qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

omap_gpmc.c (29154B)


      1 /*
      2  * TI OMAP general purpose memory controller emulation.
      3  *
      4  * Copyright (C) 2007-2009 Nokia Corporation
      5  * Original code written by Andrzej Zaborowski <andrew@openedhand.com>
      6  * Enhancements for OMAP3 and NAND support written by Juha Riihimäki
      7  *
      8  * This program is free software; you can redistribute it and/or
      9  * modify it under the terms of the GNU General Public License as
     10  * published by the Free Software Foundation; either version 2 or
     11  * (at your option) any later version of the License.
     12  *
     13  * This program is distributed in the hope that it will be useful,
     14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16  * GNU General Public License for more details.
     17  *
     18  * You should have received a copy of the GNU General Public License along
     19  * with this program; if not, see <http://www.gnu.org/licenses/>.
     20  */
     21 
     22 #include "qemu/osdep.h"
     23 #include "hw/irq.h"
     24 #include "hw/block/flash.h"
     25 #include "hw/arm/omap.h"
     26 #include "exec/memory.h"
     27 #include "exec/address-spaces.h"
     28 
     29 /* General-Purpose Memory Controller */
     30 struct omap_gpmc_s {
     31     qemu_irq irq;
     32     qemu_irq drq;
     33     MemoryRegion iomem;
     34     int accept_256;
     35 
     36     uint8_t revision;
     37     uint8_t sysconfig;
     38     uint16_t irqst;
     39     uint16_t irqen;
     40     uint16_t lastirq;
     41     uint16_t timeout;
     42     uint16_t config;
     43     struct omap_gpmc_cs_file_s {
     44         uint32_t config[7];
     45         MemoryRegion *iomem;
     46         MemoryRegion container;
     47         MemoryRegion nandiomem;
     48         DeviceState *dev;
     49     } cs_file[8];
     50     int ecc_cs;
     51     int ecc_ptr;
     52     uint32_t ecc_cfg;
     53     ECCState ecc[9];
     54     struct prefetch {
     55         uint32_t config1; /* GPMC_PREFETCH_CONFIG1 */
     56         uint32_t transfercount; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */
     57         int startengine; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
     58         int fifopointer; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
     59         int count; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
     60         MemoryRegion iomem;
     61         uint8_t fifo[64];
     62     } prefetch;
     63 };
     64 
     65 #define OMAP_GPMC_8BIT 0
     66 #define OMAP_GPMC_16BIT 1
     67 #define OMAP_GPMC_NOR 0
     68 #define OMAP_GPMC_NAND 2
     69 
     70 static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s *f)
     71 {
     72     return (f->config[0] >> 10) & 3;
     73 }
     74 
     75 static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s *f)
     76 {
     77     /* devsize field is really 2 bits but we ignore the high
     78      * bit to ensure consistent behaviour if the guest sets
     79      * it (values 2 and 3 are reserved in the TRM)
     80      */
     81     return (f->config[0] >> 12) & 1;
     82 }
     83 
     84 /* Extract the chip-select value from the prefetch config1 register */
     85 static int prefetch_cs(uint32_t config1)
     86 {
     87     return (config1 >> 24) & 7;
     88 }
     89 
     90 static int prefetch_threshold(uint32_t config1)
     91 {
     92     return (config1 >> 8) & 0x7f;
     93 }
     94 
     95 static void omap_gpmc_int_update(struct omap_gpmc_s *s)
     96 {
     97     /* The TRM is a bit unclear, but it seems to say that
     98      * the TERMINALCOUNTSTATUS bit is set only on the
     99      * transition when the prefetch engine goes from
    100      * active to inactive, whereas the FIFOEVENTSTATUS
    101      * bit is held high as long as the fifo has at
    102      * least THRESHOLD bytes available.
    103      * So we do the latter here, but TERMINALCOUNTSTATUS
    104      * is set elsewhere.
