
   3233 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
   3234 {
   3235     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
   3236     NvmeNamespace *ns = req->ns;
   3237     uint64_t slba = le64_to_cpu(rw->slba);
   3238     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
   3239     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
   3240     uint64_t data_size = nvme_l2b(ns, nlb);
   3241     uint64_t mapped_size = data_size;
   3242     uint64_t data_offset;
   3243     BlockBackend *blk = ns->blkconf.blk;
   3244     uint16_t status;
   3245 
   3246     if (nvme_ns_ext(ns)) {
   3247         mapped_size += nvme_m2b(ns, nlb);
   3248 
   3249         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
   3250             bool pract = prinfo & NVME_PRINFO_PRACT;
   3251 
   3252             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
   3253                 mapped_size = data_size;
   3254             }
   3255         }
   3256     }
   3257 
   3258     trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
   3259 
   3260     status = nvme_check_mdts(n, mapped_size);
   3261     if (status) {
   3262         goto invalid;
   3263     }
   3264 
   3265     status = nvme_check_bounds(ns, slba, nlb);
   3266     if (status) {
   3267         goto invalid;
   3268     }
   3269 
   3270     if (ns->params.zoned) {
   3271         status = nvme_check_zone_read(ns, slba, nlb);
   3272         if (status) {
   3273             trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
   3274             goto invalid;
   3275         }
   3276     }
   3277 
   3278     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
   3279         status = nvme_check_dulbe(ns, slba, nlb);
   3280         if (status) {
   3281             goto invalid;
   3282         }
   3283     }
   3284 
   3285     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
   3286         return nvme_dif_rw(n, req);
   3287     }
   3288 
   3289     status = nvme_map_data(n, nlb, req);
   3290     if (status) {
   3291         goto invalid;
   3292     }
   3293 
   3294     data_offset = nvme_l2b(ns, slba);
   3295 
   3296     block_acct_start(blk_get_stats(blk), &req->acct, data_size,
   3297                      BLOCK_ACCT_READ);
   3298     nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
   3299     return NVME_NO_COMPLETE;
   3300 
   3301 invalid:
   3302     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
   3303     return status | NVME_DNR;
   3304 }
   3305 
   3306 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
   3307                               bool wrz)
   3308 {
   3309     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
   3310     NvmeNamespace *ns = req->ns;
   3311     uint64_t slba = le64_to_cpu(rw->slba);
   3312     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
   3313     uint16_t ctrl = le16_to_cpu(rw->control);
   3314     uint8_t prinfo = NVME_RW_PRINFO(ctrl);
   3315     uint64_t data_size = nvme_l2b(ns, nlb);
   3316     uint64_t mapped_size = data_size;
   3317     uint64_t data_offset;
   3318     NvmeZone *zone;
   3319     NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
   3320     BlockBackend *blk = ns->blkconf.blk;
   3321     uint16_t status;
   3322 
   3323     if (nvme_ns_ext(ns)) {
   3324         mapped_size += nvme_m2b(ns, nlb);
   3325 
   3326         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
   3327             bool pract = prinfo & NVME_PRINFO_PRACT;
   3328 
   3329             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
   3330                 mapped_size -= nvme_m2b(ns, nlb);
   3331             }
   3332         }
   3333     }
   3334 
   3335     trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
   3336                          nvme_nsid(ns), nlb, mapped_size, slba);
   3337 
   3338     if (!wrz) {
   3339         status = nvme_check_mdts(n, mapped_size);
   3340         if (status) {
   3341             goto invalid;
   3342         }
   3343     }
   3344 
   3345     status = nvme_check_bounds(ns, slba, nlb);
   3346     if (status) {
   3347         goto invalid;
   3348     }
   3349 
   3350     if (ns->params.zoned) {
   3351         zone = nvme_get_zone_by_slba(ns, slba);
   3352         assert(zone);
   3353 
   3354         if (append) {
   3355             bool piremap = !!(ctrl & NVME_RW_PIREMAP);
   3356 
   3357             if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
   3358                 return NVME_INVALID_ZONE_OP | NVME_DNR;
   3359             }
   3360 
   3361             if (unlikely(slba != zone->d.zslba)) {
   3362                 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
   3363                 status = NVME_INVALID_FIELD;
   3364                 goto invalid;
   3365             }
   3366 
   3367             if (n->params.zasl &&
   3368                 data_size > (uint64_t)n->page_size << n->params.zasl) {
   3369                 trace_pci_nvme_err_zasl(data_size);
   3370                 return NVME_INVALID_FIELD | NVME_DNR;
   3371             }
   3372 
   3373             slba = zone->w_ptr;
   3374             rw->slba = cpu_to_le64(slba);
   3375             res->slba = cpu_to_le64(slba);
   3376 
   3377             switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
   3378             case NVME_ID_NS_DPS_TYPE_1:
   3379                 if (!piremap) {
   3380                     return NVME_INVALID_PROT_INFO | NVME_DNR;
   3381                 }
   3382 
   3383                 /* fallthrough */
   3384 
   3385             case NVME_ID_NS_DPS_TYPE_2:
   3386                 if (piremap) {
   3387                     uint32_t reftag = le32_to_cpu(rw->reftag);
   3388                     rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
   3389                 }
   3390 
   3391                 break;
   3392 
   3393             case NVME_ID_NS_DPS_TYPE_3:
   3394                 if (piremap) {
   3395                     return NVME_INVALID_PROT_INFO | NVME_DNR;
   3396                 }
   3397 
   3398                 break;
   3399             }
   3400         }
   3401 
   3402         status = nvme_check_zone_write(ns, zone, slba, nlb);
   3403         if (status) {
   3404             goto invalid;
   3405         }
   3406 
   3407         status = nvme_zrm_auto(n, ns, zone);
   3408         if (status) {
   3409             goto invalid;
   3410         }
   3411 
   3412         if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
   3413             zone->w_ptr += nlb;
   3414         }
   3415     }
   3416 
   3417     data_offset = nvme_l2b(ns, slba);
   3418 
   3419     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
   3420         return nvme_dif_rw(n, req);
   3421     }
   3422 
   3423     if (!wrz) {
   3424         status = nvme_map_data(n, nlb, req);
   3425         if (status) {
   3426             goto invalid;
   3427         }
   3428 
   3429         block_acct_start(blk_get_stats(blk), &req->acct, data_size,
   3430                          BLOCK_ACCT_WRITE);
   3431         nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
   3432     } else {
   3433         req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
   3434                                            BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
   3435                                            req);
   3436     }
   3437 
   3438     return NVME_NO_COMPLETE;
   3439 
   3440 invalid:
   3441     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
   3442     return status | NVME_DNR;
   3443 }
   3444 
   3445 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
   3446 {
   3447     return nvme_do_write(n, req, false, false);
   3448 }
   3449 
   3450 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
   3451 {
   3452     return nvme_do_write(n, req, false, true);
   3453 }
   3454 
   3455 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
   3456 {
   3457     return nvme_do_write(n, req, true, false);
   3458 }
   3459 
   3460 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
   3461                                             uint64_t *slba, uint32_t *zone_idx)
   3462 {
   3463     uint32_t dw10 = le32_to_cpu(c->cdw10);
   3464     uint32_t dw11 = le32_to_cpu(c->cdw11);
   3465 
   3466     if (!ns->params.zoned) {
   3467         trace_pci_nvme_err_invalid_opc(c->opcode);
   3468         return NVME_INVALID_OPCODE | NVME_DNR;
   3469     }
   3470 
   3471     *slba = ((uint64_t)dw11) << 32 | dw10;
   3472     if (unlikely(*slba >= ns->id_ns.nsze)) {
   3473         trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
   3474         *slba = 0;
   3475         return NVME_LBA_RANGE | NVME_DNR;
   3476     }
   3477 
   3478     *zone_idx = nvme_zone_idx(ns, *slba);
   3479     assert(*zone_idx < ns->num_zones);
   3480 
   3481     return NVME_SUCCESS;
   3482 }
   3483 
   3484 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
   3485                                  NvmeRequest *);
   3486 
   3487 enum NvmeZoneProcessingMask {
   3488     NVME_PROC_CURRENT_ZONE    = 0,
   3489     NVME_PROC_OPENED_ZONES    = 1 << 0,
   3490     NVME_PROC_CLOSED_ZONES    = 1 << 1,
   3491     NVME_PROC_READ_ONLY_ZONES = 1 << 2,
   3492     NVME_PROC_FULL_ZONES      = 1 << 3,
   3493 };
   3494 
   3495 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
   3496                                NvmeZoneState state, NvmeRequest *req)
   3497 {
   3498     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
   3499     int flags = 0;
   3500 
   3501     if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
   3502         uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
   3503 
   3504         if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
   3505             return NVME_INVALID_ZONE_OP | NVME_DNR;
   3506         }
   3507 
   3508         if (zone->w_ptr % ns->zns.zrwafg) {
   3509             return NVME_NOZRWA | NVME_DNR;
   3510         }
   3511 
   3512         flags = NVME_ZRM_ZRWA;
   3513     }
   3514 
   3515     return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
   3516 }
   3517 
   3518 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
   3519                                 NvmeZoneState state, NvmeRequest *req)
   3520 {
   3521     return nvme_zrm_close(ns, zone);
   3522 }
   3523 
   3524 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
   3525                                  NvmeZoneState state, NvmeRequest *req)
   3526 {
   3527     return nvme_zrm_finish(ns, zone);
   3528 }
   3529 
   3530 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
   3531                                   NvmeZoneState state, NvmeRequest *req)
   3532 {
   3533     switch (state) {
   3534     case NVME_ZONE_STATE_READ_ONLY:
   3535         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
   3536         /* fall through */
   3537     case NVME_ZONE_STATE_OFFLINE:
   3538         return NVME_SUCCESS;
   3539     default:
   3540         return NVME_ZONE_INVAL_TRANSITION;
   3541     }
   3542 }
   3543 
   3544 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
   3545 {
   3546     uint16_t status;
   3547     uint8_t state = nvme_get_zone_state(zone);
   3548 
   3549     if (state == NVME_ZONE_STATE_EMPTY) {
   3550         status = nvme_aor_check(ns, 1, 0);
   3551         if (status) {
   3552             return status;
   3553         }
   3554         nvme_aor_inc_active(ns);
   3555         zone->d.za |= NVME_ZA_ZD_EXT_VALID;
   3556         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
   3557         return NVME_SUCCESS;
   3558     }
   3559 
   3560     return NVME_ZONE_INVAL_TRANSITION;
   3561 }
   3562 
   3563 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
   3564                                     enum NvmeZoneProcessingMask proc_mask,
   3565                                     op_handler_t op_hndlr, NvmeRequest *req)
   3566 {
   3567     uint16_t status = NVME_SUCCESS;
   3568     NvmeZoneState zs = nvme_get_zone_state(zone);
   3569     bool proc_zone;
   3570 
   3571     switch (zs) {
   3572     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
   3573     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
   3574         proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
   3575         break;
   3576     case NVME_ZONE_STATE_CLOSED:
   3577         proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
   3578         break;
   3579     case NVME_ZONE_STATE_READ_ONLY:
   3580         proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
   3581         break;
   3582     case NVME_ZONE_STATE_FULL:
   3583         proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
   3584         break;
   3585     default:
   3586         proc_zone = false;
   3587     }
   3588 
   3589     if (proc_zone) {
   3590         status = op_hndlr(ns, zone, zs, req);
   3591     }
   3592 
   3593     return status;
   3594 }
   3595 
   3596 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
   3597                                 enum NvmeZoneProcessingMask proc_mask,
   3598                                 op_handler_t op_hndlr, NvmeRequest *req)
   3599 {
   3600     NvmeZone *next;
   3601     uint16_t status = NVME_SUCCESS;
   3602     int i;
   3603 
   3604     if (!proc_mask) {
   3605         status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
   3606     } else {
   3607         if (proc_mask & NVME_PROC_CLOSED_ZONES) {
   3608             QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
   3609                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
   3610                                              req);
   3611                 if (status && status != NVME_NO_COMPLETE) {
   3612                     goto out;
   3613                 }
   3614             }
   3615         }
   3616         if (proc_mask & NVME_PROC_OPENED_ZONES) {
   3617             QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
   3618                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
   3619                                              req);
   3620                 if (status && status != NVME_NO_COMPLETE) {
   3621                     goto out;
   3622                 }
   3623             }
   3624 
   3625             QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
   3626                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
   3627                                              req);
   3628                 if (status && status != NVME_NO_COMPLETE) {
   3629                     goto out;
   3630                 }
   3631             }
   3632         }
   3633         if (proc_mask & NVME_PROC_FULL_ZONES) {
   3634             QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
   3635                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
   3636                                              req);
   3637                 if (status && status != NVME_NO_COMPLETE) {
   3638                     goto out;
   3639                 }
   3640             }
   3641         }
   3642 
   3643         if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
   3644             for (i = 0; i < ns->num_zones; i++, zone++) {
   3645                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
   3646                                              req);
   3647                 if (status && status != NVME_NO_COMPLETE) {
   3648                     goto out;
   3649                 }
   3650             }
   3651         }
   3652     }
   3653 
   3654 out:
   3655     return status;
   3656 }
   3657 
   3658 typedef struct NvmeZoneResetAIOCB {
   3659     BlockAIOCB common;
   3660     BlockAIOCB *aiocb;
   3661     NvmeRequest *req;
   3662     int ret;
   3663 
   3664     bool all;
   3665     int idx;
   3666     NvmeZone *zone;
   3667 } NvmeZoneResetAIOCB;
   3668 
   3669 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
   3670 {
   3671     NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
   3672     NvmeRequest *req = iocb->req;
   3673     NvmeNamespace *ns = req->ns;
   3674 
   3675     iocb->idx = ns->num_zones;
   3676 
   3677     iocb->ret = -ECANCELED;
   3678 
   3679     if (iocb->aiocb) {
   3680         blk_aio_cancel_async(iocb->aiocb);
   3681         iocb->aiocb = NULL;
   3682     }
   3683 }
   3684 
   3685 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
   3686     .aiocb_size = sizeof(NvmeZoneResetAIOCB),
   3687     .cancel_async = nvme_zone_reset_cancel,
   3688 };
   3689 
   3690 static void nvme_zone_reset_cb(void *opaque, int ret);
   3691 
   3692 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
   3693 {
   3694     NvmeZoneResetAIOCB *iocb = opaque;
   3695     NvmeRequest *req = iocb->req;
   3696     NvmeNamespace *ns = req->ns;
   3697     int64_t moff;
   3698     int count;
   3699 
   3700     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
   3701         goto out;
   3702     }
   3703 
   3704     moff = nvme_moff(ns, iocb->zone->d.zslba);
   3705     count = nvme_m2b(ns, ns->zone_size);
   3706 
   3707     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
   3708                                         BDRV_REQ_MAY_UNMAP,
   3709                                         nvme_zone_reset_cb, iocb);
   3710     return;
   3711 
   3712 out:
   3713     nvme_zone_reset_cb(iocb, ret);
   3714 }
   3715 
   3716 static void nvme_zone_reset_cb(void *opaque, int ret)
   3717 {
   3718     NvmeZoneResetAIOCB *iocb = opaque;
   3719     NvmeRequest *req = iocb->req;
   3720     NvmeNamespace *ns = req->ns;
   3721 
   3722     if (iocb->ret < 0) {
   3723         goto done;
   3724     } else if (ret < 0) {
   3725         iocb->ret = ret;
   3726         goto done;
   3727     }
   3728 
   3729     if (iocb->zone) {
   3730         nvme_zrm_reset(ns, iocb->zone);
   3731 
   3732         if (!iocb->all) {
   3733             goto done;
   3734         }
   3735     }
   3736 
   3737     while (iocb->idx < ns->num_zones) {
   3738         NvmeZone *zone = &ns->zone_array[iocb->idx++];
   3739 
   3740         switch (nvme_get_zone_state(zone)) {
   3741         case NVME_ZONE_STATE_EMPTY:
   3742             if (!iocb->all) {
   3743                 goto done;
   3744             }
   3745 
   3746             continue;
   3747 
   3748         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
   3749         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
   3750         case NVME_ZONE_STATE_CLOSED:
   3751         case NVME_ZONE_STATE_FULL:
   3752             iocb->zone = zone;
   3753             break;
   3754 
   3755         default:
   3756             continue;
   3757         }
   3758 
   3759         trace_pci_nvme_zns_zone_reset(zone->d.zslba);
   3760 
   3761         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
   3762                                             nvme_l2b(ns, zone->d.zslba),
   3763                                             nvme_l2b(ns, ns->zone_size),
   3764                                             BDRV_REQ_MAY_UNMAP,
   3765                                             nvme_zone_reset_epilogue_cb,
   3766                                             iocb);
   3767         return;
   3768     }
   3769 
   3770 done:
   3771     iocb->aiocb = NULL;
   3772 
   3773     iocb->common.cb(iocb->common.opaque, iocb->ret);
   3774     qemu_aio_unref(iocb);
   3775 }
   3776 
   3777 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
   3778                                                uint64_t elba, NvmeRequest *req)
   3779 {
   3780     NvmeNamespace *ns = req->ns;
   3781     uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
   3782     uint64_t wp = zone->d.wp;
   3783     uint32_t nlb = elba - wp + 1;
   3784     uint16_t status;
   3785 
   3786 
   3787     if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
   3788         return NVME_INVALID_ZONE_OP | NVME_DNR;
   3789     }
   3790 
   3791     if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
   3792         return NVME_INVALID_FIELD | NVME_DNR;
   3793     }
   3794 
   3795     if (elba < wp || elba > wp + ns->zns.zrwas) {
   3796         return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
   3797     }
   3798 
   3799     if (nlb % ns->zns.zrwafg) {
   3800         return NVME_INVALID_FIELD | NVME_DNR;
   3801     }
   3802 
   3803     status = nvme_zrm_auto(n, ns, zone);
   3804     if (status) {
   3805         return status;
   3806     }
   3807 
   3808     zone->w_ptr += nlb;
   3809 
   3810     nvme_advance_zone_wp(ns, zone, nlb);
   3811 
   3812     return NVME_SUCCESS;
   3813 }
   3814 
   3815 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
   3816 {
   3817     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
   3818     NvmeNamespace *ns = req->ns;
   3819     NvmeZone *zone;
   3820     NvmeZoneResetAIOCB *iocb;
   3821     uint8_t *zd_ext;
   3822     uint64_t slba = 0;
   3823     uint32_t zone_idx = 0;
   3824     uint16_t status;
   3825     uint8_t action = cmd->zsa;
   3826     bool all;
   3827     enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
   3828 
   3829     all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
   3830 
   3831     req->status = NVME_SUCCESS;
   3832 
   3833     if (!all) {
   3834         status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
   3835         if (status) {
   3836             return status;
   3837         }
   3838     }
   3839 
   3840     zone = &ns->zone_array[zone_idx];
   3841     if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
   3842         trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
   3843         return NVME_INVALID_FIELD | NVME_DNR;
   3844     }
   3845 
   3846     switch (action) {
   3847 
   3848     case NVME_ZONE_ACTION_OPEN:
   3849         if (all) {
   3850             proc_mask = NVME_PROC_CLOSED_ZONES;
   3851         }
   3852         trace_pci_nvme_open_zone(slba, zone_idx, all);
   3853         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
   3854         break;
   3855 
   3856     case NVME_ZONE_ACTION_CLOSE:
   3857         if (all) {
   3858             proc_mask = NVME_PROC_OPENED_ZONES;
   3859         }
   3860         trace_pci_nvme_close_zone(slba, zone_idx, all);
   3861         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
   3862         break;
   3863 
   3864     case NVME_ZONE_ACTION_FINISH:
   3865         if (all) {
   3866             proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
   3867         }
   3868         trace_pci_nvme_finish_zone(slba, zone_idx, all);
   3869         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
   3870         break;
   3871 
   3872     case NVME_ZONE_ACTION_RESET:
   3873         trace_pci_nvme_reset_zone(slba, zone_idx, all);
