qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

zynq_slcr.c (18754B)


      1 /*
      2  * Status and system control registers for Xilinx Zynq Platform
      3  *
      4  * Copyright (c) 2011 Michal Simek <monstr@monstr.eu>
      5  * Copyright (c) 2012 PetaLogix Pty Ltd.
      6  * Based on hw/arm_sysctl.c, written by Paul Brook
      7  *
      8  * This program is free software; you can redistribute it and/or
      9  * modify it under the terms of the GNU General Public License
     10  * as published by the Free Software Foundation; either version
     11  * 2 of the License, or (at your option) any later version.
     12  *
     13  * You should have received a copy of the GNU General Public License along
     14  * with this program; if not, see <http://www.gnu.org/licenses/>.
     15  */
     16 
     17 #include "qemu/osdep.h"
     18 #include "qemu/timer.h"
     19 #include "sysemu/runstate.h"
     20 #include "hw/sysbus.h"
     21 #include "migration/vmstate.h"
     22 #include "qemu/log.h"
     23 #include "qemu/module.h"
     24 #include "hw/registerfields.h"
     25 #include "hw/qdev-clock.h"
     26 #include "qom/object.h"
     27 
     28 #ifndef ZYNQ_SLCR_ERR_DEBUG
     29 #define ZYNQ_SLCR_ERR_DEBUG 0
     30 #endif
     31 
     32 #define DB_PRINT(...) do { \
     33         if (ZYNQ_SLCR_ERR_DEBUG) { \
     34             fprintf(stderr,  ": %s: ", __func__); \
     35             fprintf(stderr, ## __VA_ARGS__); \
     36         } \
     37     } while (0)
     38 
     39 #define XILINX_LOCK_KEY 0x767b
     40 #define XILINX_UNLOCK_KEY 0xdf0d
     41 
     42 REG32(SCL, 0x000)
     43 REG32(LOCK, 0x004)
     44 REG32(UNLOCK, 0x008)
     45 REG32(LOCKSTA, 0x00c)
     46 
     47 REG32(ARM_PLL_CTRL, 0x100)
     48 REG32(DDR_PLL_CTRL, 0x104)
     49 REG32(IO_PLL_CTRL, 0x108)
     50 /* fields for [ARM|DDR|IO]_PLL_CTRL registers */
     51     FIELD(xxx_PLL_CTRL, PLL_RESET, 0, 1)
     52     FIELD(xxx_PLL_CTRL, PLL_PWRDWN, 1, 1)
     53     FIELD(xxx_PLL_CTRL, PLL_BYPASS_QUAL, 3, 1)
     54     FIELD(xxx_PLL_CTRL, PLL_BYPASS_FORCE, 4, 1)
     55     FIELD(xxx_PLL_CTRL, PLL_FPDIV, 12, 7)
     56 REG32(PLL_STATUS, 0x10c)
     57 REG32(ARM_PLL_CFG, 0x110)
     58 REG32(DDR_PLL_CFG, 0x114)
     59 REG32(IO_PLL_CFG, 0x118)
     60 
     61 REG32(ARM_CLK_CTRL, 0x120)
     62 REG32(DDR_CLK_CTRL, 0x124)
     63 REG32(DCI_CLK_CTRL, 0x128)
     64 REG32(APER_CLK_CTRL, 0x12c)
     65 REG32(USB0_CLK_CTRL, 0x130)
     66 REG32(USB1_CLK_CTRL, 0x134)
     67 REG32(GEM0_RCLK_CTRL, 0x138)
     68 REG32(GEM1_RCLK_CTRL, 0x13c)
     69 REG32(GEM0_CLK_CTRL, 0x140)
     70 REG32(GEM1_CLK_CTRL, 0x144)
     71 REG32(SMC_CLK_CTRL, 0x148)
     72 REG32(LQSPI_CLK_CTRL, 0x14c)
     73 REG32(SDIO_CLK_CTRL, 0x150)
     74 REG32(UART_CLK_CTRL, 0x154)
     75     FIELD(UART_CLK_CTRL, CLKACT0, 0, 1)
     76     FIELD(UART_CLK_CTRL, CLKACT1, 1, 1)
     77     FIELD(UART_CLK_CTRL, SRCSEL,  4, 2)
     78     FIELD(UART_CLK_CTRL, DIVISOR, 8, 6)
