qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

malta.c (48768B)


      1 /*
      2  * QEMU Malta board support
      3  *
      4  * Copyright (c) 2006 Aurelien Jarno
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a copy
      7  * of this software and associated documentation files (the "Software"), to deal
      8  * in the Software without restriction, including without limitation the rights
      9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10  * copies of the Software, and to permit persons to whom the Software is
     11  * furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22  * THE SOFTWARE.
     23  */
     24 
     25 #include "qemu/osdep.h"
     26 #include "qemu/units.h"
     27 #include "qemu/bitops.h"
     28 #include "qemu/datadir.h"
     29 #include "qemu/guest-random.h"
     30 #include "hw/clock.h"
     31 #include "hw/southbridge/piix.h"
     32 #include "hw/isa/superio.h"
     33 #include "hw/char/serial.h"
     34 #include "net/net.h"
     35 #include "hw/boards.h"
     36 #include "hw/i2c/smbus_eeprom.h"
     37 #include "hw/block/flash.h"
     38 #include "hw/mips/mips.h"
     39 #include "hw/mips/bootloader.h"
     40 #include "hw/mips/cpudevs.h"
     41 #include "hw/pci/pci.h"
     42 #include "qemu/log.h"
     43 #include "hw/mips/bios.h"
     44 #include "hw/ide/pci.h"
     45 #include "hw/irq.h"
     46 #include "hw/loader.h"
     47 #include "elf.h"
     48 #include "qom/object.h"
     49 #include "hw/sysbus.h"             /* SysBusDevice */
     50 #include "qemu/host-utils.h"
     51 #include "sysemu/qtest.h"
     52 #include "sysemu/reset.h"
     53 #include "sysemu/runstate.h"
     54 #include "qapi/error.h"
     55 #include "qemu/error-report.h"
     56 #include "hw/misc/empty_slot.h"
     57 #include "sysemu/kvm.h"
     58 #include "semihosting/semihost.h"
     59 #include "hw/mips/cps.h"
     60 #include "hw/qdev-clock.h"
     61 
     62 #define ENVP_PADDR          0x2000
     63 #define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
     64 #define ENVP_NB_ENTRIES     16
     65 #define ENVP_ENTRY_SIZE     256
     66 
     67 /* Hardware addresses */
     68 #define FLASH_ADDRESS       0x1e000000ULL
     69 #define FPGA_ADDRESS        0x1f000000ULL
     70 #define RESET_ADDRESS       0x1fc00000ULL
     71 
     72 #define FLASH_SIZE          0x400000
     73 
     74 typedef struct {
     75     MemoryRegion iomem;
     76     MemoryRegion iomem_lo; /* 0 - 0x900 */
     77     MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
     78     uint32_t leds;
     79     uint32_t brk;
     80     uint32_t gpout;
     81     uint32_t i2cin;
     82     uint32_t i2coe;
     83     uint32_t i2cout;
     84     uint32_t i2csel;
     85     CharBackend display;
     86     char display_text[9];
     87     SerialMM *uart;
     88     bool display_inited;
     89 } MaltaFPGAState;
     90 
     91 #define TYPE_MIPS_MALTA "mips-malta"
     92 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
     93 
     94 struct MaltaState {
     95     SysBusDevice parent_obj;
     96 
     97     Clock *cpuclk;
     98     MIPSCPSState cps;
     99 };
    100 
    101 static struct _loaderparams {
    102     int ram_size, ram_low_size;
    103     const char *kernel_filename;
    104     const char *kernel_cmdline;
    105     const char *initrd_filename;
    106 } loaderparams;
    107 
    108 /* Malta FPGA */
    109 static void malta_fpga_update_display(void *opaque)
    110 {
    111     char leds_text[9];
    112     int i;
    113     MaltaFPGAState *s = opaque;
    114 
    115     for (i = 7 ; i >= 0 ; i--) {
    116         if (s->leds & (1 << i)) {
    117             leds_text[i] = '#';
    118         } else {
    119             leds_text[i] = ' ';
    120         }
    121     }
    122     leds_text[8] = '\0';
    123 
    124     qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
    125                        leds_text);
    126     qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
    127                        s->display_text);
    128 }
    129 
    130 /*
    131  * EEPROM 24C01 / 24C02 emulation.