   3874 
   3875         iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
   3876                            nvme_misc_cb, req);
   3877 
   3878         iocb->req = req;
   3879         iocb->ret = 0;
   3880         iocb->all = all;
   3881         iocb->idx = zone_idx;
   3882         iocb->zone = NULL;
   3883 
   3884         req->aiocb = &iocb->common;
   3885         nvme_zone_reset_cb(iocb, 0);
   3886 
   3887         return NVME_NO_COMPLETE;
   3888 
   3889     case NVME_ZONE_ACTION_OFFLINE:
   3890         if (all) {
   3891             proc_mask = NVME_PROC_READ_ONLY_ZONES;
   3892         }
   3893         trace_pci_nvme_offline_zone(slba, zone_idx, all);
   3894         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
   3895         break;
   3896 
   3897     case NVME_ZONE_ACTION_SET_ZD_EXT:
   3898         trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
   3899         if (all || !ns->params.zd_extension_size) {
   3900             return NVME_INVALID_FIELD | NVME_DNR;
   3901         }
   3902         zd_ext = nvme_get_zd_extension(ns, zone_idx);
   3903         status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
   3904         if (status) {
   3905             trace_pci_nvme_err_zd_extension_map_error(zone_idx);
   3906             return status;
   3907         }
   3908 
   3909         status = nvme_set_zd_ext(ns, zone);
   3910         if (status == NVME_SUCCESS) {
   3911             trace_pci_nvme_zd_extension_set(zone_idx);
   3912             return status;
   3913         }
   3914         break;
   3915 
   3916     case NVME_ZONE_ACTION_ZRWA_FLUSH:
   3917         if (all) {
   3918             return NVME_INVALID_FIELD | NVME_DNR;
   3919         }
   3920 
   3921         return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
   3922 
   3923     default:
   3924         trace_pci_nvme_err_invalid_mgmt_action(action);
   3925         status = NVME_INVALID_FIELD;
   3926     }
   3927 
   3928     if (status == NVME_ZONE_INVAL_TRANSITION) {
   3929         trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
   3930                                                          zone->d.za);
   3931     }
   3932     if (status) {
   3933         status |= NVME_DNR;
   3934     }
   3935 
   3936     return status;
   3937 }
   3938 
   3939 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
   3940 {
   3941     NvmeZoneState zs = nvme_get_zone_state(zl);
   3942 
   3943     switch (zafs) {
   3944     case NVME_ZONE_REPORT_ALL:
   3945         return true;
   3946     case NVME_ZONE_REPORT_EMPTY:
   3947         return zs == NVME_ZONE_STATE_EMPTY;
   3948     case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
   3949         return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
   3950     case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
   3951         return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
   3952     case NVME_ZONE_REPORT_CLOSED:
   3953         return zs == NVME_ZONE_STATE_CLOSED;
   3954     case NVME_ZONE_REPORT_FULL:
   3955         return zs == NVME_ZONE_STATE_FULL;
   3956     case NVME_ZONE_REPORT_READ_ONLY:
   3957         return zs == NVME_ZONE_STATE_READ_ONLY;
   3958     case NVME_ZONE_REPORT_OFFLINE:
   3959         return zs == NVME_ZONE_STATE_OFFLINE;
   3960     default:
   3961         return false;
   3962     }
   3963 }
   3964 
   3965 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
   3966 {
   3967     NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
   3968     NvmeNamespace *ns = req->ns;
   3969     /* cdw12 is zero-based number of dwords to return. Convert to bytes */
   3970     uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
   3971     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
   3972     uint32_t zone_idx, zra, zrasf, partial;
   3973     uint64_t max_zones, nr_zones = 0;
   3974     uint16_t status;
   3975     uint64_t slba;
   3976     NvmeZoneDescr *z;
   3977     NvmeZone *zone;
   3978     NvmeZoneReportHeader *header;
   3979     void *buf, *buf_p;
   3980     size_t zone_entry_sz;
   3981     int i;
   3982 
   3983     req->status = NVME_SUCCESS;
   3984 
   3985     status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
   3986     if (status) {
   3987         return status;
   3988     }
   3989 
   3990     zra = dw13 & 0xff;
   3991     if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
   3992         return NVME_INVALID_FIELD | NVME_DNR;
   3993     }
   3994     if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
   3995         return NVME_INVALID_FIELD | NVME_DNR;
   3996     }
   3997 
   3998     zrasf = (dw13 >> 8) & 0xff;
   3999     if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
   4000         return NVME_INVALID_FIELD | NVME_DNR;
   4001     }
   4002 
   4003     if (data_size < sizeof(NvmeZoneReportHeader)) {
   4004         return NVME_INVALID_FIELD | NVME_DNR;
   4005     }
   4006 
   4007     status = nvme_check_mdts(n, data_size);
   4008     if (status) {
   4009         return status;
   4010     }
   4011 
   4012     partial = (dw13 >> 16) & 0x01;
   4013 
   4014     zone_entry_sz = sizeof(NvmeZoneDescr);
   4015     if (zra == NVME_ZONE_REPORT_EXTENDED) {
   4016         zone_entry_sz += ns->params.zd_extension_size;
   4017     }
   4018 
   4019     max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
   4020     buf = g_malloc0(data_size);
   4021 
   4022     zone = &ns->zone_array[zone_idx];
   4023     for (i = zone_idx; i < ns->num_zones; i++) {
   4024         if (partial && nr_zones >= max_zones) {
   4025             break;
   4026         }
   4027         if (nvme_zone_matches_filter(zrasf, zone++)) {
   4028             nr_zones++;
   4029         }
   4030     }
   4031     header = (NvmeZoneReportHeader *)buf;
   4032     header->nr_zones = cpu_to_le64(nr_zones);
   4033 
   4034     buf_p = buf + sizeof(NvmeZoneReportHeader);
   4035     for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
   4036         zone = &ns->zone_array[zone_idx];
   4037         if (nvme_zone_matches_filter(zrasf, zone)) {
   4038             z = (NvmeZoneDescr *)buf_p;
   4039             buf_p += sizeof(NvmeZoneDescr);
   4040 
   4041             z->zt = zone->d.zt;
   4042             z->zs = zone->d.zs;
   4043             z->zcap = cpu_to_le64(zone->d.zcap);
   4044             z->zslba = cpu_to_le64(zone->d.zslba);
   4045             z->za = zone->d.za;
   4046 
   4047             if (nvme_wp_is_valid(zone)) {
   4048                 z->wp = cpu_to_le64(zone->d.wp);
   4049             } else {
   4050                 z->wp = cpu_to_le64(~0ULL);
   4051             }
   4052 
   4053             if (zra == NVME_ZONE_REPORT_EXTENDED) {
   4054                 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
   4055                     memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
   4056                            ns->params.zd_extension_size);
   4057                 }
   4058                 buf_p += ns->params.zd_extension_size;
   4059             }
   4060 
   4061             max_zones--;
   4062         }
   4063     }
   4064 
   4065     status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
   4066 
   4067     g_free(buf);
   4068 
   4069     return status;
   4070 }
   4071 
   4072 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
   4073 {
   4074     NvmeNamespace *ns;
   4075     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
   4076 
   4077     trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
   4078                           req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
   4079 
   4080     if (!nvme_nsid_valid(n, nsid)) {
   4081         return NVME_INVALID_NSID | NVME_DNR;
   4082     }
   4083 
   4084     /*
   4085      * In the base NVM command set, Flush may apply to all namespaces
   4086      * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
   4087      * along with TP 4056 (Namespace Types), it may be pretty screwed up.
   4088      *
   4089      * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
   4090      * opcode with a specific command since we cannot determine a unique I/O
   4091      * command set. Opcode 0h could have any other meaning than something
   4092      * equivalent to flushing and say it DOES have completely different
   4093      * semantics in some other command set - does an NSID of FFFFFFFFh then
   4094      * mean "for all namespaces, apply whatever command set specific command
   4095      * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
   4096      * whatever command that uses the 0h opcode if, and only if, it allows NSID
   4097      * to be FFFFFFFFh"?
   4098      *
   4099      * Anyway (and luckily), for now, we do not care about this since the
   4100      * device only supports namespace types that includes the NVM Flush command
   4101      * (NVM and Zoned), so always do an NVM Flush.
   4102      */
   4103     if (req->cmd.opcode == NVME_CMD_FLUSH) {
   4104         return nvme_flush(n, req);
   4105     }
   4106 
   4107     ns = nvme_ns(n, nsid);
   4108     if (unlikely(!ns)) {
   4109         return NVME_INVALID_FIELD | NVME_DNR;
   4110     }
   4111 
   4112     if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
   4113         trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
   4114         return NVME_INVALID_OPCODE | NVME_DNR;
   4115     }
   4116 
   4117     if (ns->status) {
   4118         return ns->status;
   4119     }
   4120 
   4121     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
   4122         return NVME_INVALID_FIELD;
   4123     }
   4124 
   4125     req->ns = ns;
   4126 
   4127     switch (req->cmd.opcode) {
   4128     case NVME_CMD_WRITE_ZEROES:
   4129         return nvme_write_zeroes(n, req);
   4130     case NVME_CMD_ZONE_APPEND:
   4131         return nvme_zone_append(n, req);
   4132     case NVME_CMD_WRITE:
   4133         return nvme_write(n, req);
   4134     case NVME_CMD_READ:
   4135         return nvme_read(n, req);
   4136     case NVME_CMD_COMPARE:
   4137         return nvme_compare(n, req);
   4138     case NVME_CMD_DSM:
   4139         return nvme_dsm(n, req);
   4140     case NVME_CMD_VERIFY:
   4141         return nvme_verify(n, req);
   4142     case NVME_CMD_COPY:
   4143         return nvme_copy(n, req);
   4144     case NVME_CMD_ZONE_MGMT_SEND:
   4145         return nvme_zone_mgmt_send(n, req);
   4146     case NVME_CMD_ZONE_MGMT_RECV:
   4147         return nvme_zone_mgmt_recv(n, req);
   4148     default:
   4149         assert(false);
   4150     }
   4151 
   4152     return NVME_INVALID_OPCODE | NVME_DNR;
   4153 }
   4154 
   4155 static void nvme_cq_notifier(EventNotifier *e)
   4156 {
   4157     NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
   4158     NvmeCtrl *n = cq->ctrl;
   4159 
   4160     if (!event_notifier_test_and_clear(e)) {
   4161         return;
   4162     }
   4163 
   4164     nvme_update_cq_head(cq);
   4165 
   4166     if (cq->tail == cq->head) {
   4167         if (cq->irq_enabled) {
   4168             n->cq_pending--;
   4169         }
   4170 
   4171         nvme_irq_deassert(n, cq);
   4172     }
   4173 
   4174     qemu_bh_schedule(cq->bh);
   4175 }
   4176 
   4177 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
   4178 {
   4179     NvmeCtrl *n = cq->ctrl;
   4180     uint16_t offset = (cq->cqid << 3) + (1 << 2);
   4181     int ret;
   4182 
   4183     ret = event_notifier_init(&cq->notifier, 0);
   4184     if (ret < 0) {
   4185         return ret;
   4186     }
   4187 
   4188     event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
   4189     memory_region_add_eventfd(&n->iomem,
   4190                               0x1000 + offset, 4, false, 0, &cq->notifier);
   4191 
   4192     return 0;
   4193 }
   4194 
   4195 static void nvme_sq_notifier(EventNotifier *e)
   4196 {
   4197     NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
   4198 
   4199     if (!event_notifier_test_and_clear(e)) {
   4200         return;
   4201     }
   4202 
   4203     nvme_process_sq(sq);
   4204 }
   4205 
   4206 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
   4207 {
   4208     NvmeCtrl *n = sq->ctrl;
   4209     uint16_t offset = sq->sqid << 3;
   4210     int ret;
   4211 
   4212     ret = event_notifier_init(&sq->notifier, 0);
   4213     if (ret < 0) {
   4214         return ret;
   4215     }
   4216 
   4217     event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
   4218     memory_region_add_eventfd(&n->iomem,
   4219                               0x1000 + offset, 4, false, 0, &sq->notifier);
   4220 
   4221     return 0;
   4222 }
   4223 
   4224 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
   4225 {
   4226     uint16_t offset = sq->sqid << 3;
   4227 
   4228     n->sq[sq->sqid] = NULL;
   4229     qemu_bh_delete(sq->bh);
   4230     if (sq->ioeventfd_enabled) {
   4231         memory_region_del_eventfd(&n->iomem,
   4232                                   0x1000 + offset, 4, false, 0, &sq->notifier);
   4233         event_notifier_set_handler(&sq->notifier, NULL);
   4234         event_notifier_cleanup(&sq->notifier);
   4235     }
   4236     g_free(sq->io_req);
   4237     if (sq->sqid) {
   4238         g_free(sq);
   4239     }
   4240 }
   4241 
   4242 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
   4243 {
   4244     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
   4245     NvmeRequest *r, *next;
   4246     NvmeSQueue *sq;
   4247     NvmeCQueue *cq;
   4248     uint16_t qid = le16_to_cpu(c->qid);
   4249 
   4250     if (unlikely(!qid || nvme_check_sqid(n, qid))) {
   4251         trace_pci_nvme_err_invalid_del_sq(qid);
   4252         return NVME_INVALID_QID | NVME_DNR;
   4253     }
   4254 
   4255     trace_pci_nvme_del_sq(qid);
   4256 
   4257     sq = n->sq[qid];
   4258     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
   4259         r = QTAILQ_FIRST(&sq->out_req_list);
   4260         assert(r->aiocb);
   4261         blk_aio_cancel(r->aiocb);
   4262     }
   4263 
   4264     assert(QTAILQ_EMPTY(&sq->out_req_list));
   4265 
   4266     if (!nvme_check_cqid(n, sq->cqid)) {
   4267         cq = n->cq[sq->cqid];
   4268         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
   4269 
   4270         nvme_post_cqes(cq);
   4271         QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
   4272             if (r->sq == sq) {
   4273                 QTAILQ_REMOVE(&cq->req_list, r, entry);
   4274                 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
   4275             }
   4276         }
   4277     }
   4278 
   4279     nvme_free_sq(sq, n);
   4280     return NVME_SUCCESS;
   4281 }
   4282 
   4283 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
   4284                          uint16_t sqid, uint16_t cqid, uint16_t size)
   4285 {
   4286     int i;
   4287     NvmeCQueue *cq;
   4288 
   4289     sq->ctrl = n;
   4290     sq->dma_addr = dma_addr;
   4291     sq->sqid = sqid;
   4292     sq->size = size;
   4293     sq->cqid = cqid;
   4294     sq->head = sq->tail = 0;
   4295     sq->io_req = g_new0(NvmeRequest, sq->size);
   4296 
   4297     QTAILQ_INIT(&sq->req_list);
   4298     QTAILQ_INIT(&sq->out_req_list);
   4299     for (i = 0; i < sq->size; i++) {
   4300         sq->io_req[i].sq = sq;
   4301         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
   4302     }
   4303 
   4304     sq->bh = qemu_bh_new(nvme_process_sq, sq);
   4305 
   4306     if (n->dbbuf_enabled) {
   4307         sq->db_addr = n->dbbuf_dbs + (sqid << 3);
   4308         sq->ei_addr = n->dbbuf_eis + (sqid << 3);
   4309 
   4310         if (n->params.ioeventfd && sq->sqid != 0) {
   4311             if (!nvme_init_sq_ioeventfd(sq)) {
   4312                 sq->ioeventfd_enabled = true;
   4313             }
   4314         }
   4315     }
   4316 
   4317     assert(n->cq[cqid]);
   4318     cq = n->cq[cqid];
   4319     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
   4320     n->sq[sqid] = sq;
   4321 }
   4322 
   4323 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
   4324 {
   4325     NvmeSQueue *sq;
   4326     NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
   4327 
   4328     uint16_t cqid = le16_to_cpu(c->cqid);
   4329     uint16_t sqid = le16_to_cpu(c->sqid);
   4330     uint16_t qsize = le16_to_cpu(c->qsize);
   4331     uint16_t qflags = le16_to_cpu(c->sq_flags);
   4332     uint64_t prp1 = le64_to_cpu(c->prp1);
   4333 
   4334     trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
   4335 
   4336     if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
   4337         trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
   4338         return NVME_INVALID_CQID | NVME_DNR;
   4339     }
   4340     if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
   4341         trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
   4342         return NVME_INVALID_QID | NVME_DNR;
   4343     }
   4344     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
   4345         trace_pci_nvme_err_invalid_create_sq_size(qsize);
   4346         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
   4347     }
   4348     if (unlikely(prp1 & (n->page_size - 1))) {
   4349         trace_pci_nvme_err_invalid_create_sq_addr(prp1);
   4350         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
   4351     }
   4352     if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
   4353         trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
   4354         return NVME_INVALID_FIELD | NVME_DNR;
   4355     }
   4356     sq = g_malloc0(sizeof(*sq));
   4357     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
   4358     return NVME_SUCCESS;
   4359 }
   4360 
   4361 struct nvme_stats {
   4362     uint64_t units_read;
   4363     uint64_t units_written;
   4364     uint64_t read_commands;
   4365     uint64_t write_commands;
   4366 };
   4367 
   4368 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
   4369 {
   4370     BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
   4371 
   4372     stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
   4373     stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
   4374     stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
   4375     stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
   4376 }
   4377 
   4378 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
   4379                                 uint64_t off, NvmeRequest *req)
   4380 {
   4381     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
   4382     struct nvme_stats stats = { 0 };
   4383     NvmeSmartLog smart = { 0 };
   4384     uint32_t trans_len;
   4385     NvmeNamespace *ns;
   4386     time_t current_ms;
   4387 
   4388     if (off >= sizeof(smart)) {
   4389         return NVME_INVALID_FIELD | NVME_DNR;
   4390     }
   4391 
   4392     if (nsid != 0xffffffff) {
   4393         ns = nvme_ns(n, nsid);
   4394         if (!ns) {
   4395             return NVME_INVALID_NSID | NVME_DNR;
   4396         }
   4397         nvme_set_blk_stats(ns, &stats);
   4398     } else {
   4399         int i;
   4400 
   4401         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
   4402             ns = nvme_ns(n, i);
   4403             if (!ns) {
   4404                 continue;
   4405             }
   4406             nvme_set_blk_stats(ns, &stats);
   4407         }
   4408     }
   4409 
   4410     trans_len = MIN(sizeof(smart) - off, buf_len);
   4411     smart.critical_warning = n->smart_critical_warning;
   4412 
   4413     smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
   4414                                                         1000));
   4415     smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
   4416                                                            1000));
   4417     smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
   4418     smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
   4419 
   4420     smart.temperature = cpu_to_le16(n->temperature);
   4421 
   4422     if ((n->temperature >= n->features.temp_thresh_hi) ||
   4423         (n->temperature <= n->features.temp_thresh_low)) {
   4424         smart.critical_warning |= NVME_SMART_TEMPERATURE;
   4425     }
   4426 
   4427     current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
   4428     smart.power_on_hours[0] =
   4429         cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
   4430 
   4431     if (!rae) {
   4432         nvme_clear_events(n, NVME_AER_TYPE_SMART);
   4433     }
   4434 
   4435     return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
   4436 }
   4437 
   4438 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
   4439                                  NvmeRequest *req)
   4440 {
   4441     uint32_t trans_len;
   4442     NvmeFwSlotInfoLog fw_log = {
   4443         .afi = 0x1,
   4444     };
   4445 
   4446     if (off >= sizeof(fw_log)) {
   4447         return NVME_INVALID_FIELD | NVME_DNR;
   4448     }
   4449 
   4450     strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
   4451     trans_len = MIN(sizeof(fw_log) - off, buf_len);
   4452 
   4453     return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
   4454 }
   4455 
   4456 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
   4457                                 uint64_t off, NvmeRequest *req)
   4458 {
   4459     uint32_t trans_len;
   4460     NvmeErrorLog errlog;
   4461 
   4462     if (off >= sizeof(errlog)) {
   4463         return NVME_INVALID_FIELD | NVME_DNR;
   4464     }
   4465 
   4466     if (!rae) {
   4467         nvme_clear_events(n, NVME_AER_TYPE_ERROR);
   4468     }
   4469 
   4470     memset(&errlog, 0x0, sizeof(errlog));
   4471     trans_len = MIN(sizeof(errlog) - off, buf_len);
   4472 
   4473     return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
   4474 }
   4475 
   4476 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
   4477                                     uint64_t off, NvmeRequest *req)
   4478 {
   4479     uint32_t nslist[1024];
   4480     uint32_t trans_len;
   4481     int i = 0;
   4482     uint32_t nsid;
   4483 
   4484     if (off >= sizeof(nslist)) {
   4485         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
   4486         return NVME_INVALID_FIELD | NVME_DNR;
   4487     }
   4488 
   4489     memset(nslist, 0x0, sizeof(nslist));
   4490     trans_len = MIN(sizeof(nslist) - off, buf_len);
   4491 
   4492     while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
   4493             NVME_CHANGED_NSID_SIZE) {
   4494         /*
   4495          * If more than 1024 namespaces, the first entry in the log page should
   4496          * be set to FFFFFFFFh and the others to 0 as spec.
