qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

mps2-fpgaio.c (10842B)


      1 /*
      2  * ARM MPS2 AN505 FPGAIO emulation
      3  *
      4  * Copyright (c) 2018 Linaro Limited
      5  * Written by Peter Maydell
      6  *
      7  *  This program is free software; you can redistribute it and/or modify
      8  *  it under the terms of the GNU General Public License version 2 or
      9  *  (at your option) any later version.
     10  */
     11 
     12 /* This is a model of the "FPGA system control and I/O" block found
     13  * in the AN505 FPGA image for the MPS2 devboard.
     14  * It is documented in AN505:
     15  * https://developer.arm.com/documentation/dai0505/latest/
     16  */
     17 
     18 #include "qemu/osdep.h"
     19 #include "qemu/log.h"
     20 #include "qemu/module.h"
     21 #include "qapi/error.h"
     22 #include "trace.h"
     23 #include "hw/sysbus.h"
     24 #include "migration/vmstate.h"
     25 #include "hw/registerfields.h"
     26 #include "hw/misc/mps2-fpgaio.h"
     27 #include "hw/misc/led.h"
     28 #include "hw/qdev-properties.h"
     29 #include "qemu/timer.h"
     30 
     31 REG32(LED0, 0)
     32 REG32(DBGCTRL, 4)
     33 REG32(BUTTON, 8)
     34 REG32(CLK1HZ, 0x10)
     35 REG32(CLK100HZ, 0x14)
     36 REG32(COUNTER, 0x18)
     37 REG32(PRESCALE, 0x1c)
     38 REG32(PSCNTR, 0x20)
     39 REG32(SWITCH, 0x28)
     40 REG32(MISC, 0x4c)
     41 
     42 static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
     43 {
     44     return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
     45 }
     46 
     47 static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
     48 {
     49     return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
     50 }
     51 
     52 static void resync_counter(MPS2FPGAIO *s)
     53 {
     54     /*
     55      * Update s->counter and s->pscntr to their true current values
     56      * by calculating how many times PSCNTR has ticked since the
     57      * last time we did a resync.
     58      */
     59     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
     60     int64_t elapsed = now - s->pscntr_sync_ticks;
     61 
     62     /*
     63      * Round elapsed down to a whole number of PSCNTR ticks, so we don't
     64      * lose time if we do multiple resyncs in a single tick.
     65      */
     66     uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
     67 
     68     /*
     69      * Work out what PSCNTR and COUNTER have moved to. We assume that
     70      * PSCNTR reloads from PRESCALE one tick-period after it hits zero,
     71      * and that COUNTER increments at the same moment.
     72      */
     73     if (ticks == 0) {
     74         /* We haven't ticked since the last time we were asked */
     75         return;
     76     } else if (ticks < s->pscntr) {
     77         /* We haven't yet reached zero, just reduce the PSCNTR */
     78         s->pscntr -= ticks;
     79     } else {
     80         if (s->prescale == 0) {
     81             /*
     82              * If the reload value is zero then the PSCNTR will stick
     83              * at zero once it reaches it, and so we will increment
     84              * COUNTER every tick after that.
     85              */
     86             s->counter += ticks - s->pscntr;
     87             s->pscntr = 0;
     88         } else {
     89             /*
     90              * This is the complicated bit. This ASCII art diagram gives an
     91              * example with PRESCALE==5 PSCNTR==7:
     92              *
     93              * ticks  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
     94              * PSCNTR 7  6  5  4  3  2  1  0  5  4  3  2  1  0  5
     95              * cinc                           1                 2
     96              * y            0  1  2  3  4  5  6  7  8  9 10 11 12
     97              * x            0  1  2  3  4  5  0  1  2  3  4  5  0
     98              *
     99              * where x = y % (s->prescale + 1)
    100              * and so PSCNTR = s->prescale - x
    101              * and COUNTER is incremented by y / (s->prescale + 1)
    102              *
    103              * The case where PSCNTR < PRESCALE works out the same,
    104              * though we must be careful to calculate y as 64-bit unsigned
    105              * for all parts of the expression.
    106              * y < 0 is not possible because that implies ticks < s->pscntr.
