qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

ne2000.c (21537B)


      1 /*
      2  * QEMU NE2000 emulation
      3  *
      4  * Copyright (c) 2003-2004 Fabrice Bellard
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a copy
      7  * of this software and associated documentation files (the "Software"), to deal
      8  * in the Software without restriction, including without limitation the rights
      9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10  * copies of the Software, and to permit persons to whom the Software is
     11  * furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22  * THE SOFTWARE.
     23  */
     24 
     25 #include "qemu/osdep.h"
     26 #include "net/eth.h"
     27 #include "qemu/module.h"
     28 #include "exec/memory.h"
     29 #include "hw/irq.h"
     30 #include "migration/vmstate.h"
     31 #include "ne2000.h"
     32 #include "trace.h"
     33 
     34 /* debug NE2000 card */
     35 //#define DEBUG_NE2000
     36 
     37 #define MAX_ETH_FRAME_SIZE 1514
     38 
     39 #define E8390_CMD       0x00    /* The command register (for all pages) */
     40 /* Page 0 register offsets. */
     41 #define EN0_CLDALO      0x01    /* Low byte of current local dma addr  RD */
     42 #define EN0_STARTPG     0x01    /* Starting page of ring bfr WR */
     43 #define EN0_CLDAHI      0x02    /* High byte of current local dma addr  RD */
     44 #define EN0_STOPPG      0x02    /* Ending page +1 of ring bfr WR */
     45 #define EN0_BOUNDARY    0x03    /* Boundary page of ring bfr RD WR */
     46 #define EN0_TSR         0x04    /* Transmit status reg RD */
     47 #define EN0_TPSR        0x04    /* Transmit starting page WR */
     48 #define EN0_NCR         0x05    /* Number of collision reg RD */
     49 #define EN0_TCNTLO      0x05    /* Low  byte of tx byte count WR */
     50 #define EN0_FIFO        0x06    /* FIFO RD */
     51 #define EN0_TCNTHI      0x06    /* High byte of tx byte count WR */
     52 #define EN0_ISR         0x07    /* Interrupt status reg RD WR */
     53 #define EN0_CRDALO      0x08    /* low byte of current remote dma address RD */
     54 #define EN0_RSARLO      0x08    /* Remote start address reg 0 */
     55 #define EN0_CRDAHI      0x09    /* high byte, current remote dma address RD */
     56 #define EN0_RSARHI      0x09    /* Remote start address reg 1 */
     57 #define EN0_RCNTLO      0x0a    /* Remote byte count reg WR */
     58 #define EN0_RTL8029ID0  0x0a    /* Realtek ID byte #1 RD */
     59 #define EN0_RCNTHI      0x0b    /* Remote byte count reg WR */
     60 #define EN0_RTL8029ID1  0x0b    /* Realtek ID byte #2 RD */
     61 #define EN0_RSR         0x0c    /* rx status reg RD */
     62 #define EN0_RXCR        0x0c    /* RX configuration reg WR */
     63 #define EN0_TXCR        0x0d    /* TX configuration reg WR */
     64 #define EN0_COUNTER0    0x0d    /* Rcv alignment error counter RD */
     65 #define EN0_DCFG        0x0e    /* Data configuration reg WR */
     66 #define EN0_COUNTER1    0x0e    /* Rcv CRC error counter RD */
     67 #define EN0_IMR         0x0f    /* Interrupt mask reg WR */
     68 #define EN0_COUNTER2    0x0f    /* Rcv missed frame error counter RD */
     69 
     70 #define EN1_PHYS        0x11
     71 #define EN1_CURPAG      0x17
     72 #define EN1_MULT        0x18
     73 
     74 #define EN2_STARTPG     0x21    /* Starting page of ring bfr RD */
     75 #define EN2_STOPPG      0x22    /* Ending page +1 of ring bfr RD */
     76 
     77 #define EN3_CONFIG0     0x33
     78 #define EN3_CONFIG1     0x34
     79 #define EN3_CONFIG2     0x35
     80 #define EN3_CONFIG3     0x36
     81 
     82 /*  Register accessed at EN_CMD, the 8390 base addr.  */
     83 #define E8390_STOP      0x01    /* Stop and reset the chip */
     84 #define E8390_START     0x02    /* Start the chip, clear reset */
     85 #define E8390_TRANS     0x04    /* Transmit a frame */
     86 #define E8390_RREAD     0x08    /* Remote read */
     87 #define E8390_RWRITE    0x10    /* Remote write  */
     88 #define E8390_NODMA     0x20    /* Remote DMA */
     89 #define E8390_PAGE0     0x00    /* Select page chip registers */
     90 #define E8390_PAGE1     0x40    /* using the two high-order bits */
     91 #define E8390_PAGE2     0x80    /* Page 3 is invalid. */
     92 