    132  *
    133  * Emulation for serial EEPROMs:
    134  * 24C01 - 1024 bit (128 x 8)
    135  * 24C02 - 2048 bit (256 x 8)
    136  *
    137  * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
    138  */
    139 
    140 #if defined(DEBUG)
    141 #  define logout(fmt, ...) \
    142           fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
    143 #else
    144 #  define logout(fmt, ...) ((void)0)
    145 #endif
    146 
    147 struct _eeprom24c0x_t {
    148   uint8_t tick;
    149   uint8_t address;
    150   uint8_t command;
    151   uint8_t ack;
    152   uint8_t scl;
    153   uint8_t sda;
    154   uint8_t data;
    155   /* uint16_t size; */
    156   uint8_t contents[256];
    157 };
    158 
    159 typedef struct _eeprom24c0x_t eeprom24c0x_t;
    160 
    161 static eeprom24c0x_t spd_eeprom = {
    162     .contents = {
    163         /* 00000000: */
    164         0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
    165         /* 00000008: */
    166         0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
    167         /* 00000010: */
    168         0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
    169         /* 00000018: */
    170         0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
    171         /* 00000020: */
    172         0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
    173         /* 00000028: */
    174         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    175         /* 00000030: */
    176         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    177         /* 00000038: */
    178         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
    179         /* 00000040: */
    180         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    181         /* 00000048: */
    182         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    183         /* 00000050: */
    184         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    185         /* 00000058: */
    186         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    187         /* 00000060: */
    188         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    189         /* 00000068: */
    190         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    191         /* 00000070: */
    192         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    193         /* 00000078: */
    194         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
    195     },
    196 };
    197 
    198 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
    199 {
    200     enum { SDR = 0x4, DDR2 = 0x8 } type;
    201     uint8_t *spd = spd_eeprom.contents;
    202     uint8_t nbanks = 0;
    203     uint16_t density = 0;
    204     int i;
    205 
    206     /* work in terms of MB */
    207     ram_size /= MiB;
    208 
    209     while ((ram_size >= 4) && (nbanks <= 2)) {
    210         int sz_log2 = MIN(31 - clz32(ram_size), 14);
    211         nbanks++;
    212         density |= 1 << (sz_log2 - 2);
    213         ram_size -= 1 << sz_log2;
    214     }
    215 
    216     /* split to 2 banks if possible */
    217     if ((nbanks == 1) && (density > 1)) {
    218         nbanks++;
    219         density >>= 1;
    220     }
    221 
    222     if (density & 0xff00) {
    223         density = (density & 0xe0) | ((density >> 8) & 0x1f);
    224         type = DDR2;
    225     } else if (!(density & 0x1f)) {
    226         type = DDR2;
    227     } else {
    228         type = SDR;
    229     }
    230 
    231     if (ram_size) {
    232         warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
    233                     " of SDRAM", ram_size);
    234     }
    235 
    236     /* fill in SPD memory information */
    237     spd[2] = type;
    238     spd[5] = nbanks;
    239     spd[31] = density;
    240 
    241     /* checksum */
    242     spd[63] = 0;
    243     for (i = 0; i < 63; i++) {
    244         spd[63] += spd[i];
    245     }
    246 
    247     /* copy for SMBUS */
    248     memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
    249 }
    250 
    251 static void generate_eeprom_serial(uint8_t *eeprom)
    252 {
    253     int i, pos = 0;
    254     uint8_t mac[6] = { 0x00 };
    255     uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
    256 
    257     /* version */
    258     eeprom[pos++] = 0x01;
    259 
    260     /* count */
    261     eeprom[pos++] = 0x02;
    262 
    263     /* MAC address */
    264     eeprom[pos++] = 0x01; /* MAC */
    265     eeprom[pos++] = 0x06; /* length */
    266     memcpy(&eeprom[pos], mac, sizeof(mac));
    267     pos += sizeof(mac);
    268 
    269     /* serial number */
    270     eeprom[pos++] = 0x02; /* serial */
    271     eeprom[pos++] = 0x05; /* length */
    272     memcpy(&eeprom[pos], sn, sizeof(sn));
    273     pos += sizeof(sn);
    274 
    275     /* checksum */
    276     eeprom[pos] = 0;
    277     for (i = 0; i < pos; i++) {
    278         eeprom[pos] += eeprom[i];
    279     }
    280 }
    281 
    282 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
    283 {
    284     logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
    285         eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