     79 REG32(SPI_CLK_CTRL, 0x158)
     80 REG32(CAN_CLK_CTRL, 0x15c)
     81 REG32(CAN_MIOCLK_CTRL, 0x160)
     82 REG32(DBG_CLK_CTRL, 0x164)
     83 REG32(PCAP_CLK_CTRL, 0x168)
     84 REG32(TOPSW_CLK_CTRL, 0x16c)
     85 
     86 #define FPGA_CTRL_REGS(n, start) \
     87     REG32(FPGA ## n ## _CLK_CTRL, (start)) \
     88     REG32(FPGA ## n ## _THR_CTRL, (start) + 0x4)\
     89     REG32(FPGA ## n ## _THR_CNT,  (start) + 0x8)\
     90     REG32(FPGA ## n ## _THR_STA,  (start) + 0xc)
     91 FPGA_CTRL_REGS(0, 0x170)
     92 FPGA_CTRL_REGS(1, 0x180)
     93 FPGA_CTRL_REGS(2, 0x190)
     94 FPGA_CTRL_REGS(3, 0x1a0)
     95 
     96 REG32(BANDGAP_TRIP, 0x1b8)
     97 REG32(PLL_PREDIVISOR, 0x1c0)
     98 REG32(CLK_621_TRUE, 0x1c4)
     99 
    100 REG32(PSS_RST_CTRL, 0x200)
    101     FIELD(PSS_RST_CTRL, SOFT_RST, 0, 1)
    102 REG32(DDR_RST_CTRL, 0x204)
    103 REG32(TOPSW_RESET_CTRL, 0x208)
    104 REG32(DMAC_RST_CTRL, 0x20c)
    105 REG32(USB_RST_CTRL, 0x210)
    106 REG32(GEM_RST_CTRL, 0x214)
    107 REG32(SDIO_RST_CTRL, 0x218)
    108 REG32(SPI_RST_CTRL, 0x21c)
    109 REG32(CAN_RST_CTRL, 0x220)
    110 REG32(I2C_RST_CTRL, 0x224)
    111 REG32(UART_RST_CTRL, 0x228)
    112 REG32(GPIO_RST_CTRL, 0x22c)
    113 REG32(LQSPI_RST_CTRL, 0x230)
    114 REG32(SMC_RST_CTRL, 0x234)
    115 REG32(OCM_RST_CTRL, 0x238)
    116 REG32(FPGA_RST_CTRL, 0x240)
    117 REG32(A9_CPU_RST_CTRL, 0x244)
    118 
    119 REG32(RS_AWDT_CTRL, 0x24c)
    120 REG32(RST_REASON, 0x250)
    121 
    122 REG32(REBOOT_STATUS, 0x258)
    123 REG32(BOOT_MODE, 0x25c)
    124 
    125 REG32(APU_CTRL, 0x300)
    126 REG32(WDT_CLK_SEL, 0x304)
    127 
    128 REG32(TZ_DMA_NS, 0x440)
    129 REG32(TZ_DMA_IRQ_NS, 0x444)
    130 REG32(TZ_DMA_PERIPH_NS, 0x448)
    131 
    132 REG32(PSS_IDCODE, 0x530)
    133 
    134 REG32(DDR_URGENT, 0x600)
    135 REG32(DDR_CAL_START, 0x60c)
    136 REG32(DDR_REF_START, 0x614)
    137 REG32(DDR_CMD_STA, 0x618)
    138 REG32(DDR_URGENT_SEL, 0x61c)
    139 REG32(DDR_DFI_STATUS, 0x620)
    140 
    141 REG32(MIO, 0x700)
    142 #define MIO_LENGTH 54
    143 
    144 REG32(MIO_LOOPBACK, 0x804)
    145 REG32(MIO_MST_TRI0, 0x808)
    146 REG32(MIO_MST_TRI1, 0x80c)
    147 
    148 REG32(SD0_WP_CD_SEL, 0x830)
    149 REG32(SD1_WP_CD_SEL, 0x834)
    150 
    151 REG32(LVL_SHFTR_EN, 0x900)
    152 REG32(OCM_CFG, 0x910)
    153 
    154 REG32(CPU_RAM, 0xa00)
    155 
    156 REG32(IOU, 0xa30)
    157 
    158 REG32(DMAC_RAM, 0xa50)
    159 
    160 REG32(AFI0, 0xa60)
    161 REG32(AFI1, 0xa6c)
    162 REG32(AFI2, 0xa78)
    163 REG32(AFI3, 0xa84)
    164 #define AFI_LENGTH 3
    165 
    166 REG32(OCM, 0xa90)
    167 
    168 REG32(DEVCI_RAM, 0xaa0)
    169 
    170 REG32(CSG_RAM, 0xab0)
    171 
    172 REG32(GPIOB_CTRL, 0xb00)
    173 REG32(GPIOB_CFG_CMOS18, 0xb04)
    174 REG32(GPIOB_CFG_CMOS25, 0xb08)
    175 REG32(GPIOB_CFG_CMOS33, 0xb0c)
    176 REG32(GPIOB_CFG_HSTL, 0xb14)
    177 REG32(GPIOB_DRVR_BIAS_CTRL, 0xb18)
    178 
    179 REG32(DDRIOB, 0xb40)
    180 #define DDRIOB_LENGTH 14