     93 /* Bits in EN0_ISR - Interrupt status register */
     94 #define ENISR_RX        0x01    /* Receiver, no error */
     95 #define ENISR_TX        0x02    /* Transmitter, no error */
     96 #define ENISR_RX_ERR    0x04    /* Receiver, with error */
     97 #define ENISR_TX_ERR    0x08    /* Transmitter, with error */
     98 #define ENISR_OVER      0x10    /* Receiver overwrote the ring */
     99 #define ENISR_COUNTERS  0x20    /* Counters need emptying */
    100 #define ENISR_RDC       0x40    /* remote dma complete */
    101 #define ENISR_RESET     0x80    /* Reset completed */
    102 #define ENISR_ALL       0x3f    /* Interrupts we will enable */
    103 
    104 /* Bits in received packet status byte and EN0_RSR*/
    105 #define ENRSR_RXOK      0x01    /* Received a good packet */
    106 #define ENRSR_CRC       0x02    /* CRC error */
    107 #define ENRSR_FAE       0x04    /* frame alignment error */
    108 #define ENRSR_FO        0x08    /* FIFO overrun */
    109 #define ENRSR_MPA       0x10    /* missed pkt */
    110 #define ENRSR_PHY       0x20    /* physical/multicast address */
    111 #define ENRSR_DIS       0x40    /* receiver disable. set in monitor mode */
    112 #define ENRSR_DEF       0x80    /* deferring */
    113 
    114 /* Transmitted packet status, EN0_TSR. */
    115 #define ENTSR_PTX 0x01  /* Packet transmitted without error */
    116 #define ENTSR_ND  0x02  /* The transmit wasn't deferred. */
    117 #define ENTSR_COL 0x04  /* The transmit collided at least once. */
    118 #define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
    119 #define ENTSR_CRS 0x10  /* The carrier sense was lost. */
    120 #define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
    121 #define ENTSR_CDH 0x40  /* The collision detect "heartbeat" signal was lost. */
    122 #define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
    123 
    124 void ne2000_reset(NE2000State *s)
    125 {
    126     int i;
    127 
    128     s->isr = ENISR_RESET;
    129     memcpy(s->mem, &s->c.macaddr, 6);
    130     s->mem[14] = 0x57;
    131     s->mem[15] = 0x57;
    132 
    133     /* duplicate prom data */
    134     for(i = 15;i >= 0; i--) {
    135         s->mem[2 * i] = s->mem[i];
    136         s->mem[2 * i + 1] = s->mem[i];
    137     }
    138 }
    139 
    140 static void ne2000_update_irq(NE2000State *s)
    141 {
    142     int isr;
    143     isr = (s->isr & s->imr) & 0x7f;
    144 #if defined(DEBUG_NE2000)
    145     printf("NE2000: Set IRQ to %d (%02x %02x)\n",
    146            isr ? 1 : 0, s->isr, s->imr);
    147 #endif
    148     qemu_set_irq(s->irq, (isr != 0));
    149 }
    150 
    151 static int ne2000_buffer_full(NE2000State *s)
    152 {
    153     int avail, index, boundary;
    154 
    155     if (s->stop <= s->start) {
    156         return 1;
    157     }
    158 
    159     index = s->curpag << 8;
    160     boundary = s->boundary << 8;
    161     if (index < boundary)
    162         avail = boundary - index;
    163     else
    164         avail = (s->stop - s->start) - (index - boundary);
    165     if (avail < (MAX_ETH_FRAME_SIZE + 4))
    166         return 1;
    167     return 0;
    168 }
    169 
    170 #define MIN_BUF_SIZE 60
    171 
    172 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
    173 {
    174     NE2000State *s = qemu_get_nic_opaque(nc);
    175     size_t size = size_;
    176     uint8_t *p;
    177     unsigned int total_len, next, avail, len, index, mcast_idx;
    178     uint8_t buf1[60];
    179     static const uint8_t broadcast_macaddr[6] =
    180         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
    181 
    182 #if defined(DEBUG_NE2000)
    183     printf("NE2000: received len=%zu\n", size);
    184 #endif
    185 
    186     if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
    187         return -1;
    188 
    189     /* XXX: check this */
    190     if (s->rxcr & 0x10) {
    191         /* promiscuous: receive all */
    192     } else {
    193         if (!memcmp(buf,  broadcast_macaddr, 6)) {
    194             /* broadcast address */
    195             if (!(s->rxcr & 0x04))
    196                 return size;
    197         } else if (buf[0] & 0x01) {
    198             /* multicast */
    199             if (!(s->rxcr & 0x08))