    105      */
    106     if (s->prefetch.fifopointer >= prefetch_threshold(s->prefetch.config1)) {
    107         s->irqst |= 1;
    108     }
    109     if ((s->irqen & s->irqst) != s->lastirq) {
    110         s->lastirq = s->irqen & s->irqst;
    111         qemu_set_irq(s->irq, s->lastirq);
    112     }
    113 }
    114 
    115 static void omap_gpmc_dma_update(struct omap_gpmc_s *s, int value)
    116 {
    117     if (s->prefetch.config1 & 4) {
    118         qemu_set_irq(s->drq, value);
    119     }
    120 }
    121 
    122 /* Access functions for when a NAND-like device is mapped into memory:
    123  * all addresses in the region behave like accesses to the relevant
    124  * GPMC_NAND_DATA_i register (which is actually implemented to call these)
    125  */
    126 static uint64_t omap_nand_read(void *opaque, hwaddr addr,
    127                                unsigned size)
    128 {
    129     struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
    130     uint64_t v;
    131     nand_setpins(f->dev, 0, 0, 0, 1, 0);
    132     switch (omap_gpmc_devsize(f)) {
    133     case OMAP_GPMC_8BIT:
    134         v = nand_getio(f->dev);
    135         if (size == 1) {
    136             return v;
    137         }
    138         v |= (nand_getio(f->dev) << 8);
    139         if (size == 2) {
    140             return v;
    141         }
    142         v |= (nand_getio(f->dev) << 16);
    143         v |= (nand_getio(f->dev) << 24);
    144         return v;
    145     case OMAP_GPMC_16BIT:
    146         v = nand_getio(f->dev);
    147         if (size == 1) {
    148             /* 8 bit read from 16 bit device : probably a guest bug */
    149             return v & 0xff;
    150         }
    151         if (size == 2) {
    152             return v;
    153         }
    154         v |= (nand_getio(f->dev) << 16);
    155         return v;
    156     default:
    157         abort();
    158     }
    159 }
    160 
    161 static void omap_nand_setio(DeviceState *dev, uint64_t value,
    162                             int nandsize, int size)
    163 {
    164     /* Write the specified value to the NAND device, respecting
    165      * both size of the NAND device and size of the write access.
    166      */
    167     switch (nandsize) {
    168     case OMAP_GPMC_8BIT:
    169         switch (size) {
    170         case 1:
    171             nand_setio(dev, value & 0xff);
    172             break;
    173         case 2:
    174             nand_setio(dev, value & 0xff);
    175             nand_setio(dev, (value >> 8) & 0xff);
    176             break;
    177         case 4:
    178         default:
    179             nand_setio(dev, value & 0xff);
    180             nand_setio(dev, (value >> 8) & 0xff);
    181             nand_setio(dev, (value >> 16) & 0xff);
    182             nand_setio(dev, (value >> 24) & 0xff);
    183             break;
    184         }
    185         break;
    186     case OMAP_GPMC_16BIT:
    187         switch (size) {
    188         case 1:
    189             /* writing to a 16bit device with 8bit access is probably a guest
    190              * bug; pass the value through anyway.
    191              */
    192         case 2:
    193             nand_setio(dev, value & 0xffff);
    194             break;
    195         case 4:
    196         default:
    197             nand_setio(dev, value & 0xffff);
    198             nand_setio(dev, (value >> 16) & 0xffff);
    199             break;
    200         }
    201         break;
    202     }
    203 }
    204 
    205 static void omap_nand_write(void *opaque, hwaddr addr,
    206                             uint64_t value, unsigned size)
    207 {
    208     struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
    209     nand_setpins(f->dev, 0, 0, 0, 1, 0);
    210     omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
    211 }
    212 
    213 static const MemoryRegionOps omap_nand_ops = {
    214     .read = omap_nand_read,
    215     .write = omap_nand_write,
    216     .endianness = DEVICE_NATIVE_ENDIAN,
    217 };
    218 
    219 static void fill_prefetch_fifo(struct omap_gpmc_s *s)
    220 {
    221     /* Fill the prefetch FIFO by reading data from NAND.
    222      * We do this synchronously, unlike the hardware which
    223      * will do this asynchronously. We refill when the
    224      * FIFO has THRESHOLD bytes free, and we always refill
    225      * as much data as possible starting at the top end
    226      * of the FIFO.
    227      * (We have to refill at THRESHOLD rather than waiting
    228      * for the FIFO to empty to allow for the case where
    229      * the FIFO size isn't an exact multiple of THRESHOLD
    230      * and we're doing DMA transfers.)
    231      * This means we never need to handle wrap-around in
    232      * the fifo-reading code, and the next byte of data
    233      * to read is always fifo[63 - fifopointer].
    234      */
    235     int fptr;
    236     int cs = prefetch_cs(s->prefetch.config1);
    237     int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
    238     int bytes;
    239     /* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
    240      * and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
    241      * Instead believe the bit that says it is always a byte count.