   4497          */
   4498         if (i == ARRAY_SIZE(nslist)) {
   4499             memset(nslist, 0x0, sizeof(nslist));
   4500             nslist[0] = 0xffffffff;
   4501             break;
   4502         }
   4503 
   4504         nslist[i++] = nsid;
   4505         clear_bit(nsid, n->changed_nsids);
   4506     }
   4507 
   4508     /*
   4509      * Remove all the remaining list entries in case returns directly due to
   4510      * more than 1024 namespaces.
   4511      */
   4512     if (nslist[0] == 0xffffffff) {
   4513         bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
   4514     }
   4515 
   4516     if (!rae) {
   4517         nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
   4518     }
   4519 
   4520     return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
   4521 }
   4522 
   4523 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
   4524                                  uint64_t off, NvmeRequest *req)
   4525 {
   4526     NvmeEffectsLog log = {};
   4527     const uint32_t *src_iocs = NULL;
   4528     uint32_t trans_len;
   4529 
   4530     if (off >= sizeof(log)) {
   4531         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
   4532         return NVME_INVALID_FIELD | NVME_DNR;
   4533     }
   4534 
   4535     switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
   4536     case NVME_CC_CSS_NVM:
   4537         src_iocs = nvme_cse_iocs_nvm;
   4538         /* fall through */
   4539     case NVME_CC_CSS_ADMIN_ONLY:
   4540         break;
   4541     case NVME_CC_CSS_CSI:
   4542         switch (csi) {
   4543         case NVME_CSI_NVM:
   4544             src_iocs = nvme_cse_iocs_nvm;
   4545             break;
   4546         case NVME_CSI_ZONED:
   4547             src_iocs = nvme_cse_iocs_zoned;
   4548             break;
   4549         }
   4550     }
   4551 
   4552     memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
   4553 
   4554     if (src_iocs) {
   4555         memcpy(log.iocs, src_iocs, sizeof(log.iocs));
   4556     }
   4557 
   4558     trans_len = MIN(sizeof(log) - off, buf_len);
   4559 
   4560     return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
   4561 }
   4562 
   4563 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
   4564 {
   4565     NvmeCmd *cmd = &req->cmd;
   4566 
   4567     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
   4568     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
   4569     uint32_t dw12 = le32_to_cpu(cmd->cdw12);
   4570     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
   4571     uint8_t  lid = dw10 & 0xff;
   4572     uint8_t  lsp = (dw10 >> 8) & 0xf;
   4573     uint8_t  rae = (dw10 >> 15) & 0x1;
   4574     uint8_t  csi = le32_to_cpu(cmd->cdw14) >> 24;
   4575     uint32_t numdl, numdu;
   4576     uint64_t off, lpol, lpou;
   4577     size_t   len;
   4578     uint16_t status;
   4579 
   4580     numdl = (dw10 >> 16);
   4581     numdu = (dw11 & 0xffff);
   4582     lpol = dw12;
   4583     lpou = dw13;
   4584 
   4585     len = (((numdu << 16) | numdl) + 1) << 2;
   4586     off = (lpou << 32ULL) | lpol;
   4587 
   4588     if (off & 0x3) {
   4589         return NVME_INVALID_FIELD | NVME_DNR;
   4590     }
   4591 
   4592     trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
   4593 
   4594     status = nvme_check_mdts(n, len);
   4595     if (status) {
   4596         return status;
   4597     }
   4598 
   4599     switch (lid) {
   4600     case NVME_LOG_ERROR_INFO:
   4601         return nvme_error_info(n, rae, len, off, req);
   4602     case NVME_LOG_SMART_INFO:
   4603         return nvme_smart_info(n, rae, len, off, req);
   4604     case NVME_LOG_FW_SLOT_INFO:
   4605         return nvme_fw_log_info(n, len, off, req);
   4606     case NVME_LOG_CHANGED_NSLIST:
   4607         return nvme_changed_nslist(n, rae, len, off, req);
   4608     case NVME_LOG_CMD_EFFECTS:
   4609         return nvme_cmd_effects(n, csi, len, off, req);
   4610     default:
   4611         trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
   4612         return NVME_INVALID_FIELD | NVME_DNR;
   4613     }
   4614 }
   4615 
   4616 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
   4617 {
   4618     uint16_t offset = (cq->cqid << 3) + (1 << 2);
   4619 
   4620     n->cq[cq->cqid] = NULL;
   4621     qemu_bh_delete(cq->bh);
   4622     if (cq->ioeventfd_enabled) {
   4623         memory_region_del_eventfd(&n->iomem,
   4624                                   0x1000 + offset, 4, false, 0, &cq->notifier);
   4625         event_notifier_set_handler(&cq->notifier, NULL);
   4626         event_notifier_cleanup(&cq->notifier);
   4627     }
   4628     if (msix_enabled(&n->parent_obj)) {
   4629         msix_vector_unuse(&n->parent_obj, cq->vector);
   4630     }
   4631     if (cq->cqid) {
   4632         g_free(cq);
   4633     }
   4634 }
   4635 
   4636 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
   4637 {
   4638     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
   4639     NvmeCQueue *cq;
   4640     uint16_t qid = le16_to_cpu(c->qid);
   4641 
   4642     if (unlikely(!qid || nvme_check_cqid(n, qid))) {
   4643         trace_pci_nvme_err_invalid_del_cq_cqid(qid);
   4644         return NVME_INVALID_CQID | NVME_DNR;
   4645     }
   4646 
   4647     cq = n->cq[qid];
   4648     if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
   4649         trace_pci_nvme_err_invalid_del_cq_notempty(qid);
   4650         return NVME_INVALID_QUEUE_DEL;
   4651     }
   4652 
   4653     if (cq->irq_enabled && cq->tail != cq->head) {
   4654         n->cq_pending--;
   4655     }
   4656 
   4657     nvme_irq_deassert(n, cq);
   4658     trace_pci_nvme_del_cq(qid);
   4659     nvme_free_cq(cq, n);
   4660     return NVME_SUCCESS;
   4661 }
   4662 
   4663 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
   4664                          uint16_t cqid, uint16_t vector, uint16_t size,
   4665                          uint16_t irq_enabled)
   4666 {
   4667     if (msix_enabled(&n->parent_obj)) {
   4668         msix_vector_use(&n->parent_obj, vector);
   4669     }
   4670     cq->ctrl = n;
   4671     cq->cqid = cqid;
   4672     cq->size = size;
   4673     cq->dma_addr = dma_addr;
   4674     cq->phase = 1;
   4675     cq->irq_enabled = irq_enabled;
   4676     cq->vector = vector;
   4677     cq->head = cq->tail = 0;
   4678     QTAILQ_INIT(&cq->req_list);
   4679     QTAILQ_INIT(&cq->sq_list);
   4680     if (n->dbbuf_enabled) {
   4681         cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
   4682         cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
   4683 
   4684         if (n->params.ioeventfd && cqid != 0) {
   4685             if (!nvme_init_cq_ioeventfd(cq)) {
   4686                 cq->ioeventfd_enabled = true;
   4687             }
   4688         }
   4689     }
   4690     n->cq[cqid] = cq;
   4691     cq->bh = qemu_bh_new(nvme_post_cqes, cq);
   4692 }
   4693 
   4694 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
   4695 {
   4696     NvmeCQueue *cq;
   4697     NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
   4698     uint16_t cqid = le16_to_cpu(c->cqid);
   4699     uint16_t vector = le16_to_cpu(c->irq_vector);
   4700     uint16_t qsize = le16_to_cpu(c->qsize);
   4701     uint16_t qflags = le16_to_cpu(c->cq_flags);
   4702     uint64_t prp1 = le64_to_cpu(c->prp1);
   4703 
   4704     trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
   4705                              NVME_CQ_FLAGS_IEN(qflags) != 0);
   4706 
   4707     if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
   4708         trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
   4709         return NVME_INVALID_QID | NVME_DNR;
   4710     }
   4711     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
   4712         trace_pci_nvme_err_invalid_create_cq_size(qsize);
   4713         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
   4714     }
   4715     if (unlikely(prp1 & (n->page_size - 1))) {
   4716         trace_pci_nvme_err_invalid_create_cq_addr(prp1);
   4717         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
   4718     }
   4719     if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
   4720         trace_pci_nvme_err_invalid_create_cq_vector(vector);
   4721         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
   4722     }
   4723     if (unlikely(vector >= n->conf_msix_qsize)) {
   4724         trace_pci_nvme_err_invalid_create_cq_vector(vector);
   4725         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
   4726     }
   4727     if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
   4728         trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
   4729         return NVME_INVALID_FIELD | NVME_DNR;
   4730     }
   4731 
   4732     cq = g_malloc0(sizeof(*cq));
   4733     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
   4734                  NVME_CQ_FLAGS_IEN(qflags));
   4735 
   4736     /*
   4737      * It is only required to set qs_created when creating a completion queue;
   4738      * creating a submission queue without a matching completion queue will
   4739      * fail.
   4740      */
   4741     n->qs_created = true;
   4742     return NVME_SUCCESS;
   4743 }
   4744 
   4745 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
   4746 {
   4747     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
   4748 
   4749     return nvme_c2h(n, id, sizeof(id), req);
   4750 }
   4751 
   4752 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
   4753 {
   4754     trace_pci_nvme_identify_ctrl();
   4755 
   4756     return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
   4757 }
   4758 
   4759 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
   4760 {
   4761     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
   4762     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
   4763     NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
   4764 
   4765     trace_pci_nvme_identify_ctrl_csi(c->csi);
   4766 
   4767     switch (c->csi) {
   4768     case NVME_CSI_NVM:
   4769         id_nvm->vsl = n->params.vsl;
   4770         id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
   4771         break;
   4772 
   4773     case NVME_CSI_ZONED:
   4774         ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
   4775         break;
   4776 
   4777     default:
   4778         return NVME_INVALID_FIELD | NVME_DNR;
   4779     }
   4780 
   4781     return nvme_c2h(n, id, sizeof(id), req);
   4782 }
   4783 
   4784 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
   4785 {
   4786     NvmeNamespace *ns;
   4787     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
   4788     uint32_t nsid = le32_to_cpu(c->nsid);
   4789 
   4790     trace_pci_nvme_identify_ns(nsid);
   4791 
   4792     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
   4793         return NVME_INVALID_NSID | NVME_DNR;
   4794     }
   4795 
   4796     ns = nvme_ns(n, nsid);
   4797     if (unlikely(!ns)) {
   4798         if (!active) {
   4799             ns = nvme_subsys_ns(n->subsys, nsid);
   4800             if (!ns) {
   4801                 return nvme_rpt_empty_id_struct(n, req);
   4802             }
   4803         } else {
   4804             return nvme_rpt_empty_id_struct(n, req);
   4805         }
   4806     }
   4807 
   4808     if (active || ns->csi == NVME_CSI_NVM) {
   4809         return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
   4810     }
   4811 
   4812     return NVME_INVALID_CMD_SET | NVME_DNR;
   4813 }
   4814 
   4815 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
   4816                                         bool attached)
   4817 {
   4818     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
   4819     uint32_t nsid = le32_to_cpu(c->nsid);
   4820     uint16_t min_id = le16_to_cpu(c->ctrlid);
   4821     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
   4822     uint16_t *ids = &list[1];
   4823     NvmeNamespace *ns;
   4824     NvmeCtrl *ctrl;
   4825     int cntlid, nr_ids = 0;
   4826 
   4827     trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
   4828 
   4829     if (!n->subsys) {
   4830         return NVME_INVALID_FIELD | NVME_DNR;
   4831     }
   4832 
   4833     if (attached) {
   4834         if (nsid == NVME_NSID_BROADCAST) {
   4835             return NVME_INVALID_FIELD | NVME_DNR;
   4836         }
   4837 
   4838         ns = nvme_subsys_ns(n->subsys, nsid);
   4839         if (!ns) {
   4840             return NVME_INVALID_FIELD | NVME_DNR;
   4841         }
   4842     }
   4843 
   4844     for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
   4845         ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
   4846         if (!ctrl) {
   4847             continue;
   4848         }
   4849 
   4850         if (attached && !nvme_ns(ctrl, nsid)) {
   4851             continue;
   4852         }
   4853 
   4854         ids[nr_ids++] = cntlid;
   4855     }
   4856 
   4857     list[0] = nr_ids;
   4858 
   4859     return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
   4860 }
   4861 
   4862 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
   4863 {
   4864     trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
   4865 
   4866     return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
   4867                     sizeof(NvmePriCtrlCap), req);
   4868 }
   4869 
   4870 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
   4871 {
   4872     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
   4873     uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
   4874     uint16_t min_id = le16_to_cpu(c->ctrlid);
   4875     uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
   4876     NvmeSecCtrlList list = {0};
   4877     uint8_t i;
   4878 
   4879     for (i = 0; i < num_sec_ctrl; i++) {
   4880         if (n->sec_ctrl_list.sec[i].scid >= min_id) {
   4881             list.numcntl = num_sec_ctrl - i;
   4882             memcpy(&list.sec, n->sec_ctrl_list.sec + i,
   4883                    list.numcntl * sizeof(NvmeSecCtrlEntry));
   4884             break;
   4885         }
   4886     }
   4887 
   4888     trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
   4889 
   4890     return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
   4891 }
   4892 
   4893 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
   4894                                      bool active)
   4895 {
   4896     NvmeNamespace *ns;
   4897     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
   4898     uint32_t nsid = le32_to_cpu(c->nsid);
   4899 
   4900     trace_pci_nvme_identify_ns_csi(nsid, c->csi);
   4901 
   4902     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
   4903         return NVME_INVALID_NSID | NVME_DNR;
   4904     }
   4905 
   4906     ns = nvme_ns(n, nsid);
   4907     if (unlikely(!ns)) {
   4908         if (!active) {
   4909             ns = nvme_subsys_ns(n->subsys, nsid);
   4910             if (!ns) {
   4911                 return nvme_rpt_empty_id_struct(n, req);
   4912             }
   4913         } else {
   4914             return nvme_rpt_empty_id_struct(n, req);
   4915         }
   4916     }
   4917 
   4918     if (c->csi == NVME_CSI_NVM) {
   4919         return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
   4920                         req);
   4921     } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
   4922         return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
   4923                         req);
   4924     }
   4925 
   4926     return NVME_INVALID_FIELD | NVME_DNR;
   4927 }
   4928 
   4929 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
   4930                                      bool active)
   4931 {
   4932     NvmeNamespace *ns;
   4933     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
   4934     uint32_t min_nsid = le32_to_cpu(c->nsid);
   4935     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
   4936     static const int data_len = sizeof(list);
   4937     uint32_t *list_ptr = (uint32_t *)list;
   4938     int i, j = 0;
   4939 
   4940     trace_pci_nvme_identify_nslist(min_nsid);
   4941 
   4942     /*
   4943      * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
   4944      * since the Active Namespace ID List should return namespaces with ids
   4945      * *higher* than the NSID specified in the command. This is also specified
   4946      * in the spec (NVM Express v1.3d, Section 5.15.4).