    200                 return size;
    201             mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
    202             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
    203                 return size;
    204         } else if (s->mem[0] == buf[0] &&
    205                    s->mem[2] == buf[1] &&
    206                    s->mem[4] == buf[2] &&
    207                    s->mem[6] == buf[3] &&
    208                    s->mem[8] == buf[4] &&
    209                    s->mem[10] == buf[5]) {
    210             /* match */
    211         } else {
    212             return size;
    213         }
    214     }
    215 
    216 
    217     /* if too small buffer, then expand it */
    218     if (size < MIN_BUF_SIZE) {
    219         memcpy(buf1, buf, size);
    220         memset(buf1 + size, 0, MIN_BUF_SIZE - size);
    221         buf = buf1;
    222         size = MIN_BUF_SIZE;
    223     }
    224 
    225     index = s->curpag << 8;
    226     if (index >= NE2000_PMEM_END) {
    227         index = s->start;
    228     }
    229     /* 4 bytes for header */
    230     total_len = size + 4;
    231     /* address for next packet (4 bytes for CRC) */
    232     next = index + ((total_len + 4 + 255) & ~0xff);
    233     if (next >= s->stop)
    234         next -= (s->stop - s->start);
    235     /* prepare packet header */
    236     p = s->mem + index;
    237     s->rsr = ENRSR_RXOK; /* receive status */
    238     /* XXX: check this */
    239     if (buf[0] & 0x01)
    240         s->rsr |= ENRSR_PHY;
    241     p[0] = s->rsr;
    242     p[1] = next >> 8;
    243     p[2] = total_len;
    244     p[3] = total_len >> 8;
    245     index += 4;
    246 
    247     /* write packet data */
    248     while (size > 0) {
    249         if (index <= s->stop)
    250             avail = s->stop - index;
    251         else
    252             break;
    253         len = size;
    254         if (len > avail)
    255             len = avail;
    256         memcpy(s->mem + index, buf, len);
    257         buf += len;
    258         index += len;
    259         if (index == s->stop)
    260             index = s->start;
    261         size -= len;
    262     }
    263     s->curpag = next >> 8;
    264 
    265     /* now we can signal we have received something */
    266     s->isr |= ENISR_RX;
    267     ne2000_update_irq(s);
    268 
    269     return size_;
    270 }
    271 
    272 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
    273 {
    274     NE2000State *s = opaque;
    275     int offset, page, index;
    276 
    277     addr &= 0xf;
    278     trace_ne2000_ioport_write(addr, val);
    279     if (addr == E8390_CMD) {
    280         /* control register */
    281         s->cmd = val;
    282         if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
    283             s->isr &= ~ENISR_RESET;
    284             /* test specific case: zero length transfer */
    285             if ((val & (E8390_RREAD | E8390_RWRITE)) &&
    286                 s->rcnt == 0) {
    287                 s->isr |= ENISR_RDC;
    288                 ne2000_update_irq(s);
    289             }
    290             if (val & E8390_TRANS) {
    291                 index = (s->tpsr << 8);
    292                 /* XXX: next 2 lines are a hack to make netware 3.11 work */
    293                 if (index >= NE2000_PMEM_END)
    294                     index -= NE2000_PMEM_SIZE;
    295                 /* fail safe: check range on the transmitted length  */
    296                 if (index + s->tcnt <= NE2000_PMEM_END) {
    297                     qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
    298                                      s->tcnt);
    299                 }
    300                 /* signal end of transfer */
    301                 s->tsr = ENTSR_PTX;
    302                 s->isr |= ENISR_TX;
    303                 s->cmd &= ~E8390_TRANS;
    304                 ne2000_update_irq(s);
    305             }
    306         }
    307     } else {
    308         page = s->cmd >> 6;
    309         offset = addr | (page << 4);
    310         switch(offset) {
    311         case EN0_STARTPG:
    312             if (val << 8 <= NE2000_PMEM_END) {
    313                 s->start = val << 8;
    314             }
