boot.c (8301B)
1 /* 2 * Nios2 kernel loader 3 * 4 * Copyright (c) 2016 Marek Vasut <marek.vasut@gmail.com> 5 * 6 * Based on microblaze kernel loader 7 * 8 * Copyright (c) 2012 Peter Crosthwaite <peter.crosthwaite@petalogix.com> 9 * Copyright (c) 2012 PetaLogix 10 * Copyright (c) 2009 Edgar E. Iglesias. 11 * 12 * Permission is hereby granted, free of charge, to any person obtaining a copy 13 * of this software and associated documentation files (the "Software"), to deal 14 * in the Software without restriction, including without limitation the rights 15 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 16 * copies of the Software, and to permit persons to whom the Software is 17 * furnished to do so, subject to the following conditions: 18 * 19 * The above copyright notice and this permission notice shall be included in 20 * all copies or substantial portions of the Software. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 27 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 28 * THE SOFTWARE. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu/units.h" 33 #include "qemu/datadir.h" 34 #include "qemu/option.h" 35 #include "qemu/config-file.h" 36 #include "qemu/error-report.h" 37 #include "qemu/guest-random.h" 38 #include "sysemu/device_tree.h" 39 #include "sysemu/reset.h" 40 #include "hw/boards.h" 41 #include "hw/loader.h" 42 #include "elf.h" 43 44 #include "boot.h" 45 46 #include <libfdt.h> 47 48 #define NIOS2_MAGIC 0x534f494e 49 50 static struct nios2_boot_info { 51 void (*machine_cpu_reset)(Nios2CPU *); 52 uint32_t bootstrap_pc; 53 uint32_t cmdline; 54 uint32_t initrd_start; 55 uint32_t initrd_end; 56 uint32_t fdt; 57 } boot_info; 58 59 static void main_cpu_reset(void *opaque) 60 { 61 Nios2CPU *cpu = opaque; 62 CPUState *cs = CPU(cpu); 63 CPUNios2State *env = &cpu->env; 64 65 cpu_reset(CPU(cpu)); 66 67 env->regs[R_ARG0] = NIOS2_MAGIC; 68 env->regs[R_ARG1] = boot_info.initrd_start; 69 env->regs[R_ARG2] = boot_info.fdt; 70 env->regs[R_ARG3] = boot_info.cmdline; 71 72 cpu_set_pc(cs, boot_info.bootstrap_pc); 73 if (boot_info.machine_cpu_reset) { 74 boot_info.machine_cpu_reset(cpu); 75 } 76 } 77 78 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 79 { 80 return addr - 0xc0000000LL; 81 } 82 83 static int nios2_load_dtb(struct nios2_boot_info bi, const uint32_t ramsize, 84 const char *kernel_cmdline, const char *dtb_filename) 85 { 86 MachineState *machine = MACHINE(qdev_get_machine()); 87 int fdt_size; 88 void *fdt = NULL; 89 int r; 90 uint8_t rng_seed[32]; 91 92 if (dtb_filename) { 93 fdt = load_device_tree(dtb_filename, &fdt_size); 94 } 95 if (!fdt) { 96 return 0; 97 } 98 99 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed)); 100 qemu_fdt_setprop(fdt, "/chosen", "rng-seed", rng_seed, sizeof(rng_seed)); 101 102 if (kernel_cmdline) { 103 r = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", 104 kernel_cmdline); 105 if (r < 0) { 106 fprintf(stderr, "couldn't set /chosen/bootargs\n"); 107 } 108 } 109 110 if (bi.initrd_start) { 111 qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", 112 translate_kernel_address(NULL, bi.initrd_start)); 113 114 qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", 115 translate_kernel_address(NULL, bi.initrd_end)); 116 } 117 118 cpu_physical_memory_write(bi.fdt, fdt, fdt_size); 119 120 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 121 machine->fdt = fdt; 122 123 return fdt_size; 124 } 125 126 void nios2_load_kernel(Nios2CPU *cpu, hwaddr ddr_base, 127 uint32_t ramsize, 