    286     return eeprom->sda;
    287 }
    288 
    289 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
    290 {
    291     if (eeprom->scl && scl && (eeprom->sda != sda)) {
    292         logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
    293                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
    294                 sda ? "stop" : "start");
    295         if (!sda) {
    296             eeprom->tick = 1;
    297             eeprom->command = 0;
    298         }
    299     } else if (eeprom->tick == 0 && !eeprom->ack) {
    300         /* Waiting for start. */
    301         logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
    302                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
    303     } else if (!eeprom->scl && scl) {
    304         logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
    305                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
    306         if (eeprom->ack) {
    307             logout("\ti2c ack bit = 0\n");
    308             sda = 0;
    309             eeprom->ack = 0;
    310         } else if (eeprom->sda == sda) {
    311             uint8_t bit = (sda != 0);
    312             logout("\ti2c bit = %d\n", bit);
    313             if (eeprom->tick < 9) {
    314                 eeprom->command <<= 1;
    315                 eeprom->command += bit;
    316                 eeprom->tick++;
    317                 if (eeprom->tick == 9) {
    318                     logout("\tcommand 0x%04x, %s\n", eeprom->command,
    319                            bit ? "read" : "write");
    320                     eeprom->ack = 1;
    321                 }
    322             } else if (eeprom->tick < 17) {
    323                 if (eeprom->command & 1) {
    324                     sda = ((eeprom->data & 0x80) != 0);
    325                 }
    326                 eeprom->address <<= 1;
    327                 eeprom->address += bit;
    328                 eeprom->tick++;
    329                 eeprom->data <<= 1;
    330                 if (eeprom->tick == 17) {
    331                     eeprom->data = eeprom->contents[eeprom->address];
    332                     logout("\taddress 0x%04x, data 0x%02x\n",
    333                            eeprom->address, eeprom->data);
    334                     eeprom->ack = 1;
    335                     eeprom->tick = 0;
    336                 }
    337             } else if (eeprom->tick >= 17) {
    338                 sda = 0;
    339             }
    340         } else {
    341             logout("\tsda changed with raising scl\n");
    342         }
    343     } else {
    344         logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
    345                scl, eeprom->sda, sda);
    346     }
    347     eeprom->scl = scl;
    348     eeprom->sda = sda;
    349 }
    350 
    351 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
    352                                 unsigned size)
    353 {
    354     MaltaFPGAState *s = opaque;
    355     uint32_t val = 0;
    356     uint32_t saddr;
    357 
    358     saddr = (addr & 0xfffff);
    359 
    360     switch (saddr) {
    361 
    362     /* SWITCH Register */
    363     case 0x00200:
    364         val = 0x00000000;
    365         break;
    366 
    367     /* STATUS Register */
    368     case 0x00208:
    369 #if TARGET_BIG_ENDIAN
    370         val = 0x00000012;
    371 #else
    372         val = 0x00000010;
    373 #endif
    374         break;
    375 
    376     /* JMPRS Register */
    377     case 0x00210:
    378         val = 0x00;
    379         break;
    380 
    381     /* LEDBAR Register */
    382     case 0x00408:
    383         val = s->leds;
    384         break;
    385 
    386     /* BRKRES Register */
    387     case 0x00508:
    388         val = s->brk;
    389         break;
    390 
    391     /* UART Registers are handled directly by the serial device */
    392 
    393     /* GPOUT Register */
    394     case 0x00a00:
    395         val = s->gpout;
    396         break;
    397 
    398     /* XXX: implement a real I2C controller */
    399 
    400     /* GPINP Register */
    401     case 0x00a08:
    402         /* IN = OUT until a real I2C control is implemented */
    403         if (s->i2csel) {
    404             val = s->i2cout;
    405         } else {
    406             val = 0x00;
    407         }
    408         break;
    409 
    410     /* I2CINP Register */
    411     case 0x00b00:
    412         val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
    413         break;
    414 
    415     /* I2COE Register */
    416     case 0x00b08:
    417         val = s->i2coe;
    418         break;
    419 
    420     /* I2COUT Register */
    421     case 0x00b10:
    422         val = s->i2cout;
    423         break;
    424 
    425     /* I2CSEL Register */
    426     case 0x00b18:
    427         val = s->i2csel;
    428         break;
    429 
    430     default:
    431         qemu_log_mask(LOG_GUEST_ERROR,
    432                       "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
    433                       addr);
    434         break;
    435     }
    436     return val;
    437 }
    438 