    242      */
    243     bytes = 64 - s->prefetch.fifopointer;
    244     if (bytes > s->prefetch.count) {
    245         bytes = s->prefetch.count;
    246     }
    247     if (is16bit) {
    248         bytes &= ~1;
    249     }
    250 
    251     s->prefetch.count -= bytes;
    252     s->prefetch.fifopointer += bytes;
    253     fptr = 64 - s->prefetch.fifopointer;
    254     /* Move the existing data in the FIFO so it sits just
    255      * before what we're about to read in
    256      */
    257     while (fptr < (64 - bytes)) {
    258         s->prefetch.fifo[fptr] = s->prefetch.fifo[fptr + bytes];
    259         fptr++;
    260     }
    261     while (fptr < 64) {
    262         if (is16bit) {
    263             uint32_t v = omap_nand_read(&s->cs_file[cs], 0, 2);
    264             s->prefetch.fifo[fptr++] = v & 0xff;
    265             s->prefetch.fifo[fptr++] = (v >> 8) & 0xff;
    266         } else {
    267             s->prefetch.fifo[fptr++] = omap_nand_read(&s->cs_file[cs], 0, 1);
    268         }
    269     }
    270     if (s->prefetch.startengine && (s->prefetch.count == 0)) {
    271         /* This was the final transfer: raise TERMINALCOUNTSTATUS */
    272         s->irqst |= 2;
    273         s->prefetch.startengine = 0;
    274     }
    275     /* If there are any bytes in the FIFO at this point then
    276      * we must raise a DMA request (either this is a final part
    277      * transfer, or we filled the FIFO in which case we certainly
    278      * have THRESHOLD bytes available)
    279      */
    280     if (s->prefetch.fifopointer != 0) {
    281         omap_gpmc_dma_update(s, 1);
    282     }
    283     omap_gpmc_int_update(s);
    284 }
    285 
    286 /* Access functions for a NAND-like device when the prefetch/postwrite
    287  * engine is enabled -- all addresses in the region behave alike:
    288  * data is read or written to the FIFO.
    289  */
    290 static uint64_t omap_gpmc_prefetch_read(void *opaque, hwaddr addr,
    291                                         unsigned size)
    292 {
    293     struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
    294     uint32_t data;
    295     if (s->prefetch.config1 & 1) {
    296         /* The TRM doesn't define the behaviour if you read from the
    297          * FIFO when the prefetch engine is in write mode. We choose
    298          * to always return zero.
    299          */
    300         return 0;
    301     }
    302     /* Note that trying to read an empty fifo repeats the last byte */
    303     if (s->prefetch.fifopointer) {
    304         s->prefetch.fifopointer--;
    305     }
    306     data = s->prefetch.fifo[63 - s->prefetch.fifopointer];
    307     if (s->prefetch.fifopointer ==
    308         (64 - prefetch_threshold(s->prefetch.config1))) {
    309         /* We've drained THRESHOLD bytes now. So deassert the
    310          * DMA request, then refill the FIFO (which will probably
    311          * assert it again.)
    312          */
    313         omap_gpmc_dma_update(s, 0);
    314         fill_prefetch_fifo(s);
    315     }
    316     omap_gpmc_int_update(s);
    317     return data;
    318 }
    319 
    320 static void omap_gpmc_prefetch_write(void *opaque, hwaddr addr,
    321                                      uint64_t value, unsigned size)
    322 {
    323     struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
    324     int cs = prefetch_cs(s->prefetch.config1);
    325     if ((s->prefetch.config1 & 1) == 0) {
    326         /* The TRM doesn't define the behaviour of writing to the
    327          * FIFO when the prefetch engine is in read mode. We
    328          * choose to ignore the write.
    329          */
    330         return;
    331     }
    332     if (s->prefetch.count == 0) {
    333         /* The TRM doesn't define the behaviour of writing to the
    334          * FIFO if the transfer is complete. We choose to ignore.
    335          */
    336         return;
    337     }
    338     /* The only reason we do any data buffering in postwrite
    339      * mode is if we are talking to a 16 bit NAND device, in
    340      * which case we need to buffer the first byte of the
    341      * 16 bit word until the other byte arrives.