    107              */
    108             uint64_t y = ticks - s->pscntr + s->prescale;
    109             s->pscntr = s->prescale - (y % (s->prescale + 1));
    110             s->counter += y / (s->prescale + 1);
    111         }
    112     }
    113 
    114     /*
    115      * Only advance the sync time to the timestamp of the last PSCNTR tick,
    116      * not all the way to 'now', so we don't lose time if we do multiple
    117      * resyncs in a single tick.
    118      */
    119     s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
    120                                      s->prescale_clk);
    121 }
    122 
    123 static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
    124 {
    125     MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
    126     uint64_t r;
    127     int64_t now;
    128 
    129     switch (offset) {
    130     case A_LED0:
    131         r = s->led0;
    132         break;
    133     case A_DBGCTRL:
    134         if (!s->has_dbgctrl) {
    135             goto bad_offset;
    136         }
    137         r = s->dbgctrl;
    138         break;
    139     case A_BUTTON:
    140         /* User-pressable board buttons. We don't model that, so just return
    141          * zeroes.
    142          */
    143         r = 0;
    144         break;
    145     case A_PRESCALE:
    146         r = s->prescale;
    147         break;
    148     case A_MISC:
    149         r = s->misc;
    150         break;
    151     case A_CLK1HZ:
    152         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    153         r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
    154         break;
    155     case A_CLK100HZ:
    156         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    157         r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
    158         break;
    159     case A_COUNTER:
    160         resync_counter(s);
    161         r = s->counter;
    162         break;
    163     case A_PSCNTR:
    164         resync_counter(s);
    165         r = s->pscntr;
    166         break;
    167     case A_SWITCH:
    168         if (!s->has_switches) {
    169             goto bad_offset;
    170         }
    171         /* User-togglable board switches. We don't model that, so report 0. */
    172         r = 0;
    173         break;
    174     default:
    175     bad_offset:
    176         qemu_log_mask(LOG_GUEST_ERROR,
    177                       "MPS2 FPGAIO read: bad offset %x\n", (int) offset);
    178         r = 0;
    179         break;
    180     }
    181 
    182     trace_mps2_fpgaio_read(offset, r, size);
    183     return r;
    184 }
    185 
    186 static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
    187                               unsigned size)
    188 {
    189     MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
    190     int64_t now;
    191 
    192     trace_mps2_fpgaio_write(offset, value, size);
    193 
    194     switch (offset) {
    195     case A_LED0:
    196         if (s->num_leds != 0) {
    197             uint32_t i;
    198 
    199             s->led0 = value & MAKE_64BIT_MASK(0, s->num_leds);
    200             for (i = 0; i < s->num_leds; i++) {
    201                 led_set_state(s->led[i], value & (1 << i));
    202             }
    203         }
    204         break;
    205     case A_DBGCTRL:
    206         if (!s->has_dbgctrl) {
    207             goto bad_offset;
    208         }
    209         qemu_log_mask(LOG_UNIMP,
    210                       "MPS2 FPGAIO: DBGCTRL unimplemented\n");
    211         s->dbgctrl = value;
    212         break;
    213     case A_PRESCALE:
    214         resync_counter(s);
    215         s->prescale = value;
    216         break;
    217     case A_MISC:
    218         /* These are control bits for some of the other devices on the
    219          * board (SPI, CLCD, etc). We don't implement that yet, so just
    220          * make the bits read as written.