128 const char *initrd_filename, 129 const char *dtb_filename, 130 void (*machine_cpu_reset)(Nios2CPU *)) 131 { 132 const char *kernel_filename; 133 const char *kernel_cmdline; 134 const char *dtb_arg; 135 char *filename = NULL; 136 137 kernel_filename = current_machine->kernel_filename; 138 kernel_cmdline = current_machine->kernel_cmdline; 139 dtb_arg = current_machine->dtb; 140 /* default to pcbios dtb as passed by machine_init */ 141 if (!dtb_arg) { 142 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, dtb_filename); 143 } 144 145 boot_info.machine_cpu_reset = machine_cpu_reset; 146 qemu_register_reset(main_cpu_reset, cpu); 147 148 if (kernel_filename) { 149 int kernel_size, fdt_size; 150 uint64_t entry, high; 151 int big_endian = 0; 152 153 #if TARGET_BIG_ENDIAN 154 big_endian = 1; 155 #endif 156 157 /* Boots a kernel elf binary. */ 158 kernel_size = load_elf(kernel_filename, NULL, NULL, NULL, 159 &entry, NULL, &high, NULL, 160 big_endian, EM_ALTERA_NIOS2, 0, 0); 161 if ((uint32_t)entry == 0xc0000000) { 162 /* 163 * The Nios II processor reference guide documents that the 164 * kernel is placed at virtual memory address 0xc0000000, 165 * and we've got something that points there. Reload it 166 * and adjust the entry to get the address in physical RAM. 167 */ 168 kernel_size = load_elf(kernel_filename, NULL, 169 translate_kernel_address, NULL, 170 &entry, NULL, NULL, NULL, 171 big_endian, EM_ALTERA_NIOS2, 0, 0); 172 boot_info.bootstrap_pc = ddr_base + 0xc0000000 + 173 (entry & 0x07ffffff); 174 } else { 175 /* Use the entry point in the ELF image. */ 176 boot_info.bootstrap_pc = (uint32_t)entry; 177 } 178 179 /* If it wasn't an ELF image, try an u-boot image. */ 180 if (kernel_size < 0) { 181 hwaddr uentry, loadaddr = LOAD_UIMAGE_LOADADDR_INVALID; 182 183 kernel_size = load_uimage(kernel_filename, &uentry, &loadaddr, 0, 184 NULL, NULL); 185 boot_info.bootstrap_pc = uentry; 186 high = loadaddr + kernel_size; 187 } 188 189 /* Not an ELF image nor an u-boot image, try a RAW image. */ 190 if (kernel_size < 0) { 191 kernel_size = load_image_targphys(kernel_filename, ddr_base, 192 ramsize); 193 boot_info.bootstrap_pc = ddr_base; 194 high = ddr_base + kernel_size; 195 } 196 197 high = ROUND_UP(high, 1 * MiB); 198 199 /* If initrd is available, it goes after the kernel, aligned to 1M. */ 200 if (initrd_filename) { 201 int initrd_size; 202 uint32_t initrd_offset; 203 204 boot_info.initrd_start = high; 205 initrd_offset = boot_info.initrd_start - ddr_base; 206 207 initrd_size = load_ramdisk(initrd_filename, 208 boot_info.initrd_start, 209 ramsize - initrd_offset); 210 if (initrd_size < 0) { 211 initrd_size = load_image_targphys(initrd_filename, 212 boot_info.initrd_start, 213 ramsize - initrd_offset); 214 } 215 if (initrd_size < 0) { 216 error_report("could not load initrd '%s'", 217 initrd_filename); 218 exit(EXIT_FAILURE); 219 } 220 high += initrd_size; 221 } 222 high = ROUND_UP(high, 4); 223 boot_info.initrd_end = high; 224 225 /* Device tree must be placed right after initrd (if available) */ 226 boot_info.fdt = high; 227 fdt_size = nios2_load_dtb(boot_info, ramsize, kernel_cmdline, 228 /* Preference a -dtb argument */ 229 dtb_arg ? dtb_arg : filename); 230 high += fdt_size; 231 232 /* Kernel command is at the end, 4k aligned. */ 233 boot_info.cmdline = ROUND_UP(high, 4 * KiB); 234 if (kernel_cmdline && strlen(kernel_cmdline)) { 235 pstrcpy_targphys("cmdline", boot_info.cmdline, 256, kernel_cmdline); 236 } 237 } 238 g_free(filename); 239 }