    439 static void malta_fpga_write(void *opaque, hwaddr addr,
    440                              uint64_t val, unsigned size)
    441 {
    442     MaltaFPGAState *s = opaque;
    443     uint32_t saddr;
    444 
    445     saddr = (addr & 0xfffff);
    446 
    447     switch (saddr) {
    448 
    449     /* SWITCH Register */
    450     case 0x00200:
    451         break;
    452 
    453     /* JMPRS Register */
    454     case 0x00210:
    455         break;
    456 
    457     /* LEDBAR Register */
    458     case 0x00408:
    459         s->leds = val & 0xff;
    460         malta_fpga_update_display(s);
    461         break;
    462 
    463     /* ASCIIWORD Register */
    464     case 0x00410:
    465         snprintf(s->display_text, 9, "%08X", (uint32_t)val);
    466         malta_fpga_update_display(s);
    467         break;
    468 
    469     /* ASCIIPOS0 to ASCIIPOS7 Registers */
    470     case 0x00418:
    471     case 0x00420:
    472     case 0x00428:
    473     case 0x00430:
    474     case 0x00438:
    475     case 0x00440:
    476     case 0x00448:
    477     case 0x00450:
    478         s->display_text[(saddr - 0x00418) >> 3] = (char) val;
    479         malta_fpga_update_display(s);
    480         break;
    481 
    482     /* SOFTRES Register */
    483     case 0x00500:
    484         if (val == 0x42) {
    485             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
    486         }
    487         break;
    488 
    489     /* BRKRES Register */
    490     case 0x00508:
    491         s->brk = val & 0xff;
    492         break;
    493 
    494     /* UART Registers are handled directly by the serial device */
    495 
    496     /* GPOUT Register */
    497     case 0x00a00:
    498         s->gpout = val & 0xff;
    499         break;
    500 
    501     /* I2COE Register */
    502     case 0x00b08:
    503         s->i2coe = val & 0x03;
    504         break;
    505 
    506     /* I2COUT Register */
    507     case 0x00b10:
    508         eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
    509         s->i2cout = val;
    510         break;
    511 
    512     /* I2CSEL Register */
    513     case 0x00b18:
    514         s->i2csel = val & 0x01;
    515         break;
    516 
    517     default:
    518         qemu_log_mask(LOG_GUEST_ERROR,
    519                       "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
    520                       addr);
    521         break;
    522     }
    523 }
    524 
    525 static const MemoryRegionOps malta_fpga_ops = {
    526     .read = malta_fpga_read,
    527     .write = malta_fpga_write,
    528     .endianness = DEVICE_NATIVE_ENDIAN,
    529 };
    530 
    531 static void malta_fpga_reset(void *opaque)
    532 {
    533     MaltaFPGAState *s = opaque;
    534 
    535     s->leds   = 0x00;
    536     s->brk    = 0x0a;
    537     s->gpout  = 0x00;
    538     s->i2cin  = 0x3;
    539     s->i2coe  = 0x0;
    540     s->i2cout = 0x3;
    541     s->i2csel = 0x1;
    542 
    543     s->display_text[8] = '\0';
    544     snprintf(s->display_text, 9, "        ");
    545 }
    546 
    547 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
    548 {
    549     MaltaFPGAState *s = opaque;
    550 
    551     if (event == CHR_EVENT_OPENED && !s->display_inited) {
    552         qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
    553         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
    554         qemu_chr_fe_printf(&s->display, "+        +\r\n");
    555         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
    556         qemu_chr_fe_printf(&s->display, "\n");
    557         qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
    558         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
    559         qemu_chr_fe_printf(&s->display, "+        +\r\n");
    560         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
    561         s->display_inited = true;
    562     }
    563 }
    564 
    565 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
    566          hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
    567 {
    568     MaltaFPGAState *s;
    569     Chardev *chr;
    570 
    571     s = g_new0(MaltaFPGAState, 1);
    572 
    573     memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
    574                           "malta-fpga", 0x100000);
    575     memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
    576                              &s->iomem, 0, 0x900);
    577     memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
    578                              &s->iomem, 0xa00, 0x100000 - 0xa00);
    579 
    580     memory_region_add_subregion(address_space, base, &s->iomem_lo);
    581     memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
    582 
    583     chr = qemu_chr_new("fpga", "vc:320x200", NULL);
    584     qemu_chr_fe_init(&s->display, chr, NULL);
    585     qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
    586                              malta_fgpa_display_event, NULL, s, NULL, true);
    587 
    588     s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
    589                              230400, uart_chr, DEVICE_NATIVE_ENDIAN);
    590 