   4947      */
   4948     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
   4949         return NVME_INVALID_NSID | NVME_DNR;
   4950     }
   4951 
   4952     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
   4953         ns = nvme_ns(n, i);
   4954         if (!ns) {
   4955             if (!active) {
   4956                 ns = nvme_subsys_ns(n->subsys, i);
   4957                 if (!ns) {
   4958                     continue;
   4959                 }
   4960             } else {
   4961                 continue;
   4962             }
   4963         }
   4964         if (ns->params.nsid <= min_nsid) {
   4965             continue;
   4966         }
   4967         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
   4968         if (j == data_len / sizeof(uint32_t)) {
   4969             break;
   4970         }
   4971     }
   4972 
   4973     return nvme_c2h(n, list, data_len, req);
   4974 }
   4975 
   4976 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
   4977                                          bool active)
   4978 {
   4979     NvmeNamespace *ns;
   4980     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
   4981     uint32_t min_nsid = le32_to_cpu(c->nsid);
   4982     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
   4983     static const int data_len = sizeof(list);
   4984     uint32_t *list_ptr = (uint32_t *)list;
   4985     int i, j = 0;
   4986 
   4987     trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
   4988 
   4989     /*
   4990      * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
   4991      */
   4992     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
   4993         return NVME_INVALID_NSID | NVME_DNR;
   4994     }
   4995 
   4996     if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
   4997         return NVME_INVALID_FIELD | NVME_DNR;
   4998     }
   4999 
   5000     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
   5001         ns = nvme_ns(n, i);
   5002         if (!ns) {
   5003             if (!active) {
   5004                 ns = nvme_subsys_ns(n->subsys, i);
   5005                 if (!ns) {
   5006                     continue;
   5007                 }
   5008             } else {
   5009                 continue;
   5010             }
   5011         }
   5012         if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
   5013             continue;
   5014         }
   5015         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
   5016         if (j == data_len / sizeof(uint32_t)) {
   5017             break;
   5018         }
   5019     }
   5020 
   5021     return nvme_c2h(n, list, data_len, req);
   5022 }
   5023 
   5024 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
   5025 {
   5026     NvmeNamespace *ns;
   5027     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
   5028     uint32_t nsid = le32_to_cpu(c->nsid);
   5029     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
   5030     uint8_t *pos = list;
   5031     struct {
   5032         NvmeIdNsDescr hdr;
   5033         uint8_t v[NVME_NIDL_UUID];
   5034     } QEMU_PACKED uuid = {};
   5035     struct {
   5036         NvmeIdNsDescr hdr;
   5037         uint64_t v;
   5038     } QEMU_PACKED eui64 = {};
   5039     struct {
   5040         NvmeIdNsDescr hdr;
   5041         uint8_t v;
   5042     } QEMU_PACKED csi = {};
   5043 
   5044     trace_pci_nvme_identify_ns_descr_list(nsid);
   5045 
   5046     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
   5047         return NVME_INVALID_NSID | NVME_DNR;
   5048     }
   5049 
   5050     ns = nvme_ns(n, nsid);
   5051     if (unlikely(!ns)) {
   5052         return NVME_INVALID_FIELD | NVME_DNR;
   5053     }
   5054 
   5055     if (!qemu_uuid_is_null(&ns->params.uuid)) {
   5056         uuid.hdr.nidt = NVME_NIDT_UUID;
   5057         uuid.hdr.nidl = NVME_NIDL_UUID;
   5058         memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
   5059         memcpy(pos, &uuid, sizeof(uuid));
   5060         pos += sizeof(uuid);
   5061     }
   5062 
   5063     if (ns->params.eui64) {
   5064         eui64.hdr.nidt = NVME_NIDT_EUI64;
   5065         eui64.hdr.nidl = NVME_NIDL_EUI64;
   5066         eui64.v = cpu_to_be64(ns->params.eui64);
   5067         memcpy(pos, &eui64, sizeof(eui64));
   5068         pos += sizeof(eui64);
   5069     }
   5070 
   5071     csi.hdr.nidt = NVME_NIDT_CSI;
   5072     csi.hdr.nidl = NVME_NIDL_CSI;
   5073     csi.v = ns->csi;
   5074     memcpy(pos, &csi, sizeof(csi));
   5075     pos += sizeof(csi);
   5076 
   5077     return nvme_c2h(n, list, sizeof(list), req);
   5078 }
   5079 
   5080 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
   5081 {
   5082     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
   5083     static const int data_len = sizeof(list);
   5084 
   5085     trace_pci_nvme_identify_cmd_set();
   5086 
   5087     NVME_SET_CSI(*list, NVME_CSI_NVM);
   5088     NVME_SET_CSI(*list, NVME_CSI_ZONED);
   5089 
   5090     return nvme_c2h(n, list, data_len, req);
   5091 }
   5092 
   5093 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
   5094 {
   5095     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
   5096 
   5097     trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
   5098                             c->csi);
   5099 
   5100     switch (c->cns) {
   5101     case NVME_ID_CNS_NS:
   5102         return nvme_identify_ns(n, req, true);
   5103     case NVME_ID_CNS_NS_PRESENT:
   5104         return nvme_identify_ns(n, req, false);
   5105     case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
   5106         return nvme_identify_ctrl_list(n, req, true);
   5107     case NVME_ID_CNS_CTRL_LIST:
   5108         return nvme_identify_ctrl_list(n, req, false);
   5109     case NVME_ID_CNS_PRIMARY_CTRL_CAP:
   5110         return nvme_identify_pri_ctrl_cap(n, req);
   5111     case NVME_ID_CNS_SECONDARY_CTRL_LIST:
   5112         return nvme_identify_sec_ctrl_list(n, req);
   5113     case NVME_ID_CNS_CS_NS:
   5114         return nvme_identify_ns_csi(n, req, true);
   5115     case NVME_ID_CNS_CS_NS_PRESENT:
   5116         return nvme_identify_ns_csi(n, req, false);
   5117     case NVME_ID_CNS_CTRL:
   5118         return nvme_identify_ctrl(n, req);
   5119     case NVME_ID_CNS_CS_CTRL:
   5120         return nvme_identify_ctrl_csi(n, req);
   5121     case NVME_ID_CNS_NS_ACTIVE_LIST:
   5122         return nvme_identify_nslist(n, req, true);
   5123     case NVME_ID_CNS_NS_PRESENT_LIST:
   5124         return nvme_identify_nslist(n, req, false);
   5125     case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
   5126         return nvme_identify_nslist_csi(n, req, true);
   5127     case NVME_ID_CNS_CS_NS_PRESENT_LIST:
   5128         return nvme_identify_nslist_csi(n, req, false);
   5129     case NVME_ID_CNS_NS_DESCR_LIST:
   5130         return nvme_identify_ns_descr_list(n, req);
   5131     case NVME_ID_CNS_IO_COMMAND_SET:
   5132         return nvme_identify_cmd_set(n, req);
   5133     default:
   5134         trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
   5135         return NVME_INVALID_FIELD | NVME_DNR;
   5136     }
   5137 }
   5138 
   5139 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
   5140 {
   5141     uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
   5142 
   5143     req->cqe.result = 1;
   5144     if (nvme_check_sqid(n, sqid)) {
   5145         return NVME_INVALID_FIELD | NVME_DNR;
   5146     }
   5147 
   5148     return NVME_SUCCESS;
   5149 }
   5150 
   5151 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
   5152 {
   5153     trace_pci_nvme_setfeat_timestamp(ts);
   5154 
   5155     n->host_timestamp = le64_to_cpu(ts);
   5156     n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
   5157 }
   5158 
   5159 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
   5160 {
   5161     uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
   5162     uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
   5163 
   5164     union nvme_timestamp {
   5165         struct {
   5166             uint64_t timestamp:48;
   5167             uint64_t sync:1;
   5168             uint64_t origin:3;
   5169             uint64_t rsvd1:12;
   5170         };
   5171         uint64_t all;
   5172     };
   5173 
   5174     union nvme_timestamp ts;
   5175     ts.all = 0;
   5176     ts.timestamp = n->host_timestamp + elapsed_time;
   5177 
   5178     /* If the host timestamp is non-zero, set the timestamp origin */
   5179     ts.origin = n->host_timestamp ? 0x01 : 0x00;
   5180 
   5181     trace_pci_nvme_getfeat_timestamp(ts.all);
   5182 
   5183     return cpu_to_le64(ts.all);
   5184 }
   5185 
   5186 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
   5187 {
   5188     uint64_t timestamp = nvme_get_timestamp(n);
   5189 
   5190     return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
   5191 }
   5192 
   5193 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
   5194 {
   5195     NvmeCmd *cmd = &req->cmd;
   5196     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
   5197     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
   5198     uint32_t nsid = le32_to_cpu(cmd->nsid);
   5199     uint32_t result;
   5200     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
   5201     NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
   5202     uint16_t iv;
   5203     NvmeNamespace *ns;
   5204     int i;
   5205 
   5206     static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
   5207         [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
   5208     };
   5209 
   5210     trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
   5211 
   5212     if (!nvme_feature_support[fid]) {
   5213         return NVME_INVALID_FIELD | NVME_DNR;
   5214     }
   5215 
   5216     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
   5217         if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
   5218             /*
   5219              * The Reservation Notification Mask and Reservation Persistence
   5220              * features require a status code of Invalid Field in Command when
   5221              * NSID is FFFFFFFFh. Since the device does not support those
   5222              * features we can always return Invalid Namespace or Format as we
   5223              * should do for all other features.
   5224              */
   5225             return NVME_INVALID_NSID | NVME_DNR;
   5226         }
   5227 
   5228         if (!nvme_ns(n, nsid)) {
   5229             return NVME_INVALID_FIELD | NVME_DNR;
   5230         }
   5231     }
   5232 
   5233     switch (sel) {
   5234     case NVME_GETFEAT_SELECT_CURRENT:
   5235         break;
   5236     case NVME_GETFEAT_SELECT_SAVED:
   5237         /* no features are saveable by the controller; fallthrough */
   5238     case NVME_GETFEAT_SELECT_DEFAULT:
   5239         goto defaults;
   5240     case NVME_GETFEAT_SELECT_CAP:
   5241         result = nvme_feature_cap[fid];
   5242         goto out;
   5243     }
   5244 
   5245     switch (fid) {
   5246     case NVME_TEMPERATURE_THRESHOLD:
   5247         result = 0;
   5248 
   5249         /*
   5250          * The controller only implements the Composite Temperature sensor, so
   5251          * return 0 for all other sensors.
   5252          */
   5253         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
   5254             goto out;
   5255         }
   5256 
   5257         switch (NVME_TEMP_THSEL(dw11)) {
   5258         case NVME_TEMP_THSEL_OVER:
   5259             result = n->features.temp_thresh_hi;
   5260             goto out;
   5261         case NVME_TEMP_THSEL_UNDER:
   5262             result = n->features.temp_thresh_low;
   5263             goto out;
   5264         }
   5265 
   5266         return NVME_INVALID_FIELD | NVME_DNR;
   5267     case NVME_ERROR_RECOVERY:
   5268         if (!nvme_nsid_valid(n, nsid)) {
   5269             return NVME_INVALID_NSID | NVME_DNR;
   5270         }
   5271 
   5272         ns = nvme_ns(n, nsid);
   5273         if (unlikely(!ns)) {
   5274             return NVME_INVALID_FIELD | NVME_DNR;
   5275         }
   5276 
   5277         result = ns->features.err_rec;
   5278         goto out;
   5279     case NVME_VOLATILE_WRITE_CACHE:
   5280         result = 0;
   5281         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
   5282             ns = nvme_ns(n, i);
   5283             if (!ns) {
   5284                 continue;
   5285             }
   5286 
   5287             result = blk_enable_write_cache(ns->blkconf.blk);
   5288             if (result) {
   5289                 break;
   5290             }
   5291         }
   5292         trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
   5293         goto out;
   5294     case NVME_ASYNCHRONOUS_EVENT_CONF:
   5295         result = n->features.async_config;
   5296         goto out;
   5297     case NVME_TIMESTAMP:
   5298         return nvme_get_feature_timestamp(n, req);
   5299     case NVME_HOST_BEHAVIOR_SUPPORT:
   5300         return nvme_c2h(n, (uint8_t *)&n->features.hbs,
   5301                         sizeof(n->features.hbs), req);
   5302     default:
   5303         break;
   5304     }
   5305 
   5306 defaults:
   5307     switch (fid) {
   5308     case NVME_TEMPERATURE_THRESHOLD:
   5309         result = 0;
   5310 
   5311         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
   5312             break;
   5313         }
   5314 
   5315         if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
   5316             result = NVME_TEMPERATURE_WARNING;
   5317         }
   5318 
   5319         break;
   5320     case NVME_NUMBER_OF_QUEUES:
   5321         result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
   5322         trace_pci_nvme_getfeat_numq(result);
   5323         break;
   5324     case NVME_INTERRUPT_VECTOR_CONF:
   5325         iv = dw11 & 0xffff;
   5326         if (iv >= n->conf_ioqpairs + 1) {
   5327             return NVME_INVALID_FIELD | NVME_DNR;
   5328         }
   5329 
   5330         result = iv;
   5331         if (iv == n->admin_cq.vector) {
   5332             result |= NVME_INTVC_NOCOALESCING;
   5333         }
   5334         break;
   5335     default:
   5336         result = nvme_feature_default[fid];
   5337         break;
   5338     }
   5339 
   5340 out:
   5341     req->cqe.result = cpu_to_le32(result);
   5342     return NVME_SUCCESS;
   5343 }
   5344 
   5345 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
   5346 {
   5347     uint16_t ret;
   5348     uint64_t timestamp;
   5349 
   5350     ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
   5351     if (ret) {
   5352         return ret;
   5353     }
   5354 
   5355     nvme_set_timestamp(n, timestamp);
   5356 
   5357     return NVME_SUCCESS;
   5358 }
   5359 
   5360 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
   5361 {
   5362     NvmeNamespace *ns = NULL;
   5363 
   5364     NvmeCmd *cmd = &req->cmd;
   5365     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
   5366     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
   5367     uint32_t nsid = le32_to_cpu(cmd->nsid);
   5368     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
   5369     uint8_t save = NVME_SETFEAT_SAVE(dw10);
   5370     uint16_t status;
   5371     int i;
   5372 
   5373     trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
   5374 
   5375     if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
   5376         return NVME_FID_NOT_SAVEABLE | NVME_DNR;
   5377     }
   5378 
   5379     if (!nvme_feature_support[fid]) {
   5380         return NVME_INVALID_FIELD | NVME_DNR;
   5381     }
   5382 
   5383     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
   5384         if (nsid != NVME_NSID_BROADCAST) {
   5385             if (!nvme_nsid_valid(n, nsid)) {
   5386                 return NVME_INVALID_NSID | NVME_DNR;
   5387             }
   5388 
   5389             ns = nvme_ns(n, nsid);
   5390             if (unlikely(!ns)) {
   5391                 return NVME_INVALID_FIELD | NVME_DNR;
   5392             }
   5393         }
   5394     } else if (nsid && nsid != NVME_NSID_BROADCAST) {
   5395         if (!nvme_nsid_valid(n, nsid)) {
   5396             return NVME_INVALID_NSID | NVME_DNR;
   5397         }
   5398 
   5399         return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
   5400     }
   5401 
   5402     if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
   5403         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
   5404     }
   5405 
   5406     switch (fid) {
   5407     case NVME_TEMPERATURE_THRESHOLD:
   5408         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
   5409             break;
   5410         }
   5411 
   5412         switch (NVME_TEMP_THSEL(dw11)) {
   5413         case NVME_TEMP_THSEL_OVER:
   5414             n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
   5415             break;
   5416         case NVME_TEMP_THSEL_UNDER:
   5417             n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
   5418             break;
   5419         default:
   5420             return NVME_INVALID_FIELD | NVME_DNR;
   5421         }
   5422 
   5423         if ((n->temperature >= n->features.temp_thresh_hi) ||
   5424             (n->temperature <= n->features.temp_thresh_low)) {
   5425             nvme_smart_event(n, NVME_SMART_TEMPERATURE);
   5426         }
   5427 
   5428         break;
   5429     case NVME_ERROR_RECOVERY:
   5430         if (nsid == NVME_NSID_BROADCAST) {
   5431             for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
   5432                 ns = nvme_ns(n, i);
   5433 
   5434                 if (!ns) {
   5435                     continue;
   5436                 }
   5437 
   5438                 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
   5439                     ns->features.err_rec = dw11;
   5440                 }
   5441             }
   5442 
   5443             break;
   5444         }
   5445 
   5446         assert(ns);
   5447         if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat))  {
   5448             ns->features.err_rec = dw11;
   5449         }
   5450         break;
   5451     case NVME_VOLATILE_WRITE_CACHE:
   5452         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
   5453             ns = nvme_ns(n, i);
   5454             if (!ns) {
   5455                 continue;
   5456             }
   5457 
   5458             if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
   5459                 blk_flush(ns->blkconf.blk);
   5460             }
   5461 
   5462             blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
   5463         }
   5464 
   5465         break;
   5466 
   5467     case NVME_NUMBER_OF_QUEUES:
   5468         if (n->qs_created) {
   5469             return NVME_CMD_SEQ_ERROR | NVME_DNR;
   5470         }
   5471 
   5472         /*
   5473          * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
   5474          * and NSQR.
