qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

imx6_src.c (9061B)


      1 /*
      2  * IMX6 System Reset Controller
      3  *
      4  * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
      5  *
      6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
      7  * See the COPYING file in the top-level directory.
      8  *
      9  */
     10 
     11 #include "qemu/osdep.h"
     12 #include "hw/misc/imx6_src.h"
     13 #include "migration/vmstate.h"
     14 #include "qemu/bitops.h"
     15 #include "qemu/log.h"
     16 #include "qemu/main-loop.h"
     17 #include "qemu/module.h"
     18 #include "arm-powerctl.h"
     19 #include "hw/core/cpu.h"
     20 
     21 #ifndef DEBUG_IMX6_SRC
     22 #define DEBUG_IMX6_SRC 0
     23 #endif
     24 
     25 #define DPRINTF(fmt, args...) \
     26     do { \
     27         if (DEBUG_IMX6_SRC) { \
     28             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_SRC, \
     29                                              __func__, ##args); \
     30         } \
     31     } while (0)
     32 
     33 static const char *imx6_src_reg_name(uint32_t reg)
     34 {
     35     static char unknown[20];
     36 
     37     switch (reg) {
     38     case SRC_SCR:
     39         return "SRC_SCR";
     40     case SRC_SBMR1:
     41         return "SRC_SBMR1";
     42     case SRC_SRSR:
     43         return "SRC_SRSR";
     44     case SRC_SISR:
     45         return "SRC_SISR";
     46     case SRC_SIMR:
     47         return "SRC_SIMR";
     48     case SRC_SBMR2:
     49         return "SRC_SBMR2";
     50     case SRC_GPR1:
     51         return "SRC_GPR1";
     52     case SRC_GPR2:
     53         return "SRC_GPR2";
     54     case SRC_GPR3:
     55         return "SRC_GPR3";
     56     case SRC_GPR4:
     57         return "SRC_GPR4";
     58     case SRC_GPR5:
     59         return "SRC_GPR5";
     60     case SRC_GPR6:
     61         return "SRC_GPR6";
     62     case SRC_GPR7:
     63         return "SRC_GPR7";
     64     case SRC_GPR8:
     65         return "SRC_GPR8";
     66     case SRC_GPR9:
     67         return "SRC_GPR9";
     68     case SRC_GPR10:
     69         return "SRC_GPR10";
     70     default:
     71         sprintf(unknown, "%u ?", reg);
     72         return unknown;
     73     }
     74 }
     75 
     76 static const VMStateDescription vmstate_imx6_src = {
     77     .name = TYPE_IMX6_SRC,
     78     .version_id = 1,
     79     .minimum_version_id = 1,
     80     .fields = (VMStateField[]) {
     81         VMSTATE_UINT32_ARRAY(regs, IMX6SRCState, SRC_MAX),
     82         VMSTATE_END_OF_LIST()
     83     },
     84 };
     85 
     86 static void imx6_src_reset(DeviceState *dev)
     87 {
     88     IMX6SRCState *s = IMX6_SRC(dev);
     89 
     90     DPRINTF("\n");
     91 
     92     memset(s->regs, 0, sizeof(s->regs));
     93 
     94     /* Set reset values */
     95     s->regs[SRC_SCR] = 0x521;
     96     s->regs[SRC_SRSR] = 0x1;
     97     s->regs[SRC_SIMR] = 0x1F;
     98 }
     99 
    100 static uint64_t imx6_src_read(void *opaque, hwaddr offset, unsigned size)
    101 {
    102     uint32_t value = 0;
    103     IMX6SRCState *s = (IMX6SRCState *)opaque;
    104     uint32_t index = offset >> 2;
    105 
    106     if (index < SRC_MAX) {
    107         value = s->regs[index];
    108     } else {
    109         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
    110                       HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
    111 
    112     }
    113 
    114     DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_src_reg_name(index), value);
    115 
    116     return value;
    117 }
    118 
    119 
    120 /* The reset is asynchronous so we need to defer clearing the reset
    121  * bit until the work is completed.
    122  */
    123 
    124 struct SRCSCRResetInfo {
    125     IMX6SRCState *s;
    126     int reset_bit;
    127 };
    128 
    129 static void imx6_clear_reset_bit(CPUState *cpu, run_on_cpu_data data)
    130 {
    131     struct SRCSCRResetInfo *ri = data.host_ptr;
    132     IMX6SRCState *s = ri->s;
    133 
    134     assert(qemu_mutex_iothread_locked());
    135 
    136     s->regs[SRC_SCR] = deposit32(s->regs[SRC_SCR], ri->reset_bit, 1, 0);
    137     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n",
    138             imx6_src_reg_name(SRC_SCR), s->regs[SRC_SCR]);
    139 
    140     g_free(ri);
    141 }
    142 
    143 static void imx6_defer_clear_reset_bit(int cpuid,
    144                                        IMX6SRCState *s,
    145                                        unsigned long reset_shift)
    146 {
    147     struct SRCSCRResetInfo *ri;
    148     CPUState *cpu = arm_get_cpu_by_id(cpuid);
    149 
    150     if (!cpu) {
    151         return;
    152     }
    153 
    154     ri = g_new(struct SRCSCRResetInfo, 1);
    155     ri->s = s;
    156     ri->reset_bit = reset_shift;
    157 
    158     async_run_on_cpu(cpu, imx6_clear_reset_bit, RUN_ON_CPU_HOST_PTR(ri));
    159 }
    160 
    161 
    162 static void imx6_src_write(void *opaque, hwaddr offset, uint64_t value,
    163                            unsigned size)
    164 {
    165     IMX6SRCState *s = (IMX6SRCState *)opaque;
    166     uint32_t index = offset >> 2;
    167     unsigned long change_mask;
    168     unsigned long current_value = value;
    169 
    170     if (index >=  SRC_MAX) {
    171         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
    172                       HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
    173         return;
    174     }
    175 
    176     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_src_reg_name(index),
    177             (uint32_t)current_value);
    178 
    179     change_mask = s->regs[index] ^ (uint32_t)current_value;
    180 
    181     switch (index) {
    182     case SRC_SCR:
    183         /*
    184          * On real hardware when the system reset controller starts a
    185          * secondary CPU it runs through some boot ROM code which reads
    186          * the SRC_GPRX registers controlling the start address and branches
    187          * to it.