    342      */
    343     int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
    344     if (is16bit) {
    345         /* fifopointer alternates between 64 (waiting for first
    346          * byte of word) and 63 (waiting for second byte)
    347          */
    348         if (s->prefetch.fifopointer == 64) {
    349             s->prefetch.fifo[0] = value;
    350             s->prefetch.fifopointer--;
    351         } else {
    352             value = (value << 8) | s->prefetch.fifo[0];
    353             omap_nand_write(&s->cs_file[cs], 0, value, 2);
    354             s->prefetch.count--;
    355             s->prefetch.fifopointer = 64;
    356         }
    357     } else {
    358         /* Just write the byte : fifopointer remains 64 at all times */
    359         omap_nand_write(&s->cs_file[cs], 0, value, 1);
    360         s->prefetch.count--;
    361     }
    362     if (s->prefetch.count == 0) {
    363         /* Final transfer: raise TERMINALCOUNTSTATUS */
    364         s->irqst |= 2;
    365         s->prefetch.startengine = 0;
    366     }
    367     omap_gpmc_int_update(s);
    368 }
    369 
    370 static const MemoryRegionOps omap_prefetch_ops = {
    371     .read = omap_gpmc_prefetch_read,
    372     .write = omap_gpmc_prefetch_write,
    373     .endianness = DEVICE_NATIVE_ENDIAN,
    374     .impl.min_access_size = 1,
    375     .impl.max_access_size = 1,
    376 };
    377 
    378 static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs)
    379 {
    380     /* Return the MemoryRegion* to map/unmap for this chipselect */
    381     struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
    382     if (omap_gpmc_devtype(f) == OMAP_GPMC_NOR) {
    383         return f->iomem;
    384     }
    385     if ((s->prefetch.config1 & 0x80) &&
    386         (prefetch_cs(s->prefetch.config1) == cs)) {
    387         /* The prefetch engine is enabled for this CS: map the FIFO */
    388         return &s->prefetch.iomem;
    389     }
    390     return &f->nandiomem;
    391 }
    392 
    393 static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs)
    394 {
    395     struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
    396     uint32_t mask = (f->config[6] >> 8) & 0xf;
    397     uint32_t base = f->config[6] & 0x3f;
    398     uint32_t size;
    399 
    400     if (!f->iomem && !f->dev) {
    401         return;
    402     }
    403 
    404     if (!(f->config[6] & (1 << 6))) {
    405         /* Do nothing unless CSVALID */
    406         return;
    407     }
    408 
    409     /* TODO: check for overlapping regions and report access errors */
    410     if (mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf
    411          && !(s->accept_256 && !mask)) {
    412         fprintf(stderr, "%s: invalid chip-select mask address (0x%x)\n",
    413                  __func__, mask);
    414     }
    415 
    416     base <<= 24;
    417     size = (0x0fffffff & ~(mask << 24)) + 1;
    418     /* TODO: rather than setting the size of the mapping (which should be
    419      * constant), the mask should cause wrapping of the address space, so
    420      * that the same memory becomes accessible at every <i>size</i> bytes
    421      * starting from <i>base</i>.  */
    422     memory_region_init(&f->container, NULL, "omap-gpmc-file", size);
    423     memory_region_add_subregion(&f->container, 0,
    424                                 omap_gpmc_cs_memregion(s, cs));
    425     memory_region_add_subregion(get_system_memory(), base,
    426                                 &f->container);
    427 }
    428 
    429 static void omap_gpmc_cs_unmap(struct omap_gpmc_s *s, int cs)
    430 {
    431     struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
    432     if (!(f->config[6] & (1 << 6))) {
    433         /* Do nothing unless CSVALID */
    434         return;
    435     }
    436     if (!f->iomem && !f->dev) {
    437         return;
    438     }
    439     memory_region_del_subregion(get_system_memory(), &f->container);
    440     memory_region_del_subregion(&f->container, omap_gpmc_cs_memregion(s, cs));
    441     object_unparent(OBJECT(&f->container));
    442 }
    443 
    444 void omap_gpmc_reset(struct omap_gpmc_s *s)
    445 {
    446     int i;
    447 
    448     s->sysconfig = 0;
    449     s->irqst = 0;
    450     s->irqen = 0;
    451     omap_gpmc_int_update(s);
    452     for (i = 0; i < 8; i++) {
    453         /* This has to happen before we change any of the config
    454          * used to determine which memory regions are mapped or unmapped.