   5475          */
   5476         if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
   5477             return NVME_INVALID_FIELD | NVME_DNR;
   5478         }
   5479 
   5480         trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
   5481                                     ((dw11 >> 16) & 0xffff) + 1,
   5482                                     n->conf_ioqpairs,
   5483                                     n->conf_ioqpairs);
   5484         req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
   5485                                       ((n->conf_ioqpairs - 1) << 16));
   5486         break;
   5487     case NVME_ASYNCHRONOUS_EVENT_CONF:
   5488         n->features.async_config = dw11;
   5489         break;
   5490     case NVME_TIMESTAMP:
   5491         return nvme_set_feature_timestamp(n, req);
   5492     case NVME_HOST_BEHAVIOR_SUPPORT:
   5493         status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
   5494                           sizeof(n->features.hbs), req);
   5495         if (status) {
   5496             return status;
   5497         }
   5498 
   5499         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
   5500             ns = nvme_ns(n, i);
   5501 
   5502             if (!ns) {
   5503                 continue;
   5504             }
   5505 
   5506             ns->id_ns.nlbaf = ns->nlbaf - 1;
   5507             if (!n->features.hbs.lbafee) {
   5508                 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
   5509             }
   5510         }
   5511 
   5512         return status;
   5513     case NVME_COMMAND_SET_PROFILE:
   5514         if (dw11 & 0x1ff) {
   5515             trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
   5516             return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
   5517         }
   5518         break;
   5519     default:
   5520         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
   5521     }
   5522     return NVME_SUCCESS;
   5523 }
   5524 
   5525 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
   5526 {
   5527     trace_pci_nvme_aer(nvme_cid(req));
   5528 
   5529     if (n->outstanding_aers > n->params.aerl) {
   5530         trace_pci_nvme_aer_aerl_exceeded();
   5531         return NVME_AER_LIMIT_EXCEEDED;
   5532     }
   5533 
   5534     n->aer_reqs[n->outstanding_aers] = req;
   5535     n->outstanding_aers++;
   5536 
   5537     if (!QTAILQ_EMPTY(&n->aer_queue)) {
   5538         nvme_process_aers(n);
   5539     }
   5540 
   5541     return NVME_NO_COMPLETE;
   5542 }
   5543 
   5544 static void nvme_update_dmrsl(NvmeCtrl *n)
   5545 {
   5546     int nsid;
   5547 
   5548     for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
   5549         NvmeNamespace *ns = nvme_ns(n, nsid);
   5550         if (!ns) {
   5551             continue;
   5552         }
   5553 
   5554         n->dmrsl = MIN_NON_ZERO(n->dmrsl,
   5555                                 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
   5556     }
   5557 }
   5558 
   5559 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
   5560 {
   5561     uint32_t cc = ldl_le_p(&n->bar.cc);
   5562 
   5563     ns->iocs = nvme_cse_iocs_none;
   5564     switch (ns->csi) {
   5565     case NVME_CSI_NVM:
   5566         if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
   5567             ns->iocs = nvme_cse_iocs_nvm;
   5568         }
   5569         break;
   5570     case NVME_CSI_ZONED:
   5571         if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
   5572             ns->iocs = nvme_cse_iocs_zoned;
   5573         } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
   5574             ns->iocs = nvme_cse_iocs_nvm;
   5575         }
   5576         break;
   5577     }
   5578 }
   5579 
   5580 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
   5581 {
   5582     NvmeNamespace *ns;
   5583     NvmeCtrl *ctrl;
   5584     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
   5585     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
   5586     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
   5587     uint8_t sel = dw10 & 0xf;
   5588     uint16_t *nr_ids = &list[0];
   5589     uint16_t *ids = &list[1];
   5590     uint16_t ret;
   5591     int i;
   5592 
   5593     trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
   5594 
   5595     if (!nvme_nsid_valid(n, nsid)) {
   5596         return NVME_INVALID_NSID | NVME_DNR;
   5597     }
   5598 
   5599     ns = nvme_subsys_ns(n->subsys, nsid);
   5600     if (!ns) {
   5601         return NVME_INVALID_FIELD | NVME_DNR;
   5602     }
   5603 
   5604     ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
   5605     if (ret) {
   5606         return ret;
   5607     }
   5608 
   5609     if (!*nr_ids) {
   5610         return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
   5611     }
   5612 
   5613     *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
   5614     for (i = 0; i < *nr_ids; i++) {
   5615         ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
   5616         if (!ctrl) {
   5617             return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
   5618         }
   5619 
   5620         switch (sel) {
   5621         case NVME_NS_ATTACHMENT_ATTACH:
   5622             if (nvme_ns(ctrl, nsid)) {
   5623                 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
   5624             }
   5625 
   5626             if (ns->attached && !ns->params.shared) {
   5627                 return NVME_NS_PRIVATE | NVME_DNR;
   5628             }
   5629 
   5630             nvme_attach_ns(ctrl, ns);
   5631             nvme_select_iocs_ns(ctrl, ns);
   5632 
   5633             break;
   5634 
   5635         case NVME_NS_ATTACHMENT_DETACH:
   5636             if (!nvme_ns(ctrl, nsid)) {
   5637                 return NVME_NS_NOT_ATTACHED | NVME_DNR;
   5638             }
   5639 
   5640             ctrl->namespaces[nsid] = NULL;
   5641             ns->attached--;
   5642 
   5643             nvme_update_dmrsl(ctrl);
   5644 
   5645             break;
   5646 
   5647         default:
   5648             return NVME_INVALID_FIELD | NVME_DNR;
   5649         }
   5650 
   5651         /*
   5652          * Add namespace id to the changed namespace id list for event clearing
   5653          * via Get Log Page command.
   5654          */
   5655         if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
   5656             nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
   5657                                NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
   5658                                NVME_LOG_CHANGED_NSLIST);
   5659         }
   5660     }
   5661 
   5662     return NVME_SUCCESS;
   5663 }
   5664 
   5665 typedef struct NvmeFormatAIOCB {
   5666     BlockAIOCB common;
   5667     BlockAIOCB *aiocb;
   5668     NvmeRequest *req;
   5669     int ret;
   5670 
   5671     NvmeNamespace *ns;
   5672     uint32_t nsid;
   5673     bool broadcast;
   5674     int64_t offset;
   5675 
   5676     uint8_t lbaf;
   5677     uint8_t mset;
   5678     uint8_t pi;
   5679     uint8_t pil;
   5680 } NvmeFormatAIOCB;
   5681 
   5682 static void nvme_format_cancel(BlockAIOCB *aiocb)
   5683 {
   5684     NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
   5685 
   5686     iocb->ret = -ECANCELED;
   5687 
   5688     if (iocb->aiocb) {
   5689         blk_aio_cancel_async(iocb->aiocb);
   5690         iocb->aiocb = NULL;
   5691     }
   5692 }
   5693 
   5694 static const AIOCBInfo nvme_format_aiocb_info = {
   5695     .aiocb_size = sizeof(NvmeFormatAIOCB),
   5696     .cancel_async = nvme_format_cancel,
   5697     .get_aio_context = nvme_get_aio_context,
   5698 };
   5699 
   5700 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
   5701                             uint8_t pi, uint8_t pil)
   5702 {
   5703     uint8_t lbafl = lbaf & 0xf;
   5704     uint8_t lbafu = lbaf >> 4;
   5705 
   5706     trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
   5707 
   5708     ns->id_ns.dps = (pil << 3) | pi;
   5709     ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
   5710 
   5711     nvme_ns_init_format(ns);
   5712 }
   5713 
   5714 static void nvme_do_format(NvmeFormatAIOCB *iocb);
   5715 
   5716 static void nvme_format_ns_cb(void *opaque, int ret)
   5717 {
   5718     NvmeFormatAIOCB *iocb = opaque;
   5719     NvmeNamespace *ns = iocb->ns;
   5720     int bytes;
   5721 
   5722     if (iocb->ret < 0) {
   5723         goto done;
   5724     } else if (ret < 0) {
   5725         iocb->ret = ret;
   5726         goto done;
   5727     }
   5728 
   5729     assert(ns);
   5730 
   5731     if (iocb->offset < ns->size) {
   5732         bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
   5733 
   5734         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
   5735                                             bytes, BDRV_REQ_MAY_UNMAP,
   5736                                             nvme_format_ns_cb, iocb);
   5737 
   5738         iocb->offset += bytes;
   5739         return;
   5740     }
   5741 
   5742     nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
   5743     ns->status = 0x0;
   5744     iocb->ns = NULL;
   5745     iocb->offset = 0;
   5746 
   5747 done:
   5748     nvme_do_format(iocb);
   5749 }
   5750 
   5751 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
   5752 {
   5753     if (ns->params.zoned) {
   5754         return NVME_INVALID_FORMAT | NVME_DNR;
   5755     }
   5756 
   5757     if (lbaf > ns->id_ns.nlbaf) {
   5758         return NVME_INVALID_FORMAT | NVME_DNR;
   5759     }
   5760 
   5761     if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
   5762         return NVME_INVALID_FORMAT | NVME_DNR;
   5763     }
   5764 
   5765     if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
   5766         return NVME_INVALID_FIELD | NVME_DNR;
   5767     }
   5768 
   5769     return NVME_SUCCESS;
   5770 }
   5771 
   5772 static void nvme_do_format(NvmeFormatAIOCB *iocb)
   5773 {
   5774     NvmeRequest *req = iocb->req;
   5775     NvmeCtrl *n = nvme_ctrl(req);
   5776     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
   5777     uint8_t lbaf = dw10 & 0xf;
   5778     uint8_t pi = (dw10 >> 5) & 0x7;
   5779     uint16_t status;
   5780     int i;
   5781 
   5782     if (iocb->ret < 0) {
   5783         goto done;
   5784     }
   5785 
   5786     if (iocb->broadcast) {
   5787         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
   5788             iocb->ns = nvme_ns(n, i);
   5789             if (iocb->ns) {
   5790                 iocb->nsid = i;
   5791                 break;
   5792             }
   5793         }
   5794     }
   5795 
   5796     if (!iocb->ns) {
   5797         goto done;
   5798     }
   5799 
   5800     status = nvme_format_check(iocb->ns, lbaf, pi);
   5801     if (status) {
   5802         req->status = status;
   5803         goto done;
   5804     }
   5805 
   5806     iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
   5807     nvme_format_ns_cb(iocb, 0);
   5808     return;
   5809 
   5810 done:
   5811     iocb->common.cb(iocb->common.opaque, iocb->ret);
   5812     qemu_aio_unref(iocb);
   5813 }
   5814 
   5815 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
   5816 {
   5817     NvmeFormatAIOCB *iocb;
   5818     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
   5819     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
   5820     uint8_t lbaf = dw10 & 0xf;
   5821     uint8_t mset = (dw10 >> 4) & 0x1;
   5822     uint8_t pi = (dw10 >> 5) & 0x7;
   5823     uint8_t pil = (dw10 >> 8) & 0x1;
   5824     uint8_t lbafu = (dw10 >> 12) & 0x3;
   5825     uint16_t status;
   5826 
   5827     iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
   5828 
   5829     iocb->req = req;
   5830     iocb->ret = 0;
   5831     iocb->ns = NULL;
   5832     iocb->nsid = 0;
   5833     iocb->lbaf = lbaf;
   5834     iocb->mset = mset;
   5835     iocb->pi = pi;
   5836     iocb->pil = pil;
   5837     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
   5838     iocb->offset = 0;
   5839 
   5840     if (n->features.hbs.lbafee) {
   5841         iocb->lbaf |= lbafu << 4;
   5842     }
   5843 
   5844     if (!iocb->broadcast) {
   5845         if (!nvme_nsid_valid(n, nsid)) {
   5846             status = NVME_INVALID_NSID | NVME_DNR;
   5847             goto out;
   5848         }
   5849 
   5850         iocb->ns = nvme_ns(n, nsid);
   5851         if (!iocb->ns) {
   5852             status = NVME_INVALID_FIELD | NVME_DNR;
   5853             goto out;
   5854         }
   5855     }
   5856 
   5857     req->aiocb = &iocb->common;
   5858     nvme_do_format(iocb);
   5859 
   5860     return NVME_NO_COMPLETE;
   5861 
   5862 out:
   5863     qemu_aio_unref(iocb);
   5864 
   5865     return status;
   5866 }
   5867 
   5868 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
   5869                                   int *num_prim, int *num_sec)
   5870 {
   5871     *num_total = le32_to_cpu(rt ?
   5872                              n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
   5873     *num_prim = le16_to_cpu(rt ?
   5874                             n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
   5875     *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
   5876 }
   5877 
   5878 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
   5879                                              uint16_t cntlid, uint8_t rt,
   5880                                              int nr)
   5881 {
   5882     int num_total, num_prim, num_sec;
   5883 
   5884     if (cntlid != n->cntlid) {
   5885         return NVME_INVALID_CTRL_ID | NVME_DNR;
   5886     }
   5887 
   5888     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
   5889 
   5890     if (nr > num_total) {
   5891         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
   5892     }
   5893 
   5894     if (nr > num_total - num_sec) {
   5895         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
   5896     }
   5897 
   5898     if (rt) {
   5899         n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
   5900     } else {
   5901         n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
   5902     }
   5903 
   5904     req->cqe.result = cpu_to_le32(nr);
   5905     return req->status;
   5906 }
   5907 
   5908 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
   5909                                  uint8_t rt, int nr)
   5910 {
   5911     int prev_nr, prev_total;
   5912 
   5913     if (rt) {
   5914         prev_nr = le16_to_cpu(sctrl->nvi);
   5915         prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
   5916         sctrl->nvi = cpu_to_le16(nr);
   5917         n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
   5918     } else {
   5919         prev_nr = le16_to_cpu(sctrl->nvq);
   5920         prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
   5921         sctrl->nvq = cpu_to_le16(nr);
   5922         n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
   5923     }
   5924 }
   5925 
   5926 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
   5927                                             uint16_t cntlid, uint8_t rt, int nr)
   5928 {
   5929     int num_total, num_prim, num_sec, num_free, diff, limit;
   5930     NvmeSecCtrlEntry *sctrl;
   5931 
   5932     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
   5933     if (!sctrl) {
   5934         return NVME_INVALID_CTRL_ID | NVME_DNR;
   5935     }
   5936 
   5937     if (sctrl->scs) {
   5938         return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
   5939     }
   5940 
   5941     limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
   5942     if (nr > limit) {
   5943         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
   5944     }
   5945 
   5946     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
   5947     num_free = num_total - num_prim - num_sec;
   5948     diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
   5949 
   5950     if (diff > num_free) {
   5951         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
   5952     }
   5953 
   5954     nvme_update_virt_res(n, sctrl, rt, nr);
   5955     req->cqe.result = cpu_to_le32(nr);
   5956 
   5957     return req->status;
   5958 }
   5959 
   5960 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
   5961 {
   5962     NvmeCtrl *sn = NULL;
   5963     NvmeSecCtrlEntry *sctrl;
   5964     int vf_index;
   5965 
   5966     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
   5967     if (!sctrl) {
   5968         return NVME_INVALID_CTRL_ID | NVME_DNR;
   5969     }
   5970 
   5971     if (!pci_is_vf(&n->parent_obj)) {
   5972         vf_index = le16_to_cpu(sctrl->vfn) - 1;
   5973         sn = NVME(pcie_sriov_get_vf_at_index(&n->parent_obj, vf_index));
   5974     }
   5975 
   5976     if (online) {
   5977         if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
   5978             return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
   5979         }
   5980 
   5981         if (!sctrl->scs) {
   5982             sctrl->scs = 0x1;
   5983             nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
   5984         }
   5985     } else {
   5986         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
   5987         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
   5988 
   5989         if (sctrl->scs) {
   5990             sctrl->scs = 0x0;
   5991             if (sn) {
   5992                 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
   5993             }
   5994         }
   5995     }
   5996 
   5997     return NVME_SUCCESS;
   5998 }
   5999 
   6000 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
   6001 {
   6002     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
   6003     uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
   6004     uint8_t act = dw10 & 0xf;
   6005     uint8_t rt = (dw10 >> 8) & 0x7;
   6006     uint16_t cntlid = (dw10 >> 16) & 0xffff;
   6007     int nr = dw11 & 0xffff;
   6008 
   6009     trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
   6010 
   6011     if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
   6012         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
   6013     }
   6014 
   6015     switch (act) {
   6016     case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
   6017         return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
   6018     case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
   6019         return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
   6020     case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
   6021         return nvme_virt_set_state(n, cntlid, true);
   6022     case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
   6023         return nvme_virt_set_state(n, cntlid, false);
   6024     default:
   6025         return NVME_INVALID_FIELD | NVME_DNR;
   6026     }
   6027 }
   6028 
   6029 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
   6030 {
   6031     uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
   6032     uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
   6033     int i;
   6034 
   6035     /* Address should be page aligned */
   6036     if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
   6037         return NVME_INVALID_FIELD | NVME_DNR;
   6038     }
   6039 
   6040     /* Save shadow buffer base addr for use during queue creation */
   6041     n->dbbuf_dbs = dbs_addr;
   6042     n->dbbuf_eis = eis_addr;
   6043     n->dbbuf_enabled = true;
   6044 
   6045     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
   6046         NvmeSQueue *sq = n->sq[i];
   6047         NvmeCQueue *cq = n->cq[i];
   6048 
   6049         if (sq) {
   6050             /*
   6051              * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
   6052              * nvme_process_db() uses this hard-coded way to calculate
   6053              * doorbell offsets. Be consistent with that here.