    181 
    182 #define ZYNQ_SLCR_MMIO_SIZE     0x1000
    183 #define ZYNQ_SLCR_NUM_REGS      (ZYNQ_SLCR_MMIO_SIZE / 4)
    184 
    185 #define TYPE_ZYNQ_SLCR "xilinx-zynq_slcr"
    186 OBJECT_DECLARE_SIMPLE_TYPE(ZynqSLCRState, ZYNQ_SLCR)
    187 
    188 struct ZynqSLCRState {
    189     SysBusDevice parent_obj;
    190 
    191     MemoryRegion iomem;
    192 
    193     uint32_t regs[ZYNQ_SLCR_NUM_REGS];
    194 
    195     Clock *ps_clk;
    196     Clock *uart0_ref_clk;
    197     Clock *uart1_ref_clk;
    198 };
    199 
    200 /*
    201  * return the output frequency of ARM/DDR/IO pll
    202  * using input frequency and PLL_CTRL register
    203  */
    204 static uint64_t zynq_slcr_compute_pll(uint64_t input, uint32_t ctrl_reg)
    205 {
    206     uint32_t mult = ((ctrl_reg & R_xxx_PLL_CTRL_PLL_FPDIV_MASK) >>
    207             R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT);
    208 
    209     /* first, check if pll is bypassed */
    210     if (ctrl_reg & R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK) {
    211         return input;
    212     }
    213 
    214     /* is pll disabled ? */
    215     if (ctrl_reg & (R_xxx_PLL_CTRL_PLL_RESET_MASK |
    216                     R_xxx_PLL_CTRL_PLL_PWRDWN_MASK)) {
    217         return 0;
    218     }
    219 
    220     /* Consider zero feedback as maximum divide ratio possible */
    221     if (!mult) {
    222         mult = 1 << R_xxx_PLL_CTRL_PLL_FPDIV_LENGTH;
    223     }
    224 
    225     /* frequency multiplier -> period division */
    226     return input / mult;
    227 }
    228 
    229 /*
    230  * return the output period of a clock given:
    231  * + the periods in an array corresponding to input mux selector
    232  * + the register xxx_CLK_CTRL value
    233  * + enable bit index in ctrl register
    234  *
    235  * This function makes the assumption that the ctrl_reg value is organized as
    236  * follows:
    237  * + bits[13:8]  clock frequency divisor
    238  * + bits[5:4]   clock mux selector (index in array)
    239  * + bits[index] clock enable
    240  */
    241 static uint64_t zynq_slcr_compute_clock(const uint64_t periods[],
    242                                         uint32_t ctrl_reg,
    243                                         unsigned index)
    244 {
    245     uint32_t srcsel = extract32(ctrl_reg, 4, 2); /* bits [5:4] */
    246     uint32_t divisor = extract32(ctrl_reg, 8, 6); /* bits [13:8] */
    247 
    248     /* first, check if clock is disabled */
    249     if (((ctrl_reg >> index) & 1u) == 0) {
    250         return 0;
    251     }
    252 
    253     /*
    254      * according to the Zynq technical ref. manual UG585 v1.12.2 in
    255      * Clocks chapter, section 25.10.1 page 705:
    256      * "The 6-bit divider provides a divide range of 1 to 63"
    257      * We follow here what is implemented in linux kernel and consider
    258      * the 0 value as a bypass (no division).