    315             break;
    316         case EN0_STOPPG:
    317             if (val << 8 <= NE2000_PMEM_END) {
    318                 s->stop = val << 8;
    319             }
    320             break;
    321         case EN0_BOUNDARY:
    322             if (val << 8 < NE2000_PMEM_END) {
    323                 s->boundary = val;
    324             }
    325             break;
    326         case EN0_IMR:
    327             s->imr = val;
    328             ne2000_update_irq(s);
    329             break;
    330         case EN0_TPSR:
    331             s->tpsr = val;
    332             break;
    333         case EN0_TCNTLO:
    334             s->tcnt = (s->tcnt & 0xff00) | val;
    335             break;
    336         case EN0_TCNTHI:
    337             s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
    338             break;
    339         case EN0_RSARLO:
    340             s->rsar = (s->rsar & 0xff00) | val;
    341             break;
    342         case EN0_RSARHI:
    343             s->rsar = (s->rsar & 0x00ff) | (val << 8);
    344             break;
    345         case EN0_RCNTLO:
    346             s->rcnt = (s->rcnt & 0xff00) | val;
    347             break;
    348         case EN0_RCNTHI:
    349             s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
    350             break;
    351         case EN0_RXCR:
    352             s->rxcr = val;
    353             break;
    354         case EN0_DCFG:
    355             s->dcfg = val;
    356             break;
    357         case EN0_ISR:
    358             s->isr &= ~(val & 0x7f);
    359             ne2000_update_irq(s);
    360             break;
    361         case EN1_PHYS ... EN1_PHYS + 5:
    362             s->phys[offset - EN1_PHYS] = val;
    363             break;
    364         case EN1_CURPAG:
    365             if (val << 8 < NE2000_PMEM_END) {
    366                 s->curpag = val;
    367             }
    368             break;
    369         case EN1_MULT ... EN1_MULT + 7:
    370             s->mult[offset - EN1_MULT] = val;
    371             break;
    372         }
    373     }
    374 }
    375 
    376 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
    377 {
    378     NE2000State *s = opaque;
    379     int offset, page, ret;
    380 
    381     addr &= 0xf;
    382     if (addr == E8390_CMD) {
    383         ret = s->cmd;
    384     } else {
    385         page = s->cmd >> 6;
    386         offset = addr | (page << 4);
    387         switch(offset) {
    388         case EN0_TSR:
    389             ret = s->tsr;
    390             break;
    391         case EN0_BOUNDARY:
    392             ret = s->boundary;
    393             break;
    394         case EN0_ISR:
    395             ret = s->isr;
    396             break;
    397         case EN0_RSARLO:
    398             ret = s->rsar & 0x00ff;
    399             break;
    400         case EN0_RSARHI:
    401             ret = s->rsar >> 8;
    402             break;
    403         case EN1_PHYS ... EN1_PHYS + 5:
    404             ret = s->phys[offset - EN1_PHYS];
    405             break;
    406         case EN1_CURPAG:
    407             ret = s->curpag;
    408             break;
    409         case EN1_MULT ... EN1_MULT + 7:
    410             ret = s->mult[offset - EN1_MULT];
    411             break;
    412         case EN0_RSR:
    413             ret = s->rsr;
    414             break;
    415         case EN2_STARTPG:
    416             ret = s->start >> 8;
    417             break;
    418         case EN2_STOPPG:
    419             ret = s->stop >> 8;
    420             break;
    421         case EN0_RTL8029ID0:
    422             ret = 0x50;
    423             break;
    424         case EN0_RTL8029ID1:
    425             ret = 0x43;
    426             break;
    427         case EN3_CONFIG0:
    428             ret = 0;          /* 10baseT media */
    429             break;
    430         case EN3_CONFIG2:
    431             ret = 0x40;       /* 10baseT active */
    432             break;
    433         case EN3_CONFIG3:
    434             ret = 0x40;       /* Full duplex */
    435             break;
    436         default:
    437             ret = 0x00;
    438             break;
    439         }
    440     }