   6054              */
   6055             sq->db_addr = dbs_addr + (i << 3);
   6056             sq->ei_addr = eis_addr + (i << 3);
   6057             pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
   6058                     sizeof(sq->tail));
   6059 
   6060             if (n->params.ioeventfd && sq->sqid != 0) {
   6061                 if (!nvme_init_sq_ioeventfd(sq)) {
   6062                     sq->ioeventfd_enabled = true;
   6063                 }
   6064             }
   6065         }
   6066 
   6067         if (cq) {
   6068             /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
   6069             cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
   6070             cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
   6071             pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
   6072                     sizeof(cq->head));
   6073 
   6074             if (n->params.ioeventfd && cq->cqid != 0) {
   6075                 if (!nvme_init_cq_ioeventfd(cq)) {
   6076                     cq->ioeventfd_enabled = true;
   6077                 }
   6078             }
   6079         }
   6080     }
   6081 
   6082     trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
   6083 
   6084     return NVME_SUCCESS;
   6085 }
   6086 
   6087 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
   6088 {
   6089     trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
   6090                              nvme_adm_opc_str(req->cmd.opcode));
   6091 
   6092     if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
   6093         trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
   6094         return NVME_INVALID_OPCODE | NVME_DNR;
   6095     }
   6096 
   6097     /* SGLs shall not be used for Admin commands in NVMe over PCIe */
   6098     if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
   6099         return NVME_INVALID_FIELD | NVME_DNR;
   6100     }
   6101 
   6102     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
   6103         return NVME_INVALID_FIELD;
   6104     }
   6105 
   6106     switch (req->cmd.opcode) {
   6107     case NVME_ADM_CMD_DELETE_SQ:
   6108         return nvme_del_sq(n, req);
   6109     case NVME_ADM_CMD_CREATE_SQ:
   6110         return nvme_create_sq(n, req);
   6111     case NVME_ADM_CMD_GET_LOG_PAGE:
   6112         return nvme_get_log(n, req);
   6113     case NVME_ADM_CMD_DELETE_CQ:
   6114         return nvme_del_cq(n, req);
   6115     case NVME_ADM_CMD_CREATE_CQ:
   6116         return nvme_create_cq(n, req);
   6117     case NVME_ADM_CMD_IDENTIFY:
   6118         return nvme_identify(n, req);
   6119     case NVME_ADM_CMD_ABORT:
   6120         return nvme_abort(n, req);
   6121     case NVME_ADM_CMD_SET_FEATURES:
   6122         return nvme_set_feature(n, req);
   6123     case NVME_ADM_CMD_GET_FEATURES:
   6124         return nvme_get_feature(n, req);
   6125     case NVME_ADM_CMD_ASYNC_EV_REQ:
   6126         return nvme_aer(n, req);
   6127     case NVME_ADM_CMD_NS_ATTACHMENT:
   6128         return nvme_ns_attachment(n, req);
   6129     case NVME_ADM_CMD_VIRT_MNGMT:
   6130         return nvme_virt_mngmt(n, req);
   6131     case NVME_ADM_CMD_DBBUF_CONFIG:
   6132         return nvme_dbbuf_config(n, req);
   6133     case NVME_ADM_CMD_FORMAT_NVM:
   6134         return nvme_format(n, req);
   6135     default:
   6136         assert(false);
   6137     }
   6138 
   6139     return NVME_INVALID_OPCODE | NVME_DNR;
   6140 }
   6141 
   6142 static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
   6143 {
   6144     pci_dma_write(&sq->ctrl->parent_obj, sq->ei_addr, &sq->tail,
   6145                   sizeof(sq->tail));
   6146     trace_pci_nvme_eventidx_sq(sq->sqid, sq->tail);
   6147 }
   6148 
   6149 static void nvme_update_sq_tail(NvmeSQueue *sq)
   6150 {
   6151     pci_dma_read(&sq->ctrl->parent_obj, sq->db_addr, &sq->tail,
   6152                  sizeof(sq->tail));
   6153     trace_pci_nvme_shadow_doorbell_sq(sq->sqid, sq->tail);
   6154 }
   6155 
   6156 static void nvme_process_sq(void *opaque)
   6157 {
   6158     NvmeSQueue *sq = opaque;
   6159     NvmeCtrl *n = sq->ctrl;
   6160     NvmeCQueue *cq = n->cq[sq->cqid];
   6161 
   6162     uint16_t status;
   6163     hwaddr addr;
   6164     NvmeCmd cmd;
   6165     NvmeRequest *req;
   6166 
   6167     if (n->dbbuf_enabled) {
   6168         nvme_update_sq_tail(sq);
   6169     }
   6170 
   6171     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
   6172         addr = sq->dma_addr + sq->head * n->sqe_size;
   6173         if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
   6174             trace_pci_nvme_err_addr_read(addr);
   6175             trace_pci_nvme_err_cfs();
   6176             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
   6177             break;
   6178         }
   6179         nvme_inc_sq_head(sq);
   6180 
   6181         req = QTAILQ_FIRST(&sq->req_list);
   6182         QTAILQ_REMOVE(&sq->req_list, req, entry);
   6183         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
   6184         nvme_req_clear(req);
   6185         req->cqe.cid = cmd.cid;
   6186         memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
   6187 
   6188         status = sq->sqid ? nvme_io_cmd(n, req) :
   6189             nvme_admin_cmd(n, req);
   6190         if (status != NVME_NO_COMPLETE) {
   6191             req->status = status;
   6192             nvme_enqueue_req_completion(cq, req);
   6193         }
   6194 
   6195         if (n->dbbuf_enabled) {
   6196             nvme_update_sq_eventidx(sq);
   6197             nvme_update_sq_tail(sq);
   6198         }
   6199     }
   6200 }
   6201 
   6202 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
   6203 {
   6204     uint8_t *config;
   6205 
   6206     if (!msix_present(pci_dev)) {
   6207         return;
   6208     }
   6209 
   6210     assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
   6211 
   6212     config = pci_dev->config + pci_dev->msix_cap;
   6213     pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
   6214                          table_size - 1);
   6215 }
   6216 
   6217 static void nvme_activate_virt_res(NvmeCtrl *n)
   6218 {
   6219     PCIDevice *pci_dev = &n->parent_obj;
   6220     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
   6221     NvmeSecCtrlEntry *sctrl;
   6222 
   6223     /* -1 to account for the admin queue */
   6224     if (pci_is_vf(pci_dev)) {
   6225         sctrl = nvme_sctrl(n);
   6226         cap->vqprt = sctrl->nvq;
   6227         cap->viprt = sctrl->nvi;
   6228         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
   6229         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
   6230     } else {
   6231         cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
   6232         cap->virfap = n->next_pri_ctrl_cap.virfap;
   6233         n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
   6234                            le16_to_cpu(cap->vqrfap) - 1;
   6235         n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
   6236                              le16_to_cpu(cap->virfap);
   6237     }
   6238 }
   6239 
   6240 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
   6241 {
   6242     PCIDevice *pci_dev = &n->parent_obj;
   6243     NvmeSecCtrlEntry *sctrl;
   6244     NvmeNamespace *ns;
   6245     int i;
   6246 
   6247     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
   6248         ns = nvme_ns(n, i);
   6249         if (!ns) {
   6250             continue;
   6251         }
   6252 
   6253         nvme_ns_drain(ns);
   6254     }
   6255 
   6256     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
   6257         if (n->sq[i] != NULL) {
   6258             nvme_free_sq(n->sq[i], n);
   6259         }
   6260     }
   6261     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
   6262         if (n->cq[i] != NULL) {
   6263             nvme_free_cq(n->cq[i], n);
   6264         }
   6265     }
   6266 
   6267     while (!QTAILQ_EMPTY(&n->aer_queue)) {
   6268         NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
   6269         QTAILQ_REMOVE(&n->aer_queue, event, entry);
   6270         g_free(event);
   6271     }
   6272 
   6273     if (n->params.sriov_max_vfs) {
   6274         if (!pci_is_vf(pci_dev)) {
   6275             for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
   6276                 sctrl = &n->sec_ctrl_list.sec[i];
   6277                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
   6278             }
   6279 
   6280             if (rst != NVME_RESET_CONTROLLER) {
   6281                 pcie_sriov_pf_disable_vfs(pci_dev);
   6282             }
   6283         }
   6284 
   6285         if (rst != NVME_RESET_CONTROLLER) {
   6286             nvme_activate_virt_res(n);
   6287         }
   6288     }
   6289 
   6290     n->aer_queued = 0;
   6291     n->aer_mask = 0;
   6292     n->outstanding_aers = 0;
   6293     n->qs_created = false;
   6294 
   6295     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
   6296 
   6297     if (pci_is_vf(pci_dev)) {
   6298         sctrl = nvme_sctrl(n);
   6299 
   6300         stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
   6301     } else {
   6302         stl_le_p(&n->bar.csts, 0);
   6303     }
   6304 
   6305     stl_le_p(&n->bar.intms, 0);
   6306     stl_le_p(&n->bar.intmc, 0);
   6307     stl_le_p(&n->bar.cc, 0);
   6308 
   6309     n->dbbuf_dbs = 0;
   6310     n->dbbuf_eis = 0;
   6311     n->dbbuf_enabled = false;
   6312 }
   6313 
   6314 static void nvme_ctrl_shutdown(NvmeCtrl *n)
   6315 {
   6316     NvmeNamespace *ns;
   6317     int i;
   6318 
   6319     if (n->pmr.dev) {
   6320         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
   6321     }
   6322 
   6323     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
   6324         ns = nvme_ns(n, i);
   6325         if (!ns) {
   6326             continue;
   6327         }
   6328 
   6329         nvme_ns_shutdown(ns);
   6330     }
   6331 }
   6332 
   6333 static void nvme_select_iocs(NvmeCtrl *n)
   6334 {
   6335     NvmeNamespace *ns;
   6336     int i;
   6337 
   6338     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
   6339         ns = nvme_ns(n, i);
   6340         if (!ns) {
   6341             continue;
   6342         }
   6343 
   6344         nvme_select_iocs_ns(n, ns);
   6345     }
   6346 }
   6347 
   6348 static int nvme_start_ctrl(NvmeCtrl *n)
   6349 {
   6350     uint64_t cap = ldq_le_p(&n->bar.cap);
   6351     uint32_t cc = ldl_le_p(&n->bar.cc);
   6352     uint32_t aqa = ldl_le_p(&n->bar.aqa);
   6353     uint64_t asq = ldq_le_p(&n->bar.asq);
   6354     uint64_t acq = ldq_le_p(&n->bar.acq);
   6355     uint32_t page_bits = NVME_CC_MPS(cc) + 12;
   6356     uint32_t page_size = 1 << page_bits;
   6357     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
   6358 
   6359     if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
   6360         trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
   6361                                                 le16_to_cpu(sctrl->nvq),
   6362                                                 sctrl->scs ? "ONLINE" :
   6363                                                              "OFFLINE");
   6364         return -1;
   6365     }
   6366     if (unlikely(n->cq[0])) {
   6367         trace_pci_nvme_err_startfail_cq();
   6368         return -1;
   6369     }
   6370     if (unlikely(n->sq[0])) {
   6371         trace_pci_nvme_err_startfail_sq();
   6372         return -1;
   6373     }
   6374     if (unlikely(asq & (page_size - 1))) {
   6375         trace_pci_nvme_err_startfail_asq_misaligned(asq);
   6376         return -1;
   6377     }
   6378     if (unlikely(acq & (page_size - 1))) {
   6379         trace_pci_nvme_err_startfail_acq_misaligned(acq);
   6380         return -1;
   6381     }
   6382     if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
   6383         trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
   6384         return -1;
   6385     }
   6386     if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
   6387         trace_pci_nvme_err_startfail_page_too_small(
   6388                     NVME_CC_MPS(cc),
   6389                     NVME_CAP_MPSMIN(cap));
   6390         return -1;
   6391     }
   6392     if (unlikely(NVME_CC_MPS(cc) >
   6393                  NVME_CAP_MPSMAX(cap))) {
   6394         trace_pci_nvme_err_startfail_page_too_large(
   6395                     NVME_CC_MPS(cc),
   6396                     NVME_CAP_MPSMAX(cap));
   6397         return -1;
   6398     }
   6399     if (unlikely(NVME_CC_IOCQES(cc) <
   6400                  NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
   6401         trace_pci_nvme_err_startfail_cqent_too_small(
   6402                     NVME_CC_IOCQES(cc),
   6403                     NVME_CTRL_CQES_MIN(cap));
   6404         return -1;
   6405     }
   6406     if (unlikely(NVME_CC_IOCQES(cc) >
   6407                  NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
   6408         trace_pci_nvme_err_startfail_cqent_too_large(
   6409                     NVME_CC_IOCQES(cc),
   6410                     NVME_CTRL_CQES_MAX(cap));
   6411         return -1;
   6412     }
   6413     if (unlikely(NVME_CC_IOSQES(cc) <
   6414                  NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
   6415         trace_pci_nvme_err_startfail_sqent_too_small(
   6416                     NVME_CC_IOSQES(cc),
   6417                     NVME_CTRL_SQES_MIN(cap));
   6418         return -1;
   6419     }
   6420     if (unlikely(NVME_CC_IOSQES(cc) >
   6421                  NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
   6422         trace_pci_nvme_err_startfail_sqent_too_large(
   6423                     NVME_CC_IOSQES(cc),
   6424                     NVME_CTRL_SQES_MAX(cap));
   6425         return -1;
   6426     }
   6427     if (unlikely(!NVME_AQA_ASQS(aqa))) {
   6428         trace_pci_nvme_err_startfail_asqent_sz_zero();
   6429         return -1;
   6430     }
   6431     if (unlikely(!NVME_AQA_ACQS(aqa))) {
   6432         trace_pci_nvme_err_startfail_acqent_sz_zero();
   6433         return -1;
   6434     }
   6435 
   6436     n->page_bits = page_bits;
   6437     n->page_size = page_size;
   6438     n->max_prp_ents = n->page_size / sizeof(uint64_t);
   6439     n->cqe_size = 1 << NVME_CC_IOCQES(cc);
   6440     n->sqe_size = 1 << NVME_CC_IOSQES(cc);
   6441     nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
   6442     nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
   6443 
   6444     nvme_set_timestamp(n, 0ULL);
   6445 
   6446     nvme_select_iocs(n);
   6447 
   6448     return 0;
   6449 }
   6450 
   6451 static void nvme_cmb_enable_regs(NvmeCtrl *n)
   6452 {
   6453     uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
   6454     uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
   6455 
   6456     NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
   6457     NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
   6458     NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
   6459     stl_le_p(&n->bar.cmbloc, cmbloc);
   6460 
   6461     NVME_CMBSZ_SET_SQS(cmbsz, 1);
   6462     NVME_CMBSZ_SET_CQS(cmbsz, 0);
   6463     NVME_CMBSZ_SET_LISTS(cmbsz, 1);
   6464     NVME_CMBSZ_SET_RDS(cmbsz, 1);
   6465     NVME_CMBSZ_SET_WDS(cmbsz, 1);
   6466     NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
   6467     NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
   6468     stl_le_p(&n->bar.cmbsz, cmbsz);
   6469 }
   6470 
   6471 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
   6472                            unsigned size)
   6473 {
   6474     uint64_t cap = ldq_le_p(&n->bar.cap);
   6475     uint32_t cc = ldl_le_p(&n->bar.cc);
   6476     uint32_t intms = ldl_le_p(&n->bar.intms);
   6477     uint32_t csts = ldl_le_p(&n->bar.csts);
   6478     uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
   6479 
   6480     if (unlikely(offset & (sizeof(uint32_t) - 1))) {
   6481         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
   6482                        "MMIO write not 32-bit aligned,"
   6483                        " offset=0x%"PRIx64"", offset);
   6484         /* should be ignored, fall through for now */
   6485     }
   6486 
   6487     if (unlikely(size < sizeof(uint32_t))) {
   6488         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
   6489                        "MMIO write smaller than 32-bits,"
   6490                        " offset=0x%"PRIx64", size=%u",
   6491                        offset, size);
   6492         /* should be ignored, fall through for now */
   6493     }
   6494 
   6495     switch (offset) {
   6496     case NVME_REG_INTMS:
   6497         if (unlikely(msix_enabled(&(n->parent_obj)))) {
   6498             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
   6499                            "undefined access to interrupt mask set"
   6500                            " when MSI-X is enabled");
   6501             /* should be ignored, fall through for now */
   6502         }
   6503         intms |= data;
   6504         stl_le_p(&n->bar.intms, intms);
   6505         n->bar.intmc = n->bar.intms;
   6506         trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
   6507         nvme_irq_check(n);
   6508         break;
   6509     case NVME_REG_INTMC:
   6510         if (unlikely(msix_enabled(&(n->parent_obj)))) {
   6511             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
   6512                            "undefined access to interrupt mask clr"
   6513                            " when MSI-X is enabled");
   6514             /* should be ignored, fall through for now */
   6515         }
   6516         intms &= ~data;
   6517         stl_le_p(&n->bar.intms, intms);
   6518         n->bar.intmc = n->bar.intms;
   6519         trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
   6520         nvme_irq_check(n);
   6521         break;
   6522     case NVME_REG_CC:
   6523         stl_le_p(&n->bar.cc, data);
   6524 
   6525         trace_pci_nvme_mmio_cfg(data & 0xffffffff);
   6526 
   6527         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
   6528             trace_pci_nvme_mmio_shutdown_set();
   6529             nvme_ctrl_shutdown(n);
   6530             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
   6531             csts |= NVME_CSTS_SHST_COMPLETE;
   6532         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
   6533             trace_pci_nvme_mmio_shutdown_cleared();
   6534             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
   6535         }
   6536 
   6537         if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
   6538             if (unlikely(nvme_start_ctrl(n))) {
   6539                 trace_pci_nvme_err_startfail();
   6540                 csts = NVME_CSTS_FAILED;
   6541             } else {
   6542                 trace_pci_nvme_mmio_start_success();
   6543                 csts = NVME_CSTS_READY;
   6544             }
   6545         } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
   6546             trace_pci_nvme_mmio_stopped();
   6547             nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
   6548 
   6549             break;
   6550         }
   6551 
   6552         stl_le_p(&n->bar.csts, csts);
   6553 
   6554         break;
   6555     case NVME_REG_CSTS:
   6556         if (data & (1 << 4)) {
   6557             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
   6558                            "attempted to W1C CSTS.NSSRO"
   6559                            " but CAP.NSSRS is zero (not supported)");
   6560         } else if (data != 0) {
   6561             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
   6562                            "attempted to set a read only bit"
   6563                            " of controller status");
   6564         }
   6565         break;
   6566     case NVME_REG_NSSR:
   6567         if (data == 0x4e564d65) {
   6568             trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
   6569         } else {
   6570             /* The spec says that writes of other values have no effect */
   6571             return;
   6572         }
   6573         break;
   6574     case NVME_REG_AQA:
   6575         stl_le_p(&n->bar.aqa, data);
   6576         trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
   6577         break;
   6578     case NVME_REG_ASQ:
   6579         stn_le_p(&n->bar.asq, size, data);
   6580         trace_pci_nvme_mmio_asqaddr(data);
   6581         break;
   6582     case NVME_REG_ASQ + 4:
   6583         stl_le_p((uint8_t *)&n->bar.asq + 4, data);
   6584         trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
   6585         break;
   6586     case NVME_REG_ACQ:
   6587         trace_pci_nvme_mmio_acqaddr(data);
   6588         stn_le_p(&n->bar.acq, size, data);
   6589         break;
   6590     case NVME_REG_ACQ + 4:
   6591         stl_le_p((uint8_t *)&n->bar.acq + 4, data);
   6592         trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
   6593         break;
   6594     case NVME_REG_CMBLOC:
   6595         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
   6596                        "invalid write to reserved CMBLOC"
   6597                        " when CMBSZ is zero, ignored");
   6598         return;
   6599     case NVME_REG_CMBSZ:
   6600         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
   6601                        "invalid write to read only CMBSZ, ignored");
   6602         return;
   6603     case NVME_REG_CMBMSC:
   6604         if (!NVME_CAP_CMBS(cap)) {
   6605             return;
   6606         }
   6607 
   6608         stn_le_p(&n->bar.cmbmsc, size, data);
   6609         n->cmb.cmse = false;
   6610 
   6611         if (NVME_CMBMSC_CRE(data)) {
   6612             nvme_cmb_enable_regs(n);
   6613 
   6614             if (NVME_CMBMSC_CMSE(data)) {