    455          */
    456         omap_gpmc_cs_unmap(s, i);
    457     }
    458     s->timeout = 0;
    459     s->config = 0xa00;
    460     s->prefetch.config1 = 0x00004000;
    461     s->prefetch.transfercount = 0x00000000;
    462     s->prefetch.startengine = 0;
    463     s->prefetch.fifopointer = 0;
    464     s->prefetch.count = 0;
    465     for (i = 0; i < 8; i ++) {
    466         s->cs_file[i].config[1] = 0x101001;
    467         s->cs_file[i].config[2] = 0x020201;
    468         s->cs_file[i].config[3] = 0x10031003;
    469         s->cs_file[i].config[4] = 0x10f1111;
    470         s->cs_file[i].config[5] = 0;
    471         s->cs_file[i].config[6] = 0xf00;
    472         /* In theory we could probe attached devices for some CFG1
    473          * bits here, but we just retain them across resets as they
    474          * were set initially by omap_gpmc_attach().
    475          */
    476         if (i == 0) {
    477             s->cs_file[i].config[0] &= 0x00433e00;
    478             s->cs_file[i].config[6] |= 1 << 6; /* CSVALID */
    479             omap_gpmc_cs_map(s, i);
    480         } else {
    481             s->cs_file[i].config[0] &= 0x00403c00;
    482         }
    483     }
    484     s->ecc_cs = 0;
    485     s->ecc_ptr = 0;
    486     s->ecc_cfg = 0x3fcff000;
    487     for (i = 0; i < 9; i ++)
    488         ecc_reset(&s->ecc[i]);
    489 }
    490 
    491 static int gpmc_wordaccess_only(hwaddr addr)
    492 {
    493     /* Return true if the register offset is to a register that
    494      * only permits word width accesses.
    495      * Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
    496      * for any chipselect.
    497      */
    498     if (addr >= 0x60 && addr <= 0x1d4) {
    499         int cs = (addr - 0x60) / 0x30;
    500         addr -= cs * 0x30;
    501         if (addr >= 0x7c && addr < 0x88) {
    502             /* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
    503             return 0;
    504         }
    505     }
    506     return 1;
    507 }
    508 
    509 static uint64_t omap_gpmc_read(void *opaque, hwaddr addr,
    510                                unsigned size)
    511 {
    512     struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
    513     int cs;
    514     struct omap_gpmc_cs_file_s *f;
    515 
    516     if (size != 4 && gpmc_wordaccess_only(addr)) {
    517         return omap_badwidth_read32(opaque, addr);
    518     }
    519 
    520     switch (addr) {
    521     case 0x000:	/* GPMC_REVISION */
    522         return s->revision;
    523 
    524     case 0x010:	/* GPMC_SYSCONFIG */
    525         return s->sysconfig;
    526 
    527     case 0x014:	/* GPMC_SYSSTATUS */
    528         return 1;						/* RESETDONE */
    529 
    530     case 0x018:	/* GPMC_IRQSTATUS */
    531         return s->irqst;
    532 
    533     case 0x01c:	/* GPMC_IRQENABLE */
    534         return s->irqen;
    535 
    536     case 0x040:	/* GPMC_TIMEOUT_CONTROL */
    537         return s->timeout;
    538 
    539     case 0x044:	/* GPMC_ERR_ADDRESS */
    540     case 0x048:	/* GPMC_ERR_TYPE */
    541         return 0;
    542 
    543     case 0x050:	/* GPMC_CONFIG */
    544         return s->config;
    545 
    546     case 0x054:	/* GPMC_STATUS */
    547         return 0x001;
    548 
    549     case 0x060 ... 0x1d4:
    550         cs = (addr - 0x060) / 0x30;
    551         addr -= cs * 0x30;
    552         f = s->cs_file + cs;
    553         switch (addr) {
    554         case 0x60:      /* GPMC_CONFIG1 */
    555             return f->config[0];
    556         case 0x64:      /* GPMC_CONFIG2 */
    557             return f->config[1];
    558         case 0x68:      /* GPMC_CONFIG3 */
    559             return f->config[2];
    560         case 0x6c:      /* GPMC_CONFIG4 */
    561             return f->config[3];
    562         case 0x70:      /* GPMC_CONFIG5 */
    563             return f->config[4];
    564         case 0x74:      /* GPMC_CONFIG6 */
    565             return f->config[5];
    566         case 0x78:      /* GPMC_CONFIG7 */
    567             return f->config[6];
    568         case 0x84 ... 0x87: /* GPMC_NAND_DATA */
    569             if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
    570                 return omap_nand_read(f, 0, size);
    571             }
    572             return 0;
    573         }
    574         break;
    575 
    576     case 0x1e0:	/* GPMC_PREFETCH_CONFIG1 */
    577         return s->prefetch.config1;
    578     case 0x1e4:	/* GPMC_PREFETCH_CONFIG2 */
    579         return s->prefetch.transfercount;
    580     case 0x1ec:	/* GPMC_PREFETCH_CONTROL */
    581         return s->prefetch.startengine;
    582     case 0x1f0:	/* GPMC_PREFETCH_STATUS */
    583         /* NB: The OMAP3 TRM is inconsistent about whether the GPMC
    584          * FIFOTHRESHOLDSTATUS bit should be set when
    585          * FIFOPOINTER > FIFOTHRESHOLD or when it is >= FIFOTHRESHOLD.