    259      */
    260     /* frequency divisor -> period multiplication */
    261     return periods[srcsel] * (divisor ? divisor : 1u);
    262 }
    263 
    264 /*
    265  * macro helper around zynq_slcr_compute_clock to avoid repeating
    266  * the register name.
    267  */
    268 #define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \
    269     zynq_slcr_compute_clock((plls), (state)->regs[reg], \
    270                             reg ## _ ## enable_field ## _SHIFT)
    271 
    272 static void zynq_slcr_compute_clocks_internal(ZynqSLCRState *s, uint64_t ps_clk)
    273 {
    274     uint64_t io_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_IO_PLL_CTRL]);
    275     uint64_t arm_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_ARM_PLL_CTRL]);
    276     uint64_t ddr_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_DDR_PLL_CTRL]);
    277 
    278     uint64_t uart_mux[4] = {io_pll, io_pll, arm_pll, ddr_pll};
    279 
    280     /* compute uartX reference clocks */
    281     clock_set(s->uart0_ref_clk,
    282               ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT0));
    283     clock_set(s->uart1_ref_clk,
    284               ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT1));
    285 }
    286 
    287 /**
    288  * Compute and set the ouputs clocks periods.
    289  * But do not propagate them further. Connected clocks
    290  * will not receive any updates (See zynq_slcr_compute_clocks())
    291  */
    292 static void zynq_slcr_compute_clocks(ZynqSLCRState *s)
    293 {
    294     uint64_t ps_clk = clock_get(s->ps_clk);
    295 
    296     /* consider outputs clocks are disabled while in reset */
    297     if (device_is_in_reset(DEVICE(s))) {
    298         ps_clk = 0;
    299     }
    300 
    301     zynq_slcr_compute_clocks_internal(s, ps_clk);
    302 }
    303 
    304 /**
    305  * Propagate the outputs clocks.
    306  * zynq_slcr_compute_clocks() should have been called before
    307  * to configure them.