    591     malta_fpga_reset(s);
    592     qemu_register_reset(malta_fpga_reset, s);
    593 
    594     return s;
    595 }
    596 
    597 /* Network support */
    598 static void network_init(PCIBus *pci_bus)
    599 {
    600     int i;
    601 
    602     for (i = 0; i < nb_nics; i++) {
    603         NICInfo *nd = &nd_table[i];
    604         const char *default_devaddr = NULL;
    605 
    606         if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
    607             /* The malta board has a PCNet card using PCI SLOT 11 */
    608             default_devaddr = "0b";
    609 
    610         pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
    611     }
    612 }
    613 
    614 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
    615                                       uint64_t kernel_entry)
    616 {
    617     uint16_t *p;
    618 
    619     /* Small bootloader */
    620     p = (uint16_t *)base;
    621 
    622 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
    623 #define NM_HI2(VAL) \
    624           (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
    625 #define NM_LO(VAL)  ((VAL) & 0xfff)
    626 
    627     stw_p(p++, 0x2800); stw_p(p++, 0x001c);
    628                                 /* bc to_here */
    629     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    630                                 /* nop */
    631     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    632                                 /* nop */
    633     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    634                                 /* nop */
    635     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    636                                 /* nop */
    637     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    638                                 /* nop */
    639     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    640                                 /* nop */
    641     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    642                                 /* nop */
    643 
    644     /* to_here: */
    645     if (semihosting_get_argc()) {
    646         /* Preserve a0 content as arguments have been passed    */
    647         stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    648                                 /* nop                          */
    649     } else {
    650         stw_p(p++, 0x0080); stw_p(p++, 0x0002);
    651                                 /* li a0,2                      */
    652     }
    653 
    654     stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));
    655 
    656     stw_p(p++, NM_HI2(ENVP_VADDR - 64));
    657                                 /* lui sp,%hi(ENVP_VADDR - 64)   */
    658 
    659     stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
    660                                 /* ori sp,sp,%lo(ENVP_VADDR - 64) */
    661 
    662     stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));
    663 
    664     stw_p(p++, NM_HI2(ENVP_VADDR));
    665                                 /* lui a1,%hi(ENVP_VADDR)        */
    666 
    667     stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
    668                                 /* ori a1,a1,%lo(ENVP_VADDR)     */
    669 
    670     stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));
    671 
    672     stw_p(p++, NM_HI2(ENVP_VADDR + 8));
    673                                 /* lui a2,%hi(ENVP_VADDR + 8)    */
    674 
    675     stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
    676                                 /* ori a2,a2,%lo(ENVP_VADDR + 8) */
    677 
    678     stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
    679 
    680     stw_p(p++, NM_HI2(loaderparams.ram_low_size));
    681                                 /* lui a3,%hi(loaderparams.ram_low_size) */
    682 
    683     stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
    684                                 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
    685 
    686     /*
    687      * Load BAR registers as done by YAMON:
    688      *
    689      *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
    690      *  - set up PCI0 MEM0 at 0x10000000, size 0x8000000
    691      *  - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
    692      *
    693      */
    694     stw_p(p++, 0xe040); stw_p(p++, 0x0681);
    695                                 /* lui t1, %hi(0xb4000000)      */
    696 
    697 #if TARGET_BIG_ENDIAN
    698 
    699     stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
    700                                 /* lui t0, %hi(0xdf000000)      */
    701 
    702     /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c)  */
    703     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
    704                                 /* sw t0, 0x68(t1)              */
    705 
    706     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
    707                                 /* lui t1, %hi(0xbbe00000)      */
    708 
    709     stw_p(p++, 0xe020); stw_p(p++, 0x0801);
    710                                 /* lui t0, %hi(0xc0000000)      */
    711 
    712     /* 0x48 corresponds to GT_PCI0IOLD                          */
    713     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