    586          * Apparently the underlying functional spec from which the TRM was
    587          * created states that the behaviour is ">=", and this also
    588          * makes more conceptual sense.
    589          */
    590         return (s->prefetch.fifopointer << 24) |
    591                 ((s->prefetch.fifopointer >=
    592                   ((s->prefetch.config1 >> 8) & 0x7f) ? 1 : 0) << 16) |
    593                 s->prefetch.count;
    594 
    595     case 0x1f4:	/* GPMC_ECC_CONFIG */
    596         return s->ecc_cs;
    597     case 0x1f8:	/* GPMC_ECC_CONTROL */
    598         return s->ecc_ptr;
    599     case 0x1fc:	/* GPMC_ECC_SIZE_CONFIG */
    600         return s->ecc_cfg;
    601     case 0x200 ... 0x220:	/* GPMC_ECC_RESULT */
    602         cs = (addr & 0x1f) >> 2;
    603         /* TODO: check correctness */
    604         return
    605                 ((s->ecc[cs].cp    &  0x07) <<  0) |
    606                 ((s->ecc[cs].cp    &  0x38) << 13) |
    607                 ((s->ecc[cs].lp[0] & 0x1ff) <<  3) |
    608                 ((s->ecc[cs].lp[1] & 0x1ff) << 19);
    609 
    610     case 0x230:	/* GPMC_TESTMODE_CTRL */
    611         return 0;
    612     case 0x234:	/* GPMC_PSA_LSB */
    613     case 0x238:	/* GPMC_PSA_MSB */
    614         return 0x00000000;
    615     }
    616 
    617     OMAP_BAD_REG(addr);
    618     return 0;
    619 }
    620 
    621 static void omap_gpmc_write(void *opaque, hwaddr addr,
    622                             uint64_t value, unsigned size)
    623 {
    624     struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
    625     int cs;
    626     struct omap_gpmc_cs_file_s *f;
    627 
    628     if (size != 4 && gpmc_wordaccess_only(addr)) {
    629         omap_badwidth_write32(opaque, addr, value);
    630         return;
    631     }
    632 
    633     switch (addr) {
    634     case 0x000:	/* GPMC_REVISION */
    635     case 0x014:	/* GPMC_SYSSTATUS */
    636     case 0x054:	/* GPMC_STATUS */
    637     case 0x1f0:	/* GPMC_PREFETCH_STATUS */
    638     case 0x200 ... 0x220:	/* GPMC_ECC_RESULT */
    639     case 0x234:	/* GPMC_PSA_LSB */
    640     case 0x238:	/* GPMC_PSA_MSB */
    641         OMAP_RO_REG(addr);
    642         break;
    643 
    644     case 0x010:	/* GPMC_SYSCONFIG */
    645         if ((value >> 3) == 0x3)
    646             fprintf(stderr, "%s: bad SDRAM idle mode %"PRIi64"\n",
    647                             __func__, value >> 3);
    648         if (value & 2)
    649             omap_gpmc_reset(s);
    650         s->sysconfig = value & 0x19;
    651         break;
    652 
    653     case 0x018:	/* GPMC_IRQSTATUS */
    654         s->irqst &= ~value;
    655         omap_gpmc_int_update(s);
    656         break;
    657 
    658     case 0x01c:	/* GPMC_IRQENABLE */
    659         s->irqen = value & 0xf03;
    660         omap_gpmc_int_update(s);
    661         break;
    662 
    663     case 0x040:	/* GPMC_TIMEOUT_CONTROL */
    664         s->timeout = value & 0x1ff1;
    665         break;
    666 
    667     case 0x044:	/* GPMC_ERR_ADDRESS */
    668     case 0x048:	/* GPMC_ERR_TYPE */
    669         break;
    670 
    671     case 0x050:	/* GPMC_CONFIG */
    672         s->config = value & 0xf13;
    673         break;
    674 
    675     case 0x060 ... 0x1d4:
    676         cs = (addr - 0x060) / 0x30;
    677         addr -= cs * 0x30;
    678         f = s->cs_file + cs;
    679         switch (addr) {
    680         case 0x60:      /* GPMC_CONFIG1 */
    681             f->config[0] = value & 0xffef3e13;
    682             break;
    683         case 0x64:      /* GPMC_CONFIG2 */
    684             f->config[1] = value & 0x001f1f8f;
    685             break;
    686         case 0x68:      /* GPMC_CONFIG3 */
    687             f->config[2] = value & 0x001f1f8f;
    688             break;
    689         case 0x6c:      /* GPMC_CONFIG4 */
    690             f->config[3] = value & 0x1f8f1f8f;
    691             break;
    692         case 0x70:      /* GPMC_CONFIG5 */
    693             f->config[4] = value & 0x0f1f1f1f;
    694             break;