    441     trace_ne2000_ioport_read(addr, ret);
    442     return ret;
    443 }
    444 
    445 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
    446                                      uint32_t val)
    447 {
    448     if (addr < 32 ||
    449         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
    450         s->mem[addr] = val;
    451     }
    452 }
    453 
    454 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
    455                                      uint32_t val)
    456 {
    457     addr &= ~1; /* XXX: check exact behaviour if not even */
    458     if (addr < 32 ||
    459         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
    460         *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
    461     }
    462 }
    463 
    464 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
    465                                      uint32_t val)
    466 {
    467     addr &= ~1; /* XXX: check exact behaviour if not even */
    468     if (addr < 32
    469         || (addr >= NE2000_PMEM_START
    470             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
    471         stl_le_p(s->mem + addr, val);
    472     }
    473 }
    474 
    475 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
    476 {
    477     if (addr < 32 ||
    478         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
    479         return s->mem[addr];
    480     } else {
    481         return 0xff;
    482     }
    483 }
    484 
    485 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
    486 {
    487     addr &= ~1; /* XXX: check exact behaviour if not even */
    488     if (addr < 32 ||
    489         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
    490         return le16_to_cpu(*(uint16_t *)(s->mem + addr));
    491     } else {
    492         return 0xffff;
    493     }
    494 }
    495 
    496 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
    497 {
    498     addr &= ~1; /* XXX: check exact behaviour if not even */
    499     if (addr < 32
    500         || (addr >= NE2000_PMEM_START
    501             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
    502         return ldl_le_p(s->mem + addr);
    503     } else {
    504         return 0xffffffff;
    505     }
    506 }
    507 
    508 static inline void ne2000_dma_update(NE2000State *s, int len)
    509 {
    510     s->rsar += len;
    511     /* wrap */
    512     /* XXX: check what to do if rsar > stop */
    513     if (s->rsar == s->stop)
    514         s->rsar = s->start;
    515 
    516     if (s->rcnt <= len) {
    517         s->rcnt = 0;
    518         /* signal end of transfer */
    519         s->isr |= ENISR_RDC;
    520         ne2000_update_irq(s);
    521     } else {
    522         s->rcnt -= len;
    523     }
    524 }
    525 
    526 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
    527 {
    528     NE2000State *s = opaque;
    529 
    530 #ifdef DEBUG_NE2000
    531     printf("NE2000: asic write val=0x%04x\n", val);
    532 #endif
    533     if (s->rcnt == 0)
    534         return;
    535     if (s->dcfg & 0x01) {
    536         /* 16 bit access */
    537         ne2000_mem_writew(s, s->rsar, val);
    538         ne2000_dma_update(s, 2);
    539     } else {
    540         /* 8 bit access */
    541         ne2000_mem_writeb(s, s->rsar, val);
    542         ne2000_dma_update(s, 1);
    543     }
    544 }
    545 
    546 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
    547 {
    548     NE2000State *s = opaque;
    549     int ret;
    550 
    551     if (s->dcfg & 0x01) {
    552         /* 16 bit access */
    553         ret = ne2000_mem_readw(s, s->rsar);
    554         ne2000_dma_update(s, 2);
    555     } else {
    556         /* 8 bit access */
    557         ret = ne2000_mem_readb(s, s->rsar);
    558         ne2000_dma_update(s, 1);
    559     }
    560 #ifdef DEBUG_NE2000
    561     printf("NE2000: asic read val=0x%04x\n", ret);
    562 #endif
    563     return ret;
    564 }
    565 
    566 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
    567 {
    568     NE2000State *s = opaque;
    569 
    570 #ifdef DEBUG_NE2000
    571     printf("NE2000: asic writel val=0x%04x\n", val);
    572 #endif
    573     if (s->rcnt == 0)
    574         return;