    308  */
    309 static void zynq_slcr_propagate_clocks(ZynqSLCRState *s)
    310 {
    311     clock_propagate(s->uart0_ref_clk);
    312     clock_propagate(s->uart1_ref_clk);
    313 }
    314 
    315 static void zynq_slcr_ps_clk_callback(void *opaque, ClockEvent event)
    316 {
    317     ZynqSLCRState *s = (ZynqSLCRState *) opaque;
    318 
    319     zynq_slcr_compute_clocks(s);
    320     zynq_slcr_propagate_clocks(s);
    321 }
    322 
    323 static void zynq_slcr_reset_init(Object *obj, ResetType type)
    324 {
    325     ZynqSLCRState *s = ZYNQ_SLCR(obj);
    326     int i;
    327 
    328     DB_PRINT("RESET\n");
    329 
    330     s->regs[R_LOCKSTA] = 1;
    331     /* 0x100 - 0x11C */
    332     s->regs[R_ARM_PLL_CTRL]   = 0x0001A008;
    333     s->regs[R_DDR_PLL_CTRL]   = 0x0001A008;
    334     s->regs[R_IO_PLL_CTRL]    = 0x0001A008;
    335     s->regs[R_PLL_STATUS]     = 0x0000003F;
    336     s->regs[R_ARM_PLL_CFG]    = 0x00014000;
    337     s->regs[R_DDR_PLL_CFG]    = 0x00014000;
    338     s->regs[R_IO_PLL_CFG]     = 0x00014000;
    339 
    340     /* 0x120 - 0x16C */
    341     s->regs[R_ARM_CLK_CTRL]   = 0x1F000400;
    342     s->regs[R_DDR_CLK_CTRL]   = 0x18400003;
    343     s->regs[R_DCI_CLK_CTRL]   = 0x01E03201;
    344     s->regs[R_APER_CLK_CTRL]  = 0x01FFCCCD;
    345     s->regs[R_USB0_CLK_CTRL]  = s->regs[R_USB1_CLK_CTRL]  = 0x00101941;
    346     s->regs[R_GEM0_RCLK_CTRL] = s->regs[R_GEM1_RCLK_CTRL] = 0x00000001;
    347     s->regs[R_GEM0_CLK_CTRL]  = s->regs[R_GEM1_CLK_CTRL]  = 0x00003C01;
    348     s->regs[R_SMC_CLK_CTRL]   = 0x00003C01;
    349     s->regs[R_LQSPI_CLK_CTRL] = 0x00002821;
    350     s->regs[R_SDIO_CLK_CTRL]  = 0x00001E03;
    351     s->regs[R_UART_CLK_CTRL]  = 0x00003F03;
    352     s->regs[R_SPI_CLK_CTRL]   = 0x00003F03;
    353     s->regs[R_CAN_CLK_CTRL]   = 0x00501903;
    354     s->regs[R_DBG_CLK_CTRL]   = 0x00000F03;
    355     s->regs[R_PCAP_CLK_CTRL]  = 0x00000F01;
    356 
    357     /* 0x170 - 0x1AC */
    358     s->regs[R_FPGA0_CLK_CTRL] = s->regs[R_FPGA1_CLK_CTRL]
    359                               = s->regs[R_FPGA2_CLK_CTRL]
    360                               = s->regs[R_FPGA3_CLK_CTRL] = 0x00101800;
    361     s->regs[R_FPGA0_THR_STA] = s->regs[R_FPGA1_THR_STA]
    362                              = s->regs[R_FPGA2_THR_STA]
    363                              = s->regs[R_FPGA3_THR_STA] = 0x00010000;
    364 
    365     /* 0x1B0 - 0x1D8 */
    366     s->regs[R_BANDGAP_TRIP]   = 0x0000001F;
    367     s->regs[R_PLL_PREDIVISOR] = 0x00000001;
    368     s->regs[R_CLK_621_TRUE]   = 0x00000001;
    369 
    370     /* 0x200 - 0x25C */
    371     s->regs[R_FPGA_RST_CTRL]  = 0x01F33F0F;
    372     s->regs[R_RST_REASON]     = 0x00000040;
    373 
    374     s->regs[R_BOOT_MODE]      = 0x00000001;
    375 
    376     /* 0x700 - 0x7D4 */
    377     for (i = 0; i < 54; i++) {
    378         s->regs[R_MIO + i] = 0x00001601;
    379     }
    380     for (i = 2; i <= 8; i++) {
    381         s->regs[R_MIO + i] = 0x00000601;
    382     }
    383 
    384     s->regs[R_MIO_MST_TRI0] = s->regs[R_MIO_MST_TRI1] = 0xFFFFFFFF;
    385 
    386     s->regs[R_CPU_RAM + 0] = s->regs[R_CPU_RAM + 1] = s->regs[R_CPU_RAM + 3]