    695         case 0x74:      /* GPMC_CONFIG6 */
    696             f->config[5] = value & 0x00000fcf;
    697             break;
    698         case 0x78:      /* GPMC_CONFIG7 */
    699             if ((f->config[6] ^ value) & 0xf7f) {
    700                 omap_gpmc_cs_unmap(s, cs);
    701                 f->config[6] = value & 0x00000f7f;
    702                 omap_gpmc_cs_map(s, cs);
    703             }
    704             break;
    705         case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
    706             if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
    707                 nand_setpins(f->dev, 1, 0, 0, 1, 0); /* CLE */
    708                 omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
    709             }
    710             break;
    711         case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
    712             if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
    713                 nand_setpins(f->dev, 0, 1, 0, 1, 0); /* ALE */
    714                 omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
    715             }
    716             break;
    717         case 0x84 ... 0x87: /* GPMC_NAND_DATA */
    718             if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
    719                 omap_nand_write(f, 0, value, size);
    720             }
    721             break;
    722         default:
    723             goto bad_reg;
    724         }
    725         break;
    726 
    727     case 0x1e0:	/* GPMC_PREFETCH_CONFIG1 */
    728         if (!s->prefetch.startengine) {
    729             uint32_t newconfig1 = value & 0x7f8f7fbf;
    730             uint32_t changed;
    731             changed = newconfig1 ^ s->prefetch.config1;
    732             if (changed & (0x80 | 0x7000000)) {
    733                 /* Turning the engine on or off, or mapping it somewhere else.
    734                  * cs_map() and cs_unmap() check the prefetch config and
    735                  * overall CSVALID bits, so it is sufficient to unmap-and-map
    736                  * both the old cs and the new one. Note that we adhere to
    737                  * the "unmap/change config/map" order (and not unmap twice
    738                  * if newcs == oldcs), otherwise we'll try to delete the wrong
    739                  * memory region.
    740                  */
    741                 int oldcs = prefetch_cs(s->prefetch.config1);
    742                 int newcs = prefetch_cs(newconfig1);
    743                 omap_gpmc_cs_unmap(s, oldcs);
    744                 if (oldcs != newcs) {
    745                     omap_gpmc_cs_unmap(s, newcs);
    746                 }
    747                 s->prefetch.config1 = newconfig1;
    748                 omap_gpmc_cs_map(s, oldcs);
    749                 if (oldcs != newcs) {
    750                     omap_gpmc_cs_map(s, newcs);
    751                 }
    752             } else {
    753                 s->prefetch.config1 = newconfig1;
    754             }
    755         }
    756         break;
    757 
    758     case 0x1e4:	/* GPMC_PREFETCH_CONFIG2 */
    759         if (!s->prefetch.startengine) {
    760             s->prefetch.transfercount = value & 0x3fff;
    761         }
    762         break;
    763 
    764     case 0x1ec:	/* GPMC_PREFETCH_CONTROL */
    765         if (s->prefetch.startengine != (value & 1)) {
    766             s->prefetch.startengine = value & 1;
    767             if (s->prefetch.startengine) {
    768                 /* Prefetch engine start */
    769                 s->prefetch.count = s->prefetch.transfercount;
    770                 if (s->prefetch.config1 & 1) {
    771                     /* Write */
    772                     s->prefetch.fifopointer = 64;
    773                 } else {
    774                     /* Read */
    775                     s->prefetch.fifopointer = 0;
    776                     fill_prefetch_fifo(s);
    777                 }
    778             } else {
    779                 /* Prefetch engine forcibly stopped. The TRM
    780                  * doesn't define the behaviour if you do this.