    575     /* 32 bit access */
    576     ne2000_mem_writel(s, s->rsar, val);
    577     ne2000_dma_update(s, 4);
    578 }
    579 
    580 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
    581 {
    582     NE2000State *s = opaque;
    583     int ret;
    584 
    585     /* 32 bit access */
    586     ret = ne2000_mem_readl(s, s->rsar);
    587     ne2000_dma_update(s, 4);
    588 #ifdef DEBUG_NE2000
    589     printf("NE2000: asic readl val=0x%04x\n", ret);
    590 #endif
    591     return ret;
    592 }
    593 
    594 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
    595 {
    596     /* nothing to do (end of reset pulse) */
    597 }
    598 
    599 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
    600 {
    601     NE2000State *s = opaque;
    602     ne2000_reset(s);
    603     return 0;
    604 }
    605 
    606 static int ne2000_post_load(void* opaque, int version_id)
    607 {
    608     NE2000State* s = opaque;
    609 
    610     if (version_id < 2) {
    611         s->rxcr = 0x0c;
    612     }
    613     return 0;
    614 }
    615 
    616 const VMStateDescription vmstate_ne2000 = {
    617     .name = "ne2000",
    618     .version_id = 2,
    619     .minimum_version_id = 0,
    620     .post_load = ne2000_post_load,
    621     .fields = (VMStateField[]) {
    622         VMSTATE_UINT8_V(rxcr, NE2000State, 2),
    623         VMSTATE_UINT8(cmd, NE2000State),
    624         VMSTATE_UINT32(start, NE2000State),
    625         VMSTATE_UINT32(stop, NE2000State),
    626         VMSTATE_UINT8(boundary, NE2000State),
    627         VMSTATE_UINT8(tsr, NE2000State),
    628         VMSTATE_UINT8(tpsr, NE2000State),
    629         VMSTATE_UINT16(tcnt, NE2000State),
    630         VMSTATE_UINT16(rcnt, NE2000State),
    631         VMSTATE_UINT32(rsar, NE2000State),
    632         VMSTATE_UINT8(rsr, NE2000State),
    633         VMSTATE_UINT8(isr, NE2000State),
    634         VMSTATE_UINT8(dcfg, NE2000State),
    635         VMSTATE_UINT8(imr, NE2000State),
    636         VMSTATE_BUFFER(phys, NE2000State),
    637         VMSTATE_UINT8(curpag, NE2000State),
    638         VMSTATE_BUFFER(mult, NE2000State),
    639         VMSTATE_UNUSED(4), /* was irq */
    640         VMSTATE_BUFFER(mem, NE2000State),
    641         VMSTATE_END_OF_LIST()
    642     }
    643 };
    644 
    645 static uint64_t ne2000_read(void *opaque, hwaddr addr,
    646                             unsigned size)
    647 {
    648     NE2000State *s = opaque;
    649     uint64_t val;
    650 
    651     if (addr < 0x10 && size == 1) {
    652         val = ne2000_ioport_read(s, addr);
    653     } else if (addr == 0x10) {
    654         if (size <= 2) {
    655             val = ne2000_asic_ioport_read(s, addr);
    656         } else {
    657             val = ne2000_asic_ioport_readl(s, addr);
    658         }
    659     } else if (addr == 0x1f && size == 1) {
    660         val = ne2000_reset_ioport_read(s, addr);
    661     } else {
    662         val = ((uint64_t)1 << (size * 8)) - 1;
    663     }
    664     trace_ne2000_read(addr, val);
    665 
    666     return val;
    667 }
    668 
    669 static void ne2000_write(void *opaque, hwaddr addr,
    670                          uint64_t data, unsigned size)
    671 {
    672     NE2000State *s = opaque;
    673 
    674     trace_ne2000_write(addr, data);
    675     if (addr < 0x10 && size == 1) {
    676         ne2000_ioport_write(s, addr, data);
    677     } else if (addr == 0x10) {
    678         if (size <= 2) {
    679             ne2000_asic_ioport_write(s, addr, data);
    680         } else {
    681             ne2000_asic_ioport_writel(s, addr, data);
    682         }
    683     } else if (addr == 0x1f && size == 1) {
    684         ne2000_reset_ioport_write(s, addr, data);
    685     }
    686 }
    687 
    688 static const MemoryRegionOps ne2000_ops = {
    689     .read = ne2000_read,
    690     .write = ne2000_write,
    691     .endianness = DEVICE_LITTLE_ENDIAN,
    692 };
    693 
    694 /***********************************************************/
    695 /* PCI NE2000 definitions */
    696 
    697 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
    698 {
    699     memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
    700 }