    714                                 /* sw t0, 0x48(t1)              */
    715 
    716     stw_p(p++, 0xe020); stw_p(p++, 0x0800);
    717                                 /* lui t0, %hi(0x40000000)      */
    718 
    719     /* 0x50 corresponds to GT_PCI0IOHD                          */
    720     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
    721                                 /* sw t0, 0x50(t1)              */
    722 
    723     stw_p(p++, 0xe020); stw_p(p++, 0x0001);
    724                                 /* lui t0, %hi(0x80000000)      */
    725 
    726     /* 0x58 corresponds to GT_PCI0M0LD                          */
    727     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
    728                                 /* sw t0, 0x58(t1)              */
    729 
    730     stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
    731                                 /* lui t0, %hi(0x3f000000)      */
    732 
    733     /* 0x60 corresponds to GT_PCI0M0HD                          */
    734     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
    735                                 /* sw t0, 0x60(t1)              */
    736 
    737     stw_p(p++, 0xe020); stw_p(p++, 0x0821);
    738                                 /* lui t0, %hi(0xc1000000)      */
    739 
    740     /* 0x80 corresponds to GT_PCI0M1LD                          */
    741     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
    742                                 /* sw t0, 0x80(t1)              */
    743 
    744     stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
    745                                 /* lui t0, %hi(0x5e000000)      */
    746 
    747 #else
    748 
    749     stw_p(p++, 0x0020); stw_p(p++, 0x00df);
    750                                 /* addiu[32] t0, $0, 0xdf       */
    751 
    752     /* 0x68 corresponds to GT_ISD                               */
    753     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
    754                                 /* sw t0, 0x68(t1)              */
    755 
    756     /* Use kseg2 remapped address 0x1be00000                    */
    757     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
    758                                 /* lui t1, %hi(0xbbe00000)      */
    759 
    760     stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
    761                                 /* addiu[32] t0, $0, 0xc0       */
    762 
    763     /* 0x48 corresponds to GT_PCI0IOLD                          */
    764     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
    765                                 /* sw t0, 0x48(t1)              */
    766 
    767     stw_p(p++, 0x0020); stw_p(p++, 0x0040);
    768                                 /* addiu[32] t0, $0, 0x40       */
    769 
    770     /* 0x50 corresponds to GT_PCI0IOHD                          */
    771     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
    772                                 /* sw t0, 0x50(t1)              */
    773 
    774     stw_p(p++, 0x0020); stw_p(p++, 0x0080);
    775                                 /* addiu[32] t0, $0, 0x80       */
    776 
    777     /* 0x58 corresponds to GT_PCI0M0LD                          */
    778     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
    779                                 /* sw t0, 0x58(t1)              */
    780 
    781     stw_p(p++, 0x0020); stw_p(p++, 0x003f);
    782                                 /* addiu[32] t0, $0, 0x3f       */
    783 
    784     /* 0x60 corresponds to GT_PCI0M0HD                          */
    785     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
    786                                 /* sw t0, 0x60(t1)              */
    787 
    788     stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
    789                                 /* addiu[32] t0, $0, 0xc1       */
    790 
    791     /* 0x80 corresponds to GT_PCI0M1LD                          */
    792     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
    793                                 /* sw t0, 0x80(t1)              */
    794 
    795     stw_p(p++, 0x0020); stw_p(p++, 0x005e);
    796                                 /* addiu[32] t0, $0, 0x5e       */
    797 
    798 #endif
    799 
    800     /* 0x88 corresponds to GT_PCI0M1HD                          */
    801     stw_p(p++, 0x8422); stw_p(p++, 0x9088);
    802                                 /* sw t0, 0x88(t1)              */
    803 
    804     stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
    805 
    806     stw_p(p++, NM_HI2(kernel_entry));
    807                                 /* lui t9,%hi(kernel_entry)     */
    808 
    809     stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
    810                                 /* ori t9,t9,%lo(kernel_entry)  */
    811 
    812     stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
    813                                 /* jalrc   t8                   */
    814 }
    815 
    816 /*
    817  * ROM and pseudo bootloader
    818  *
    819  * The following code implements a very very simple bootloader. It first
    820  * loads the registers a0 to a3 to the values expected by the OS, and
    821  * then jump at the kernel address.