    781                  * We clear the prefetch count, which means that
    782                  * we permit no more writes, and don't read any
    783                  * more data from NAND. The CPU can still drain
    784                  * the FIFO of unread data.
    785                  */
    786                 s->prefetch.count = 0;
    787             }
    788             omap_gpmc_int_update(s);
    789         }
    790         break;
    791 
    792     case 0x1f4:	/* GPMC_ECC_CONFIG */
    793         s->ecc_cs = 0x8f;
    794         break;
    795     case 0x1f8:	/* GPMC_ECC_CONTROL */
    796         if (value & (1 << 8))
    797             for (cs = 0; cs < 9; cs ++)
    798                 ecc_reset(&s->ecc[cs]);
    799         s->ecc_ptr = value & 0xf;
    800         if (s->ecc_ptr == 0 || s->ecc_ptr > 9) {
    801             s->ecc_ptr = 0;
    802             s->ecc_cs &= ~1;
    803         }
    804         break;
    805     case 0x1fc:	/* GPMC_ECC_SIZE_CONFIG */
    806         s->ecc_cfg = value & 0x3fcff1ff;
    807         break;
    808     case 0x230:	/* GPMC_TESTMODE_CTRL */
    809         if (value & 7)
    810             fprintf(stderr, "%s: test mode enable attempt\n", __func__);
    811         break;
    812 
    813     default:
    814     bad_reg:
    815         OMAP_BAD_REG(addr);
    816         return;
    817     }
    818 }
    819 
    820 static const MemoryRegionOps omap_gpmc_ops = {
    821     .read = omap_gpmc_read,
    822     .write = omap_gpmc_write,
    823     .endianness = DEVICE_NATIVE_ENDIAN,
    824 };
    825 
    826 struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
    827                                    hwaddr base,
    828                                    qemu_irq irq, qemu_irq drq)
    829 {
    830     int cs;
    831     struct omap_gpmc_s *s = g_new0(struct omap_gpmc_s, 1);
    832 
    833     memory_region_init_io(&s->iomem, NULL, &omap_gpmc_ops, s, "omap-gpmc", 0x1000);
    834     memory_region_add_subregion(get_system_memory(), base, &s->iomem);
    835 
    836     s->irq = irq;
    837     s->drq = drq;
    838     s->accept_256 = cpu_is_omap3630(mpu);
    839     s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20;
    840     s->lastirq = 0;
    841     omap_gpmc_reset(s);
    842 
    843     /* We have to register a different IO memory handler for each
    844      * chip select region in case a NAND device is mapped there. We
    845      * make the region the worst-case size of 256MB and rely on the
    846      * container memory region in cs_map to chop it down to the actual
    847      * guest-requested size.
    848      */
    849     for (cs = 0; cs < 8; cs++) {
    850         memory_region_init_io(&s->cs_file[cs].nandiomem, NULL,
    851                               &omap_nand_ops,
    852                               &s->cs_file[cs],
    853                               "omap-nand",
    854                               256 * 1024 * 1024);
    855     }
    856 
    857     memory_region_init_io(&s->prefetch.iomem, NULL, &omap_prefetch_ops, s,
    858                           "omap-gpmc-prefetch", 256 * 1024 * 1024);
    859     return s;
    860 }
    861 
    862 void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem)
    863 {
    864     struct omap_gpmc_cs_file_s *f;
    865     assert(iomem);
    866 
    867     if (cs < 0 || cs >= 8) {
    868         fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
    869         exit(-1);
    870     }
    871     f = &s->cs_file[cs];
    872 
    873     omap_gpmc_cs_unmap(s, cs);
    874     f->config[0] &= ~(0xf << 10);
    875     f->iomem = iomem;
    876     omap_gpmc_cs_map(s, cs);
    877 }
    878 
    879 void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand)
    880 {
    881     struct omap_gpmc_cs_file_s *f;
    882     assert(nand);
    883 
    884     if (cs < 0 || cs >= 8) {
    885         fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
    886         exit(-1);
    887     }
    888     f = &s->cs_file[cs];
    889 
    890     omap_gpmc_cs_unmap(s, cs);
    891     f->config[0] &= ~(0xf << 10);
    892     f->config[0] |= (OMAP_GPMC_NAND << 10);
    893     f->dev = nand;
    894     if (nand_getbuswidth(f->dev) == 16) {
    895         f->config[0] |= OMAP_GPMC_16BIT << 12;
    896     }
    897     omap_gpmc_cs_map(s, cs);
    898 }