    387                            = s->regs[R_CPU_RAM + 4] = s->regs[R_CPU_RAM + 7]
    388                            = 0x00010101;
    389     s->regs[R_CPU_RAM + 2] = s->regs[R_CPU_RAM + 5] = 0x01010101;
    390     s->regs[R_CPU_RAM + 6] = 0x00000001;
    391 
    392     s->regs[R_IOU + 0] = s->regs[R_IOU + 1] = s->regs[R_IOU + 2]
    393                        = s->regs[R_IOU + 3] = 0x09090909;
    394     s->regs[R_IOU + 4] = s->regs[R_IOU + 5] = 0x00090909;
    395     s->regs[R_IOU + 6] = 0x00000909;
    396 
    397     s->regs[R_DMAC_RAM] = 0x00000009;
    398 
    399     s->regs[R_AFI0 + 0] = s->regs[R_AFI0 + 1] = 0x09090909;
    400     s->regs[R_AFI1 + 0] = s->regs[R_AFI1 + 1] = 0x09090909;
    401     s->regs[R_AFI2 + 0] = s->regs[R_AFI2 + 1] = 0x09090909;
    402     s->regs[R_AFI3 + 0] = s->regs[R_AFI3 + 1] = 0x09090909;
    403     s->regs[R_AFI0 + 2] = s->regs[R_AFI1 + 2] = s->regs[R_AFI2 + 2]
    404                         = s->regs[R_AFI3 + 2] = 0x00000909;
    405 
    406     s->regs[R_OCM + 0] = 0x01010101;
    407     s->regs[R_OCM + 1] = s->regs[R_OCM + 2] = 0x09090909;
    408 
    409     s->regs[R_DEVCI_RAM] = 0x00000909;
    410     s->regs[R_CSG_RAM]   = 0x00000001;
    411 
    412     s->regs[R_DDRIOB + 0] = s->regs[R_DDRIOB + 1] = s->regs[R_DDRIOB + 2]
    413                           = s->regs[R_DDRIOB + 3] = 0x00000e00;
    414     s->regs[R_DDRIOB + 4] = s->regs[R_DDRIOB + 5] = s->regs[R_DDRIOB + 6]
    415                           = 0x00000e00;
    416     s->regs[R_DDRIOB + 12] = 0x00000021;
    417 }
    418 
    419 static void zynq_slcr_reset_hold(Object *obj)
    420 {
    421     ZynqSLCRState *s = ZYNQ_SLCR(obj);
    422 
    423     /* will disable all output clocks */
    424     zynq_slcr_compute_clocks_internal(s, 0);
    425     zynq_slcr_propagate_clocks(s);
    426 }
    427 
    428 static void zynq_slcr_reset_exit(Object *obj)
    429 {
    430     ZynqSLCRState *s = ZYNQ_SLCR(obj);
    431 
    432     /* will compute output clocks according to ps_clk and registers */
    433     zynq_slcr_compute_clocks_internal(s, clock_get(s->ps_clk));
    434     zynq_slcr_propagate_clocks(s);
    435 }
    436 
    437 static bool zynq_slcr_check_offset(hwaddr offset, bool rnw)
    438 {
    439     switch (offset) {
    440     case R_LOCK:
    441     case R_UNLOCK:
    442     case R_DDR_CAL_START:
    443     case R_DDR_REF_START:
    444         return !rnw; /* Write only */
    445     case R_LOCKSTA:
    446     case R_FPGA0_THR_STA:
    447     case R_FPGA1_THR_STA:
    448     case R_FPGA2_THR_STA:
    449     case R_FPGA3_THR_STA:
    450     case R_BOOT_MODE:
    451     case R_PSS_IDCODE:
    452     case R_DDR_CMD_STA:
    453     case R_DDR_DFI_STATUS:
    454     case R_PLL_STATUS:
    455         return rnw;/* read only */
    456     case R_SCL:
    457     case R_ARM_PLL_CTRL ... R_IO_PLL_CTRL:
    458     case R_ARM_PLL_CFG ... R_IO_PLL_CFG:
    459     case R_ARM_CLK_CTRL ... R_TOPSW_CLK_CTRL:
    460     case R_FPGA0_CLK_CTRL ... R_FPGA0_THR_CNT:
    461     case R_FPGA1_CLK_CTRL ... R_FPGA1_THR_CNT:
    462     case R_FPGA2_CLK_CTRL ... R_FPGA2_THR_CNT:
    463     case R_FPGA3_CLK_CTRL ... R_FPGA3_THR_CNT:
    464     case R_BANDGAP_TRIP:
    465     case R_PLL_PREDIVISOR:
    466     case R_CLK_621_TRUE:
    467     case R_PSS_RST_CTRL ... R_A9_CPU_RST_CTRL:
    468     case R_RS_AWDT_CTRL:
    469     case R_RST_REASON:
    470     case R_REBOOT_STATUS:
    471     case R_APU_CTRL:
    472     case R_WDT_CLK_SEL:
    473     case R_TZ_DMA_NS ... R_TZ_DMA_PERIPH_NS:
    474     case R_DDR_URGENT:
    475     case R_DDR_URGENT_SEL:
    476     case R_MIO ... R_MIO + MIO_LENGTH - 1:
    477     case R_MIO_LOOPBACK ... R_MIO_MST_TRI1:
    478     case R_SD0_WP_CD_SEL:
    479     case R_SD1_WP_CD_SEL:
    480     case R_LVL_SHFTR_EN:
    481     case R_OCM_CFG:
    482     case R_CPU_RAM:
    483     case R_IOU:
    484     case R_DMAC_RAM:
    485     case R_AFI0 ... R_AFI3 + AFI_LENGTH - 1:
    486     case R_OCM:
    487     case R_DEVCI_RAM:
    488     case R_CSG_RAM:
    489     case R_GPIOB_CTRL ... R_GPIOB_CFG_CMOS33:
    490     case R_GPIOB_CFG_HSTL:
    491     case R_GPIOB_DRVR_BIAS_CTRL:
    492     case R_DDRIOB ... R_DDRIOB + DDRIOB_LENGTH - 1:
    493         return true;
    494     default:
    495         return false;
    496     }
    497 }
    498 
    499 static uint64_t zynq_slcr_read(void *opaque, hwaddr offset,
    500     unsigned size)
    501 {
    502     ZynqSLCRState *s = opaque;
    503     offset /= 4;
    504     uint32_t ret = s->regs[offset];
    505 
    506     if (!zynq_slcr_check_offset(offset, true)) {
    507         qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid read access to "
    508                       " addr %" HWADDR_PRIx "\n", offset * 4);
    509     }
    510 
    511     DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx32 "\n", offset * 4, ret);
    512     return ret;
    513 }
    514 
    515 static void zynq_slcr_write(void *opaque, hwaddr offset,
    516                           uint64_t val, unsigned size)
    517 {
    518     ZynqSLCRState *s = (ZynqSLCRState *)opaque;
    519     offset /= 4;
    520 
    521     DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx64 "\n", offset * 4, val);
    522 
    523     if (!zynq_slcr_check_offset(offset, false)) {
    524         qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid write access to "
    525                       "addr %" HWADDR_PRIx "\n", offset * 4);
    526         return;
    527     }
    528 
    529     switch (offset) {
    530     case R_SCL:
    531         s->regs[R_SCL] = val & 0x1;
    532         return;
    533     case R_LOCK:
    534         if ((val & 0xFFFF) == XILINX_LOCK_KEY) {
    535             DB_PRINT("XILINX LOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
    536                 (unsigned)val & 0xFFFF);
    537             s->regs[R_LOCKSTA] = 1;
    538         } else {
    539             DB_PRINT("WRONG XILINX LOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
    540                 (int)offset, (unsigned)val & 0xFFFF);
    541         }
    542         return;
    543     case R_UNLOCK:
    544         if ((val & 0xFFFF) == XILINX_UNLOCK_KEY) {
    545             DB_PRINT("XILINX UNLOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
    546                 (unsigned)val & 0xFFFF);