   6615                 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
   6616                 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
   6617                 if (cba + int128_get64(n->cmb.mem.size) < cba) {
   6618                     uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
   6619                     NVME_CMBSTS_SET_CBAI(cmbsts, 1);
   6620                     stl_le_p(&n->bar.cmbsts, cmbsts);
   6621                     return;
   6622                 }
   6623 
   6624                 n->cmb.cba = cba;
   6625                 n->cmb.cmse = true;
   6626             }
   6627         } else {
   6628             n->bar.cmbsz = 0;
   6629             n->bar.cmbloc = 0;
   6630         }
   6631 
   6632         return;
   6633     case NVME_REG_CMBMSC + 4:
   6634         stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
   6635         return;
   6636 
   6637     case NVME_REG_PMRCAP:
   6638         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
   6639                        "invalid write to PMRCAP register, ignored");
   6640         return;
   6641     case NVME_REG_PMRCTL:
   6642         if (!NVME_CAP_PMRS(cap)) {
   6643             return;
   6644         }
   6645 
   6646         stl_le_p(&n->bar.pmrctl, data);
   6647         if (NVME_PMRCTL_EN(data)) {
   6648             memory_region_set_enabled(&n->pmr.dev->mr, true);
   6649             pmrsts = 0;
   6650         } else {
   6651             memory_region_set_enabled(&n->pmr.dev->mr, false);
   6652             NVME_PMRSTS_SET_NRDY(pmrsts, 1);
   6653             n->pmr.cmse = false;
   6654         }
   6655         stl_le_p(&n->bar.pmrsts, pmrsts);
   6656         return;
   6657     case NVME_REG_PMRSTS:
   6658         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
   6659                        "invalid write to PMRSTS register, ignored");
   6660         return;
   6661     case NVME_REG_PMREBS:
   6662         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
   6663                        "invalid write to PMREBS register, ignored");
   6664         return;
   6665     case NVME_REG_PMRSWTP:
   6666         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
   6667                        "invalid write to PMRSWTP register, ignored");
   6668         return;
   6669     case NVME_REG_PMRMSCL:
   6670         if (!NVME_CAP_PMRS(cap)) {
   6671             return;
   6672         }
   6673 
   6674         stl_le_p(&n->bar.pmrmscl, data);
   6675         n->pmr.cmse = false;
   6676 
   6677         if (NVME_PMRMSCL_CMSE(data)) {
   6678             uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
   6679             hwaddr cba = pmrmscu << 32 |
   6680                 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
   6681             if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
   6682                 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
   6683                 stl_le_p(&n->bar.pmrsts, pmrsts);
   6684                 return;
   6685             }
   6686 
   6687             n->pmr.cmse = true;
   6688             n->pmr.cba = cba;
   6689         }
   6690 
   6691         return;
   6692     case NVME_REG_PMRMSCU:
   6693         if (!NVME_CAP_PMRS(cap)) {
   6694             return;
   6695         }
   6696 
   6697         stl_le_p(&n->bar.pmrmscu, data);
   6698         return;
   6699     default:
   6700         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
   6701                        "invalid MMIO write,"
   6702                        " offset=0x%"PRIx64", data=%"PRIx64"",
   6703                        offset, data);
   6704         break;
   6705     }
   6706 }
   6707 
   6708 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
   6709 {
   6710     NvmeCtrl *n = (NvmeCtrl *)opaque;
   6711     uint8_t *ptr = (uint8_t *)&n->bar;
   6712 
   6713     trace_pci_nvme_mmio_read(addr, size);
   6714 
   6715     if (unlikely(addr & (sizeof(uint32_t) - 1))) {
   6716         NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
   6717                        "MMIO read not 32-bit aligned,"
   6718                        " offset=0x%"PRIx64"", addr);
   6719         /* should RAZ, fall through for now */
   6720     } else if (unlikely(size < sizeof(uint32_t))) {
   6721         NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
   6722                        "MMIO read smaller than 32-bits,"
   6723                        " offset=0x%"PRIx64"", addr);
   6724         /* should RAZ, fall through for now */
   6725     }
   6726 
   6727     if (addr > sizeof(n->bar) - size) {
   6728         NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
   6729                        "MMIO read beyond last register,"
   6730                        " offset=0x%"PRIx64", returning 0", addr);
   6731 
   6732         return 0;
   6733     }
   6734 
   6735     if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
   6736         addr != NVME_REG_CSTS) {
   6737         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
   6738         return 0;
   6739     }
   6740 
   6741     /*
   6742      * When PMRWBM bit 1 is set then read from
   6743      * from PMRSTS should ensure prior writes
   6744      * made it to persistent media
   6745      */
   6746     if (addr == NVME_REG_PMRSTS &&
   6747         (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
   6748         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
   6749     }
   6750 
   6751     return ldn_le_p(ptr + addr, size);
   6752 }
   6753 
   6754 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
   6755 {
   6756     uint32_t qid;
   6757 
   6758     if (unlikely(addr & ((1 << 2) - 1))) {
   6759         NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
   6760                        "doorbell write not 32-bit aligned,"
   6761                        " offset=0x%"PRIx64", ignoring", addr);
   6762         return;
   6763     }
   6764 
   6765     if (((addr - 0x1000) >> 2) & 1) {
   6766         /* Completion queue doorbell write */
   6767 
   6768         uint16_t new_head = val & 0xffff;
   6769         int start_sqs;
   6770         NvmeCQueue *cq;
   6771 
   6772         qid = (addr - (0x1000 + (1 << 2))) >> 3;
   6773         if (unlikely(nvme_check_cqid(n, qid))) {
   6774             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
   6775                            "completion queue doorbell write"
   6776                            " for nonexistent queue,"
   6777                            " sqid=%"PRIu32", ignoring", qid);
   6778 
   6779             /*
   6780              * NVM Express v1.3d, Section 4.1 state: "If host software writes
   6781              * an invalid value to the Submission Queue Tail Doorbell or
   6782              * Completion Queue Head Doorbell regiter and an Asynchronous Event
   6783              * Request command is outstanding, then an asynchronous event is
   6784              * posted to the Admin Completion Queue with a status code of
   6785              * Invalid Doorbell Write Value."
   6786              *
   6787              * Also note that the spec includes the "Invalid Doorbell Register"
   6788              * status code, but nowhere does it specify when to use it.
   6789              * However, it seems reasonable to use it here in a similar
   6790              * fashion.
   6791              */
   6792             if (n->outstanding_aers) {
   6793                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
   6794                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
   6795                                    NVME_LOG_ERROR_INFO);
   6796             }
   6797 
   6798             return;
   6799         }
   6800 
   6801         cq = n->cq[qid];
   6802         if (unlikely(new_head >= cq->size)) {
   6803             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
   6804                            "completion queue doorbell write value"
   6805                            " beyond queue size, sqid=%"PRIu32","
   6806                            " new_head=%"PRIu16", ignoring",
   6807                            qid, new_head);
   6808 
   6809             if (n->outstanding_aers) {
   6810                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
   6811                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
   6812                                    NVME_LOG_ERROR_INFO);
   6813             }
   6814 
   6815             return;
   6816         }
   6817 
   6818         trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
   6819 
   6820         start_sqs = nvme_cq_full(cq) ? 1 : 0;
   6821         cq->head = new_head;
   6822         if (!qid && n->dbbuf_enabled) {
   6823             pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
   6824                           sizeof(cq->head));
   6825         }
   6826         if (start_sqs) {
   6827             NvmeSQueue *sq;
   6828             QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
   6829                 qemu_bh_schedule(sq->bh);
   6830             }
   6831             qemu_bh_schedule(cq->bh);
   6832         }
   6833 
   6834         if (cq->tail == cq->head) {
   6835             if (cq->irq_enabled) {
   6836                 n->cq_pending--;
   6837             }
   6838 
   6839             nvme_irq_deassert(n, cq);
   6840         }
   6841     } else {
   6842         /* Submission queue doorbell write */
   6843 
   6844         uint16_t new_tail = val & 0xffff;
   6845         NvmeSQueue *sq;
   6846 
   6847         qid = (addr - 0x1000) >> 3;
   6848         if (unlikely(nvme_check_sqid(n, qid))) {
   6849             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
   6850                            "submission queue doorbell write"
   6851                            " for nonexistent queue,"
   6852                            " sqid=%"PRIu32", ignoring", qid);
   6853 
   6854             if (n->outstanding_aers) {
   6855                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
   6856                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
   6857                                    NVME_LOG_ERROR_INFO);
   6858             }
   6859 
   6860             return;
   6861         }
   6862 
   6863         sq = n->sq[qid];
   6864         if (unlikely(new_tail >= sq->size)) {
   6865             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
   6866                            "submission queue doorbell write value"
   6867                            " beyond queue size, sqid=%"PRIu32","
   6868                            " new_tail=%"PRIu16", ignoring",
   6869                            qid, new_tail);
   6870 
   6871             if (n->outstanding_aers) {
   6872                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
   6873                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
   6874                                    NVME_LOG_ERROR_INFO);
   6875             }
   6876 
   6877             return;
   6878         }
   6879 
   6880         trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
   6881 
   6882         sq->tail = new_tail;
   6883         if (!qid && n->dbbuf_enabled) {
   6884             /*
   6885              * The spec states "the host shall also update the controller's
   6886              * corresponding doorbell property to match the value of that entry
   6887              * in the Shadow Doorbell buffer."
   6888              *
   6889              * Since this context is currently a VM trap, we can safely enforce
   6890              * the requirement from the device side in case the host is
   6891              * misbehaving.
   6892              *
   6893              * Note, we shouldn't have to do this, but various drivers
   6894              * including ones that run on Linux, are not updating Admin Queues,
   6895              * so we can't trust reading it for an appropriate sq tail.
   6896              */
   6897             pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
   6898                           sizeof(sq->tail));
   6899         }
   6900 
   6901         qemu_bh_schedule(sq->bh);
   6902     }
   6903 }
   6904 
   6905 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
   6906                             unsigned size)
   6907 {
   6908     NvmeCtrl *n = (NvmeCtrl *)opaque;
   6909 
   6910     trace_pci_nvme_mmio_write(addr, data, size);
   6911 
   6912     if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
   6913         addr != NVME_REG_CSTS) {
   6914         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
   6915         return;
   6916     }
   6917 
   6918     if (addr < sizeof(n->bar)) {
   6919         nvme_write_bar(n, addr, data, size);
   6920     } else {
   6921         nvme_process_db(n, addr, data);
   6922     }
   6923 }
   6924 
   6925 static const MemoryRegionOps nvme_mmio_ops = {
   6926     .read = nvme_mmio_read,
   6927     .write = nvme_mmio_write,
   6928     .endianness = DEVICE_LITTLE_ENDIAN,
   6929     .impl = {
   6930         .min_access_size = 2,
   6931         .max_access_size = 8,
   6932     },
   6933 };
   6934 
   6935 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
   6936                            unsigned size)
   6937 {
   6938     NvmeCtrl *n = (NvmeCtrl *)opaque;
   6939     stn_le_p(&n->cmb.buf[addr], size, data);
   6940 }
   6941 
   6942 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
   6943 {
   6944     NvmeCtrl *n = (NvmeCtrl *)opaque;
   6945     return ldn_le_p(&n->cmb.buf[addr], size);
   6946 }
   6947 
   6948 static const MemoryRegionOps nvme_cmb_ops = {
   6949     .read = nvme_cmb_read,
   6950     .write = nvme_cmb_write,
   6951     .endianness = DEVICE_LITTLE_ENDIAN,
   6952     .impl = {
   6953         .min_access_size = 1,
   6954         .max_access_size = 8,
   6955     },
   6956 };
   6957 
   6958 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
   6959 {
   6960     NvmeParams *params = &n->params;
   6961 
   6962     if (params->num_queues) {
   6963         warn_report("num_queues is deprecated; please use max_ioqpairs "
   6964                     "instead");
   6965 
   6966         params->max_ioqpairs = params->num_queues - 1;
   6967     }
   6968 
   6969     if (n->namespace.blkconf.blk && n->subsys) {
   6970         error_setg(errp, "subsystem support is unavailable with legacy "
   6971                    "namespace ('drive' property)");
   6972         return;
   6973     }
   6974 
   6975     if (params->max_ioqpairs < 1 ||
   6976         params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
   6977         error_setg(errp, "max_ioqpairs must be between 1 and %d",
   6978                    NVME_MAX_IOQPAIRS);
   6979         return;
   6980     }
   6981 
   6982     if (params->msix_qsize < 1 ||
   6983         params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
   6984         error_setg(errp, "msix_qsize must be between 1 and %d",
   6985                    PCI_MSIX_FLAGS_QSIZE + 1);
   6986         return;
   6987     }
   6988 
   6989     if (!params->serial) {
   6990         error_setg(errp, "serial property not set");
   6991         return;
   6992     }
   6993 
   6994     if (n->pmr.dev) {
   6995         if (host_memory_backend_is_mapped(n->pmr.dev)) {
   6996             error_setg(errp, "can't use already busy memdev: %s",
   6997                        object_get_canonical_path_component(OBJECT(n->pmr.dev)));
   6998             return;
   6999         }
   7000 
   7001         if (!is_power_of_2(n->pmr.dev->size)) {
   7002             error_setg(errp, "pmr backend size needs to be power of 2 in size");
   7003             return;
   7004         }
   7005 
   7006         host_memory_backend_set_mapped(n->pmr.dev, true);
   7007     }
   7008 
   7009     if (n->params.zasl > n->params.mdts) {
   7010         error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
   7011                    "than or equal to mdts (Maximum Data Transfer Size)");
   7012         return;
   7013     }
   7014 
   7015     if (!n->params.vsl) {
   7016         error_setg(errp, "vsl must be non-zero");
   7017         return;
   7018     }
   7019 
   7020     if (params->sriov_max_vfs) {
   7021         if (!n->subsys) {
   7022             error_setg(errp, "subsystem is required for the use of SR-IOV");
   7023             return;
   7024         }
   7025 
   7026         if (params->sriov_max_vfs > NVME_MAX_VFS) {
   7027             error_setg(errp, "sriov_max_vfs must be between 0 and %d",
   7028                        NVME_MAX_VFS);
   7029             return;
   7030         }
   7031 
   7032         if (params->cmb_size_mb) {
   7033             error_setg(errp, "CMB is not supported with SR-IOV");
   7034             return;
   7035         }
   7036 
   7037         if (n->pmr.dev) {
   7038             error_setg(errp, "PMR is not supported with SR-IOV");
   7039             return;
   7040         }
   7041 
   7042         if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
   7043             error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
   7044                        " must be set for the use of SR-IOV");
   7045             return;
   7046         }
   7047 
   7048         if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
   7049             error_setg(errp, "sriov_vq_flexible must be greater than or equal"
   7050                        " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
   7051             return;
   7052         }
   7053 
   7054         if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
   7055             error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
   7056                        " greater than or equal to 2");
   7057             return;
   7058         }
   7059 
   7060         if (params->sriov_vi_flexible < params->sriov_max_vfs) {
   7061             error_setg(errp, "sriov_vi_flexible must be greater than or equal"
   7062                        " to %d (sriov_max_vfs)", params->sriov_max_vfs);
   7063             return;
   7064         }
   7065 
   7066         if (params->msix_qsize < params->sriov_vi_flexible + 1) {
   7067             error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
   7068                        " greater than or equal to 1");
   7069             return;
   7070         }
   7071 
   7072         if (params->sriov_max_vi_per_vf &&
   7073             (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
   7074             error_setg(errp, "sriov_max_vi_per_vf must meet:"
   7075                        " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
   7076                        " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
   7077             return;
   7078         }
   7079 
   7080         if (params->sriov_max_vq_per_vf &&
   7081             (params->sriov_max_vq_per_vf < 2 ||
   7082              (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
   7083             error_setg(errp, "sriov_max_vq_per_vf must meet:"
   7084                        " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
   7085                        " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
   7086             return;
   7087         }
   7088     }
   7089 }
   7090 
   7091 static void nvme_init_state(NvmeCtrl *n)
   7092 {
   7093     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
   7094     NvmeSecCtrlList *list = &n->sec_ctrl_list;
   7095     NvmeSecCtrlEntry *sctrl;
   7096     uint8_t max_vfs;
   7097     int i;
   7098 
   7099     if (pci_is_vf(&n->parent_obj)) {
   7100         sctrl = nvme_sctrl(n);
   7101         max_vfs = 0;
   7102         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
   7103         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
   7104     } else {
   7105         max_vfs = n->params.sriov_max_vfs;
   7106         n->conf_ioqpairs = n->params.max_ioqpairs;
   7107         n->conf_msix_qsize = n->params.msix_qsize;
   7108     }
   7109 
   7110     n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
   7111     n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
   7112     n->temperature = NVME_TEMPERATURE;
   7113     n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
   7114     n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
   7115     n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
   7116     QTAILQ_INIT(&n->aer_queue);
   7117 
   7118     list->numcntl = cpu_to_le16(max_vfs);
   7119     for (i = 0; i < max_vfs; i++) {
   7120         sctrl = &list->sec[i];
   7121         sctrl->pcid = cpu_to_le16(n->cntlid);
   7122         sctrl->vfn = cpu_to_le16(i + 1);
   7123     }
   7124 
   7125     cap->cntlid = cpu_to_le16(n->cntlid);
   7126     cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
   7127 
   7128     if (pci_is_vf(&n->parent_obj)) {
   7129         cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
   7130     } else {
   7131         cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
   7132                                  n->params.sriov_vq_flexible);
   7133         cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
   7134         cap->vqrfap = cap->vqfrt;
   7135         cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
   7136         cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
   7137                         cpu_to_le16(n->params.sriov_max_vq_per_vf) :
   7138                         cap->vqfrt / MAX(max_vfs, 1);
   7139     }
   7140 
   7141     if (pci_is_vf(&n->parent_obj)) {
   7142         cap->viprt = cpu_to_le16(n->conf_msix_qsize);
   7143     } else {
   7144         cap->viprt = cpu_to_le16(n->params.msix_qsize -
   7145                                  n->params.sriov_vi_flexible);
   7146         cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
   7147         cap->virfap = cap->vifrt;
   7148         cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
   7149         cap->vifrsm = n->params.sriov_max_vi_per_vf ?