    822  *
    823  * The bootloader should pass the locations of the kernel arguments and
    824  * environment variables tables. Those tables contain the 32-bit address
    825  * of NULL terminated strings. The environment variables table should be
    826  * terminated by a NULL address.
    827  *
    828  * For a simpler implementation, the number of kernel arguments is fixed
    829  * to two (the name of the kernel and the command line), and the two
    830  * tables are actually the same one.
    831  *
    832  * The registers a0 to a3 should contain the following values:
    833  *   a0 - number of kernel arguments
    834  *   a1 - 32-bit address of the kernel arguments table
    835  *   a2 - 32-bit address of the environment variables table
    836  *   a3 - RAM size in bytes
    837  */
    838 static void write_bootloader(uint8_t *base, uint64_t run_addr,
    839                              uint64_t kernel_entry)
    840 {
    841     uint32_t *p;
    842 
    843     /* Small bootloader */
    844     p = (uint32_t *)base;
    845 
    846     stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
    847                  ((run_addr + 0x580) & 0x0fffffff) >> 2);
    848     stl_p(p++, 0x00000000);                  /* nop */
    849 
    850     /* YAMON service vector */
    851     stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
    852     stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
    853     stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
    854     stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
    855     stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
    856     stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
    857     stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
    858     stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
    859     stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
    860     stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
    861     stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
    862     stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
    863     stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
    864 
    865 
    866     /* Second part of the bootloader */
    867     p = (uint32_t *) (base + 0x580);
    868 
    869     /*
    870      * Load BAR registers as done by YAMON:
    871      *
    872      *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
    873      *  - set up PCI0 MEM0 at 0x10000000, size 0x7e00000
    874      *  - set up PCI0 MEM1 at 0x18200000, size 0xbc00000
    875      *
    876      */
    877 
    878     /* Bus endianess is always reversed */
    879 #if TARGET_BIG_ENDIAN
    880 #define cpu_to_gt32 cpu_to_le32
    881 #else
    882 #define cpu_to_gt32 cpu_to_be32
    883 #endif
    884 
    885     /* move GT64120 registers from 0x14000000 to 0x1be00000 */
    886     bl_gen_write_u32(&p, /* GT_ISD */
    887                      cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68),
    888                      cpu_to_gt32(0x1be00000 << 3));
    889 
    890     /* setup MEM-to-PCI0 mapping */
    891     /* setup PCI0 io window to 0x18000000-0x181fffff */
    892     bl_gen_write_u32(&p, /* GT_PCI0IOLD */
    893                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48),
    894                      cpu_to_gt32(0x18000000 << 3));
    895     bl_gen_write_u32(&p, /* GT_PCI0IOHD */
    896                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50),
    897                      cpu_to_gt32(0x08000000 << 3));
    898     /* setup PCI0 mem windows */
    899     bl_gen_write_u32(&p, /* GT_PCI0M0LD */
    900                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58),
    901                      cpu_to_gt32(0x10000000 << 3));
    902     bl_gen_write_u32(&p, /* GT_PCI0M0HD */
    903                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60),
    904                      cpu_to_gt32(0x07e00000 << 3));
    905 
    906     bl_gen_write_u32(&p, /* GT_PCI0M1LD */
    907                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80),
    908                      cpu_to_gt32(0x18200000 << 3));
    909     bl_gen_write_u32(&p, /* GT_PCI0M1HD */
    910                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88),
    911                      cpu_to_gt32(0x0bc00000 << 3));
    912 
    913 #undef cpu_to_gt32
    914 
    915     bl_gen_jump_kernel(&p,
    916                        true, ENVP_VADDR - 64,
    917                        /*
    918                         * If semihosting is used, arguments have already been
    919                         * passed, so we preserve $a0.