    188          * Here we are taking a short cut and branching directly to the
    189          * requested address (we don't want to run the boot ROM code inside
    190          * QEMU)
    191          */
    192         if (EXTRACT(change_mask, CORE3_ENABLE)) {
    193             if (EXTRACT(current_value, CORE3_ENABLE)) {
    194                 /* CORE 3 is brought up */
    195                 arm_set_cpu_on(3, s->regs[SRC_GPR7], s->regs[SRC_GPR8],
    196                                3, false);
    197             } else {
    198                 /* CORE 3 is shut down */
    199                 arm_set_cpu_off(3);
    200             }
    201             /* We clear the reset bits as the processor changed state */
    202             imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
    203             clear_bit(CORE3_RST_SHIFT, &change_mask);
    204         }
    205         if (EXTRACT(change_mask, CORE2_ENABLE)) {
    206             if (EXTRACT(current_value, CORE2_ENABLE)) {
    207                 /* CORE 2 is brought up */
    208                 arm_set_cpu_on(2, s->regs[SRC_GPR5], s->regs[SRC_GPR6],
    209                                3, false);
    210             } else {
    211                 /* CORE 2 is shut down */
    212                 arm_set_cpu_off(2);
    213             }
    214             /* We clear the reset bits as the processor changed state */
    215             imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
    216             clear_bit(CORE2_RST_SHIFT, &change_mask);
    217         }
    218         if (EXTRACT(change_mask, CORE1_ENABLE)) {
    219             if (EXTRACT(current_value, CORE1_ENABLE)) {
    220                 /* CORE 1 is brought up */
    221                 arm_set_cpu_on(1, s->regs[SRC_GPR3], s->regs[SRC_GPR4],
    222                                3, false);
    223             } else {
    224                 /* CORE 1 is shut down */
    225                 arm_set_cpu_off(1);
    226             }
    227             /* We clear the reset bits as the processor changed state */
    228             imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
    229             clear_bit(CORE1_RST_SHIFT, &change_mask);
    230         }
    231         if (EXTRACT(change_mask, CORE0_RST)) {
    232             arm_reset_cpu(0);
    233             imx6_defer_clear_reset_bit(0, s, CORE0_RST_SHIFT);
    234         }
    235         if (EXTRACT(change_mask, CORE1_RST)) {
    236             arm_reset_cpu(1);
    237             imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
    238         }
    239         if (EXTRACT(change_mask, CORE2_RST)) {
    240             arm_reset_cpu(2);
    241             imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
    242         }
    243         if (EXTRACT(change_mask, CORE3_RST)) {
    244             arm_reset_cpu(3);
    245             imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
    246         }
    247         if (EXTRACT(change_mask, SW_IPU2_RST)) {
    248             /* We pretend the IPU2 is reset */
    249             clear_bit(SW_IPU2_RST_SHIFT, &current_value);
    250         }
    251         if (EXTRACT(change_mask, SW_IPU1_RST)) {
    252             /* We pretend the IPU1 is reset */
    253             clear_bit(SW_IPU1_RST_SHIFT, &current_value);
    254         }
    255         s->regs[index] = current_value;
    256         break;
    257     default:
    258         s->regs[index] = current_value;
    259         break;
    260     }
    261 }
    262 
    263 static const struct MemoryRegionOps imx6_src_ops = {
    264     .read = imx6_src_read,
    265     .write = imx6_src_write,
    266     .endianness = DEVICE_NATIVE_ENDIAN,
    267     .valid = {
    268         /*
    269          * Our device would not work correctly if the guest was doing
    270          * unaligned access. This might not be a limitation on the real
    271          * device but in practice there is no reason for a guest to access
    272          * this device unaligned.
    273          */
    274         .min_access_size = 4,
    275         .max_access_size = 4,
    276         .unaligned = false,
    277     },
    278 };
    279 
    280 static void imx6_src_realize(DeviceState *dev, Error **errp)
    281 {
    282     IMX6SRCState *s = IMX6_SRC(dev);
    283 
    284     memory_region_init_io(&s->iomem, OBJECT(dev), &imx6_src_ops, s,
    285                           TYPE_IMX6_SRC, 0x1000);
    286     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
    287 }
    288 
    289 static void imx6_src_class_init(ObjectClass *klass, void *data)
    290 {
    291     DeviceClass *dc = DEVICE_CLASS(klass);
    292 
    293     dc->realize = imx6_src_realize;
    294     dc->reset = imx6_src_reset;
    295     dc->vmsd = &vmstate_imx6_src;
    296     dc->desc = "i.MX6 System Reset Controller";
    297 }
    298 
    299 static const TypeInfo imx6_src_info = {
    300     .name          = TYPE_IMX6_SRC,
    301     .parent        = TYPE_SYS_BUS_DEVICE,
    302     .instance_size = sizeof(IMX6SRCState),
    303     .class_init    = imx6_src_class_init,
    304 };
    305 
    306 static void imx6_src_register_types(void)
    307 {
    308     type_register_static(&imx6_src_info);
    309 }
    310 
    311 type_init(imx6_src_register_types)