   7150                         cpu_to_le16(n->params.sriov_max_vi_per_vf) :
   7151                         cap->vifrt / MAX(max_vfs, 1);
   7152     }
   7153 }
   7154 
   7155 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
   7156 {
   7157     uint64_t cmb_size = n->params.cmb_size_mb * MiB;
   7158     uint64_t cap = ldq_le_p(&n->bar.cap);
   7159 
   7160     n->cmb.buf = g_malloc0(cmb_size);
   7161     memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
   7162                           "nvme-cmb", cmb_size);
   7163     pci_register_bar(pci_dev, NVME_CMB_BIR,
   7164                      PCI_BASE_ADDRESS_SPACE_MEMORY |
   7165                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
   7166                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
   7167 
   7168     NVME_CAP_SET_CMBS(cap, 1);
   7169     stq_le_p(&n->bar.cap, cap);
   7170 
   7171     if (n->params.legacy_cmb) {
   7172         nvme_cmb_enable_regs(n);
   7173         n->cmb.cmse = true;
   7174     }
   7175 }
   7176 
   7177 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
   7178 {
   7179     uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
   7180 
   7181     NVME_PMRCAP_SET_RDS(pmrcap, 1);
   7182     NVME_PMRCAP_SET_WDS(pmrcap, 1);
   7183     NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
   7184     /* Turn on bit 1 support */
   7185     NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
   7186     NVME_PMRCAP_SET_CMSS(pmrcap, 1);
   7187     stl_le_p(&n->bar.pmrcap, pmrcap);
   7188 
   7189     pci_register_bar(pci_dev, NVME_PMR_BIR,
   7190                      PCI_BASE_ADDRESS_SPACE_MEMORY |
   7191                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
   7192                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
   7193 
   7194     memory_region_set_enabled(&n->pmr.dev->mr, false);
   7195 }
   7196 
   7197 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
   7198                               unsigned *msix_table_offset,
   7199                               unsigned *msix_pba_offset)
   7200 {
   7201     uint64_t bar_size, msix_table_size, msix_pba_size;
   7202 
   7203     bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
   7204     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
   7205 
   7206     if (msix_table_offset) {
   7207         *msix_table_offset = bar_size;
   7208     }
   7209 
   7210     msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
   7211     bar_size += msix_table_size;
   7212     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
   7213 
   7214     if (msix_pba_offset) {
   7215         *msix_pba_offset = bar_size;
   7216     }
   7217 
   7218     msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
   7219     bar_size += msix_pba_size;
   7220 
   7221     bar_size = pow2ceil(bar_size);
   7222     return bar_size;
   7223 }
   7224 
   7225 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
   7226 {
   7227     uint16_t vf_dev_id = n->params.use_intel_id ?
   7228                          PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
   7229     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
   7230     uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
   7231                                       le16_to_cpu(cap->vifrsm),
   7232                                       NULL, NULL);
   7233 
   7234     pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
   7235                        n->params.sriov_max_vfs, n->params.sriov_max_vfs,
   7236                        NVME_VF_OFFSET, NVME_VF_STRIDE);
   7237 
   7238     pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
   7239                               PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
   7240 }
   7241 
   7242 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
   7243 {
   7244     Error *err = NULL;
   7245     int ret;
   7246 
   7247     ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
   7248                              PCI_PM_SIZEOF, &err);
   7249     if (err) {
   7250         error_report_err(err);
   7251         return ret;
   7252     }
   7253 
   7254     pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
   7255                  PCI_PM_CAP_VER_1_2);
   7256     pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
   7257                  PCI_PM_CTRL_NO_SOFT_RESET);
   7258     pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
   7259                  PCI_PM_CTRL_STATE_MASK);
   7260 
   7261     return 0;
   7262 }
   7263 
   7264 static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
   7265 {
   7266     uint8_t *pci_conf = pci_dev->config;
   7267     uint64_t bar_size;
   7268     unsigned msix_table_offset, msix_pba_offset;
   7269     int ret;
   7270 
   7271     Error *err = NULL;
   7272 
   7273     pci_conf[PCI_INTERRUPT_PIN] = 1;
   7274     pci_config_set_prog_interface(pci_conf, 0x2);
   7275 
   7276     if (n->params.use_intel_id) {
   7277         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
   7278         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
   7279     } else {
   7280         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
   7281         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
   7282     }
   7283 
   7284     pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
   7285     nvme_add_pm_capability(pci_dev, 0x60);
   7286     pcie_endpoint_cap_init(pci_dev, 0x80);
   7287     pcie_cap_flr_init(pci_dev);
   7288     if (n->params.sriov_max_vfs) {
   7289         pcie_ari_init(pci_dev, 0x100, 1);
   7290     }
   7291 
   7292     /* add one to max_ioqpairs to account for the admin queue pair */
   7293     bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
   7294                              &msix_table_offset, &msix_pba_offset);
   7295 
   7296     memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
   7297     memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
   7298                           msix_table_offset);
   7299     memory_region_add_subregion(&n->bar0, 0, &n->iomem);
   7300 
   7301     if (pci_is_vf(pci_dev)) {
   7302         pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
   7303     } else {
   7304         pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
   7305                          PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
   7306     }
   7307     ret = msix_init(pci_dev, n->params.msix_qsize,
   7308                     &n->bar0, 0, msix_table_offset,
   7309                     &n->bar0, 0, msix_pba_offset, 0, &err);
   7310     if (ret < 0) {
   7311         if (ret == -ENOTSUP) {
   7312             warn_report_err(err);
   7313         } else {
   7314             error_propagate(errp, err);
   7315             return ret;
   7316         }
   7317     }
   7318 
   7319     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
   7320 
   7321     if (n->params.cmb_size_mb) {
   7322         nvme_init_cmb(n, pci_dev);
   7323     }
   7324 
   7325     if (n->pmr.dev) {
   7326         nvme_init_pmr(n, pci_dev);
   7327     }
   7328 
   7329     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
   7330         nvme_init_sriov(n, pci_dev, 0x120);
   7331     }
   7332 
   7333     return 0;
   7334 }
   7335 
   7336 static void nvme_init_subnqn(NvmeCtrl *n)
   7337 {
   7338     NvmeSubsystem *subsys = n->subsys;
   7339     NvmeIdCtrl *id = &n->id_ctrl;
   7340 
   7341     if (!subsys) {
   7342         snprintf((char *)id->subnqn, sizeof(id->subnqn),
   7343                  "nqn.2019-08.org.qemu:%s", n->params.serial);
   7344     } else {
   7345         pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
   7346     }
   7347 }
   7348 
   7349 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
   7350 {
   7351     NvmeIdCtrl *id = &n->id_ctrl;
   7352     uint8_t *pci_conf = pci_dev->config;
   7353     uint64_t cap = ldq_le_p(&n->bar.cap);
   7354     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
   7355 
   7356     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
   7357     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
   7358     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
   7359     strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
   7360     strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
   7361 
   7362     id->cntlid = cpu_to_le16(n->cntlid);
   7363 
   7364     id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
   7365     id->ctratt |= cpu_to_le32(NVME_CTRATT_ELBAS);
   7366 
   7367     id->rab = 6;
   7368 
   7369     if (n->params.use_intel_id) {
   7370         id->ieee[0] = 0xb3;
   7371         id->ieee[1] = 0x02;
   7372         id->ieee[2] = 0x00;
   7373     } else {
   7374         id->ieee[0] = 0x00;
   7375         id->ieee[1] = 0x54;
   7376         id->ieee[2] = 0x52;
   7377     }
   7378 
   7379     id->mdts = n->params.mdts;
   7380     id->ver = cpu_to_le32(NVME_SPEC_VER);
   7381     id->oacs =
   7382         cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF);
   7383     id->cntrltype = 0x1;
   7384 
   7385     /*
   7386      * Because the controller always completes the Abort command immediately,
   7387      * there can never be more than one concurrently executing Abort command,
   7388      * so this value is never used for anything. Note that there can easily be
   7389      * many Abort commands in the queues, but they are not considered
   7390      * "executing" until processed by nvme_abort.
   7391      *
   7392      * The specification recommends a value of 3 for Abort Command Limit (four
   7393      * concurrently outstanding Abort commands), so lets use that though it is
   7394      * inconsequential.
   7395      */
   7396     id->acl = 3;
   7397     id->aerl = n->params.aerl;
   7398     id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
   7399     id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
   7400 
   7401     /* recommended default value (~70 C) */
   7402     id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
   7403     id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
   7404 
   7405     id->sqes = (0x6 << 4) | 0x6;
   7406     id->cqes = (0x4 << 4) | 0x4;
   7407     id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
   7408     id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
   7409                            NVME_ONCS_FEATURES | NVME_ONCS_DSM |
   7410                            NVME_ONCS_COMPARE | NVME_ONCS_COPY);
   7411 
   7412     /*
   7413      * NOTE: If this device ever supports a command set that does NOT use 0x0
   7414      * as a Flush-equivalent operation, support for the broadcast NSID in Flush
   7415      * should probably be removed.
   7416      *
   7417      * See comment in nvme_io_cmd.
   7418      */
   7419     id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
   7420 
   7421     id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
   7422     id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
   7423 
   7424     nvme_init_subnqn(n);
   7425 
   7426     id->psd[0].mp = cpu_to_le16(0x9c4);
   7427     id->psd[0].enlat = cpu_to_le32(0x10);
   7428     id->psd[0].exlat = cpu_to_le32(0x4);
   7429 
   7430     if (n->subsys) {
   7431         id->cmic |= NVME_CMIC_MULTI_CTRL;
   7432     }
   7433 
   7434     NVME_CAP_SET_MQES(cap, 0x7ff);
   7435     NVME_CAP_SET_CQR(cap, 1);
   7436     NVME_CAP_SET_TO(cap, 0xf);
   7437     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
   7438     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
   7439     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
   7440     NVME_CAP_SET_MPSMAX(cap, 4);
   7441     NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
   7442     NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
   7443     stq_le_p(&n->bar.cap, cap);
   7444 
   7445     stl_le_p(&n->bar.vs, NVME_SPEC_VER);
   7446     n->bar.intmc = n->bar.intms = 0;
   7447 
   7448     if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
   7449         stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
   7450     }
   7451 }
   7452 
   7453 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
   7454 {
   7455     int cntlid;
   7456 
   7457     if (!n->subsys) {
   7458         return 0;
   7459     }
   7460 
   7461     cntlid = nvme_subsys_register_ctrl(n, errp);
   7462     if (cntlid < 0) {
   7463         return -1;
   7464     }
   7465 
   7466     n->cntlid = cntlid;
   7467 
   7468     return 0;
   7469 }
   7470 
   7471 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
   7472 {
   7473     uint32_t nsid = ns->params.nsid;
   7474     assert(nsid && nsid <= NVME_MAX_NAMESPACES);
   7475 
   7476     n->namespaces[nsid] = ns;
   7477     ns->attached++;
   7478 
   7479     n->dmrsl = MIN_NON_ZERO(n->dmrsl,
   7480                             BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
   7481 }
   7482 
   7483 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
   7484 {
   7485     NvmeCtrl *n = NVME(pci_dev);
   7486     NvmeNamespace *ns;
   7487     Error *local_err = NULL;
   7488     NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
   7489 
   7490     if (pci_is_vf(pci_dev)) {
   7491         /*
   7492          * VFs derive settings from the parent. PF's lifespan exceeds
   7493          * that of VF's, so it's safe to share params.serial.
   7494          */
   7495         memcpy(&n->params, &pn->params, sizeof(NvmeParams));
   7496         n->subsys = pn->subsys;
   7497     }
   7498 
   7499     nvme_check_constraints(n, &local_err);
   7500     if (local_err) {
   7501         error_propagate(errp, local_err);
   7502         return;
   7503     }
   7504 
   7505     qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
   7506               &pci_dev->qdev, n->parent_obj.qdev.id);
   7507 
   7508     if (nvme_init_subsys(n, errp)) {
   7509         error_propagate(errp, local_err);
   7510         return;
   7511     }
   7512     nvme_init_state(n);
   7513     if (nvme_init_pci(n, pci_dev, errp)) {
   7514         return;
   7515     }
   7516     nvme_init_ctrl(n, pci_dev);
   7517 
   7518     /* setup a namespace if the controller drive property was given */
   7519     if (n->namespace.blkconf.blk) {
   7520         ns = &n->namespace;
   7521         ns->params.nsid = 1;
   7522 
   7523         if (nvme_ns_setup(ns, errp)) {
   7524             return;
   7525         }
   7526 
   7527         nvme_attach_ns(n, ns);
   7528     }
   7529 }
   7530 
   7531 static void nvme_exit(PCIDevice *pci_dev)
   7532 {
   7533     NvmeCtrl *n = NVME(pci_dev);
   7534     NvmeNamespace *ns;
   7535     int i;
   7536 
   7537     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
   7538 
   7539     if (n->subsys) {
   7540         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
   7541             ns = nvme_ns(n, i);
   7542             if (ns) {
   7543                 ns->attached--;
   7544             }
   7545         }
   7546 
   7547         nvme_subsys_unregister_ctrl(n->subsys, n);
   7548     }
   7549 
   7550     g_free(n->cq);
   7551     g_free(n->sq);
   7552     g_free(n->aer_reqs);
   7553 
   7554     if (n->params.cmb_size_mb) {
   7555         g_free(n->cmb.buf);
   7556     }
   7557 
   7558     if (n->pmr.dev) {
   7559         host_memory_backend_set_mapped(n->pmr.dev, false);
   7560     }
   7561 
   7562     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
   7563         pcie_sriov_pf_exit(pci_dev);
   7564     }
   7565 
   7566     msix_uninit(pci_dev, &n->bar0, &n->bar0);
   7567     memory_region_del_subregion(&n->bar0, &n->iomem);
   7568 }
   7569 
   7570 static Property nvme_props[] = {
   7571     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
   7572     DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
   7573                      HostMemoryBackend *),
   7574     DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
   7575                      NvmeSubsystem *),
   7576     DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
   7577     DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
   7578     DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
   7579     DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
   7580     DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
   7581     DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
   7582     DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
   7583     DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
   7584     DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
   7585     DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
   7586     DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
   7587     DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
   7588     DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
   7589     DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
   7590                      params.auto_transition_zones, true),
   7591     DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
   7592     DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
   7593                        params.sriov_vq_flexible, 0),
   7594     DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
   7595                        params.sriov_vi_flexible, 0),
   7596     DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
   7597                       params.sriov_max_vi_per_vf, 0),
   7598     DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
   7599                       params.sriov_max_vq_per_vf, 0),
   7600     DEFINE_PROP_END_OF_LIST(),
   7601 };
   7602 
   7603 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
   7604                                    void *opaque, Error **errp)
   7605 {
   7606     NvmeCtrl *n = NVME(obj);
   7607     uint8_t value = n->smart_critical_warning;
   7608 
   7609     visit_type_uint8(v, name, &value, errp);
   7610 }
   7611 
   7612 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
   7613                                    void *opaque, Error **errp)
   7614 {
   7615     NvmeCtrl *n = NVME(obj);
   7616     uint8_t value, old_value, cap = 0, index, event;
   7617 
   7618     if (!visit_type_uint8(v, name, &value, errp)) {
   7619         return;
   7620     }
   7621 
   7622     cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
   7623           | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
   7624     if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
   7625         cap |= NVME_SMART_PMR_UNRELIABLE;
   7626     }
   7627 
   7628     if ((value & cap) != value) {
   7629         error_setg(errp, "unsupported smart critical warning bits: 0x%x",
   7630                    value & ~cap);
   7631         return;
   7632     }
   7633 
   7634     old_value = n->smart_critical_warning;
   7635     n->smart_critical_warning = value;
   7636 
   7637     /* only inject new bits of smart critical warning */
   7638     for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
   7639         event = 1 << index;
   7640         if (value & ~old_value & event)
   7641             nvme_smart_event(n, event);
   7642     }
   7643 }
   7644 
   7645 static void nvme_pci_reset(DeviceState *qdev)
   7646 {
   7647     PCIDevice *pci_dev = PCI_DEVICE(qdev);
   7648     NvmeCtrl *n = NVME(pci_dev);
   7649 
   7650     trace_pci_nvme_pci_reset();
   7651     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
   7652 }
   7653 
   7654 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
   7655                                       uint32_t val, int len)
   7656 {
   7657     NvmeCtrl *n = NVME(dev);
   7658     NvmeSecCtrlEntry *sctrl;
   7659     uint16_t sriov_cap = dev->exp.sriov_cap;
   7660     uint32_t off = address - sriov_cap;
   7661     int i, num_vfs;
   7662 
   7663     if (!sriov_cap) {
   7664         return;
   7665     }
   7666 
   7667     if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
   7668         if (!(val & PCI_SRIOV_CTRL_VFE)) {
   7669             num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
   7670             for (i = 0; i < num_vfs; i++) {
   7671                 sctrl = &n->sec_ctrl_list.sec[i];
   7672                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
   7673             }
   7674         }
   7675     }
   7676 }
   7677 
   7678 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
   7679                                   uint32_t val, int len)
   7680 {
   7681     nvme_sriov_pre_write_ctrl(dev, address, val, len);
   7682     pci_default_write_config(dev, address, val, len);
   7683     pcie_cap_flr_write_config(dev, address, val, len);
   7684 }
   7685 
   7686 static const VMStateDescription nvme_vmstate = {
   7687     .name = "nvme",
   7688     .unmigratable = 1,
   7689 };
   7690 
   7691 static void nvme_class_init(ObjectClass *oc, void *data)
   7692 {
   7693     DeviceClass *dc = DEVICE_CLASS(oc);
   7694     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
   7695 
   7696     pc->realize = nvme_realize;
   7697     pc->config_write = nvme_pci_write_config;
   7698     pc->exit = nvme_exit;
   7699     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
   7700     pc->revision = 2;
   7701 
   7702     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
   7703     dc->desc = "Non-Volatile Memory Express";
   7704     device_class_set_props(dc, nvme_props);
   7705     dc->vmsd = &nvme_vmstate;
   7706     dc->reset = nvme_pci_reset;
   7707 }
   7708 
   7709 static void nvme_instance_init(Object *obj)
   7710 {
   7711     NvmeCtrl *n = NVME(obj);
   7712 
   7713     device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
   7714                                   "bootindex", "/namespace@1,0",
   7715                                   DEVICE(obj));
   7716 
   7717     object_property_add(obj, "smart_critical_warning", "uint8",
   7718                         nvme_get_smart_warning,
   7719                         nvme_set_smart_warning, NULL, NULL);
   7720 }
   7721 
   7722 static const TypeInfo nvme_info = {
   7723     .name          = TYPE_NVME,
   7724     .parent        = TYPE_PCI_DEVICE,
   7725     .instance_size = sizeof(NvmeCtrl),
   7726     .instance_init = nvme_instance_init,
   7727     .class_init    = nvme_class_init,
   7728     .interfaces = (InterfaceInfo[]) {
   7729         { INTERFACE_PCIE_DEVICE },
   7730         { }
   7731     },
   7732 };
   7733 
   7734 static const TypeInfo nvme_bus_info = {
   7735     .name = TYPE_NVME_BUS,
   7736     .parent = TYPE_BUS,
   7737     .instance_size = sizeof(NvmeBus),
   7738 };
   7739 
   7740 static void nvme_register_types(void)
   7741 {
   7742     type_register_static(&nvme_info);
   7743     type_register_static(&nvme_bus_info);
   7744 }
   7745 
   7746 type_init(nvme_register_types)