    547             s->regs[R_LOCKSTA] = 0;
    548         } else {
    549             DB_PRINT("WRONG XILINX UNLOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
    550                 (int)offset, (unsigned)val & 0xFFFF);
    551         }
    552         return;
    553     }
    554 
    555     if (s->regs[R_LOCKSTA]) {
    556         qemu_log_mask(LOG_GUEST_ERROR,
    557                       "SCLR registers are locked. Unlock them first\n");
    558         return;
    559     }
    560     s->regs[offset] = val;
    561 
    562     switch (offset) {
    563     case R_PSS_RST_CTRL:
    564         if (FIELD_EX32(val, PSS_RST_CTRL, SOFT_RST)) {
    565             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
    566         }
    567         break;
    568     case R_IO_PLL_CTRL:
    569     case R_ARM_PLL_CTRL:
    570     case R_DDR_PLL_CTRL:
    571     case R_UART_CLK_CTRL:
    572         zynq_slcr_compute_clocks(s);
    573         zynq_slcr_propagate_clocks(s);
    574         break;
    575     }
    576 }
    577 
    578 static const MemoryRegionOps slcr_ops = {
    579     .read = zynq_slcr_read,
    580     .write = zynq_slcr_write,
    581     .endianness = DEVICE_NATIVE_ENDIAN,
    582 };
    583 
    584 static const ClockPortInitArray zynq_slcr_clocks = {
    585     QDEV_CLOCK_IN(ZynqSLCRState, ps_clk, zynq_slcr_ps_clk_callback, ClockUpdate),
    586     QDEV_CLOCK_OUT(ZynqSLCRState, uart0_ref_clk),
    587     QDEV_CLOCK_OUT(ZynqSLCRState, uart1_ref_clk),
    588     QDEV_CLOCK_END
    589 };
    590 
    591 static void zynq_slcr_init(Object *obj)
    592 {
    593     ZynqSLCRState *s = ZYNQ_SLCR(obj);
    594 
    595     memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr",
    596                           ZYNQ_SLCR_MMIO_SIZE);
    597     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
    598 
    599     qdev_init_clocks(DEVICE(obj), zynq_slcr_clocks);
    600 }
    601 
    602 static const VMStateDescription vmstate_zynq_slcr = {
    603     .name = "zynq_slcr",
    604     .version_id = 3,
    605     .minimum_version_id = 2,
    606     .fields = (VMStateField[]) {
    607         VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS),
    608         VMSTATE_CLOCK_V(ps_clk, ZynqSLCRState, 3),
    609         VMSTATE_END_OF_LIST()
    610     }
    611 };
    612 
    613 static void zynq_slcr_class_init(ObjectClass *klass, void *data)
    614 {
    615     DeviceClass *dc = DEVICE_CLASS(klass);
    616     ResettableClass *rc = RESETTABLE_CLASS(klass);
    617 
    618     dc->vmsd = &vmstate_zynq_slcr;
    619     rc->phases.enter = zynq_slcr_reset_init;
    620     rc->phases.hold  = zynq_slcr_reset_hold;
    621     rc->phases.exit  = zynq_slcr_reset_exit;
    622 }
    623 
    624 static const TypeInfo zynq_slcr_info = {
    625     .class_init = zynq_slcr_class_init,
    626     .name  = TYPE_ZYNQ_SLCR,
    627     .parent = TYPE_SYS_BUS_DEVICE,
    628     .instance_size  = sizeof(ZynqSLCRState),
    629     .instance_init = zynq_slcr_init,
    630 };
    631 
    632 static void zynq_slcr_register_types(void)
    633 {
    634     type_register_static(&zynq_slcr_info);
    635 }
    636 
    637 type_init(zynq_slcr_register_types)