    221          */
    222         qemu_log_mask(LOG_UNIMP,
    223                       "MPS2 FPGAIO: MISC control bits unimplemented\n");
    224         s->misc = value;
    225         break;
    226     case A_CLK1HZ:
    227         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    228         s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
    229         break;
    230     case A_CLK100HZ:
    231         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    232         s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
    233         break;
    234     case A_COUNTER:
    235         resync_counter(s);
    236         s->counter = value;
    237         break;
    238     case A_PSCNTR:
    239         resync_counter(s);
    240         s->pscntr = value;
    241         break;
    242     default:
    243     bad_offset:
    244         qemu_log_mask(LOG_GUEST_ERROR,
    245                       "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
    246         break;
    247     }
    248 }
    249 
    250 static const MemoryRegionOps mps2_fpgaio_ops = {
    251     .read = mps2_fpgaio_read,
    252     .write = mps2_fpgaio_write,
    253     .endianness = DEVICE_LITTLE_ENDIAN,
    254 };
    255 
    256 static void mps2_fpgaio_reset(DeviceState *dev)
    257 {
    258     MPS2FPGAIO *s = MPS2_FPGAIO(dev);
    259     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    260 
    261     trace_mps2_fpgaio_reset();
    262     s->led0 = 0;
    263     s->prescale = 0;
    264     s->misc = 0;
    265     s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
    266     s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
    267     s->counter = 0;
    268     s->pscntr = 0;
    269     s->pscntr_sync_ticks = now;
    270 
    271     for (size_t i = 0; i < s->num_leds; i++) {
    272         device_cold_reset(DEVICE(s->led[i]));
    273     }
    274 }
    275 
    276 static void mps2_fpgaio_init(Object *obj)
    277 {
    278     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    279     MPS2FPGAIO *s = MPS2_FPGAIO(obj);
    280 
    281     memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
    282                           "mps2-fpgaio", 0x1000);
    283     sysbus_init_mmio(sbd, &s->iomem);
    284 }
    285 
    286 static void mps2_fpgaio_realize(DeviceState *dev, Error **errp)
    287 {
    288     MPS2FPGAIO *s = MPS2_FPGAIO(dev);
    289     uint32_t i;
    290 
    291     if (s->num_leds > MPS2FPGAIO_MAX_LEDS) {
    292         error_setg(errp, "num-leds cannot be greater than %d",
    293                    MPS2FPGAIO_MAX_LEDS);
    294         return;
    295     }
    296 
    297     for (i = 0; i < s->num_leds; i++) {
    298         g_autofree char *ledname = g_strdup_printf("USERLED%d", i);
    299         s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
    300                                       LED_COLOR_GREEN, ledname);
    301     }
    302 }
    303 
    304 static const VMStateDescription mps2_fpgaio_vmstate = {
    305     .name = "mps2-fpgaio",
    306     .version_id = 3,
    307     .minimum_version_id = 3,
    308     .fields = (VMStateField[]) {
    309         VMSTATE_UINT32(led0, MPS2FPGAIO),
    310         VMSTATE_UINT32(prescale, MPS2FPGAIO),
    311         VMSTATE_UINT32(misc, MPS2FPGAIO),
    312         VMSTATE_UINT32(dbgctrl, MPS2FPGAIO),
    313         VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
    314         VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
    315         VMSTATE_UINT32(counter, MPS2FPGAIO),
    316         VMSTATE_UINT32(pscntr, MPS2FPGAIO),
    317         VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
    318         VMSTATE_END_OF_LIST()
    319     },
    320 };
    321 
    322 static Property mps2_fpgaio_properties[] = {
    323     /* Frequency of the prescale counter */
    324     DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
    325     /* Number of LEDs controlled by LED0 register */
    326     DEFINE_PROP_UINT32("num-leds", MPS2FPGAIO, num_leds, 2),
    327     DEFINE_PROP_BOOL("has-switches", MPS2FPGAIO, has_switches, false),
    328     DEFINE_PROP_BOOL("has-dbgctrl", MPS2FPGAIO, has_dbgctrl, false),
    329     DEFINE_PROP_END_OF_LIST(),
    330 };
    331 
    332 static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
    333 {
    334     DeviceClass *dc = DEVICE_CLASS(klass);
    335 
    336     dc->vmsd = &mps2_fpgaio_vmstate;
    337     dc->realize = mps2_fpgaio_realize;
    338     dc->reset = mps2_fpgaio_reset;
    339     device_class_set_props(dc, mps2_fpgaio_properties);
    340 }
    341 
    342 static const TypeInfo mps2_fpgaio_info = {
    343     .name = TYPE_MPS2_FPGAIO,
    344     .parent = TYPE_SYS_BUS_DEVICE,
    345     .instance_size = sizeof(MPS2FPGAIO),
    346     .instance_init = mps2_fpgaio_init,
    347     .class_init = mps2_fpgaio_class_init,
    348 };
    349 
    350 static void mps2_fpgaio_register_types(void)
    351 {
    352     type_register_static(&mps2_fpgaio_info);
    353 }
    354 
    355 type_init(mps2_fpgaio_register_types);