    920                         */
    921                        !semihosting_get_argc(), 2,
    922                        true, ENVP_VADDR,
    923                        true, ENVP_VADDR + 8,
    924                        true, loaderparams.ram_low_size,
    925                        kernel_entry);
    926 
    927     /* YAMON subroutines */
    928     p = (uint32_t *) (base + 0x800);
    929     stl_p(p++, 0x03e00009);                  /* jalr ra */
    930     stl_p(p++, 0x24020000);                  /* li v0,0 */
    931     /* 808 YAMON print */
    932     stl_p(p++, 0x03e06821);                  /* move t5,ra */
    933     stl_p(p++, 0x00805821);                  /* move t3,a0 */
    934     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
    935     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
    936     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
    937     stl_p(p++, 0x10800005);                  /* beqz a0,834 */
    938     stl_p(p++, 0x00000000);                  /* nop */
    939     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
    940     stl_p(p++, 0x00000000);                  /* nop */
    941     stl_p(p++, 0x1000fff9);                  /* b 814 */
    942     stl_p(p++, 0x00000000);                  /* nop */
    943     stl_p(p++, 0x01a00009);                  /* jalr t5 */
    944     stl_p(p++, 0x01602021);                  /* move a0,t3 */
    945     /* 0x83c YAMON print_count */
    946     stl_p(p++, 0x03e06821);                  /* move t5,ra */
    947     stl_p(p++, 0x00805821);                  /* move t3,a0 */
    948     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
    949     stl_p(p++, 0x00c06021);                  /* move t4,a2 */
    950     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
    951     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
    952     stl_p(p++, 0x00000000);                  /* nop */
    953     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
    954     stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
    955     stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
    956     stl_p(p++, 0x00000000);                  /* nop */
    957     stl_p(p++, 0x01a00009);                  /* jalr t5 */
    958     stl_p(p++, 0x01602021);                  /* move a0,t3 */
    959     /* 0x870 */
    960     stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
    961     stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
    962     stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
    963     stl_p(p++, 0x00000000);                  /* nop */
    964     stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
    965     stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
    966     stl_p(p++, 0x00000000);                  /* nop */
    967     stl_p(p++, 0x03e00009);                  /* jalr ra */
    968     stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
    969 
    970 }
    971 
    972 static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index,
    973                                         const char *string, ...)
    974 {
    975     va_list ap;
    976     uint32_t table_addr;
    977 
    978     if (index >= ENVP_NB_ENTRIES) {
    979         return;
    980     }
    981 
    982     if (string == NULL) {
    983         prom_buf[index] = 0;
    984         return;
    985     }
    986 
    987     table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
    988     prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
    989 
    990     va_start(ap, string);
    991     vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
    992     va_end(ap);
    993 }
    994 
    995 static void reinitialize_rng_seed(void *opaque)
    996 {
    997     char *rng_seed_hex = opaque;
    998     uint8_t rng_seed[32];
    999 
   1000     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
   1001     for (size_t i = 0; i < sizeof(rng_seed); ++i) {
   1002         sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
   1003     }
   1004 }
   1005 
   1006 /* Kernel */
   1007 static uint64_t load_kernel(void)
   1008 {
   1009     uint64_t kernel_entry, kernel_high, initrd_size;
   1010     long kernel_size;
   1011     ram_addr_t initrd_offset;
   1012     int big_endian;
   1013     uint32_t *prom_buf;
   1014     long prom_size;
   1015     int prom_index = 0;
   1016     uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
   1017     uint8_t rng_seed[32];
   1018     char rng_seed_hex[sizeof(rng_seed) * 2 + 1];
   1019     size_t rng_seed_prom_offset;
   1020 
   1021 #if TARGET_BIG_ENDIAN
   1022     big_endian = 1;
   1023 #else
   1024     big_endian = 0;
   1025 #endif
   1026 
   1027     kernel_size = load_elf(loaderparams.kernel_filename, NULL,
   1028                            cpu_mips_kseg0_to_phys, NULL,
   1029                            &kernel_entry, NULL,
   1030                            &kernel_high, NULL, big_endian, EM_MIPS,
   1031                            1, 0);
   1032     if (kernel_size < 0) {
   1033         error_report("could not load kernel '%s': %s",
   1034                      loaderparams.kernel_filename,
   1035                      load_elf_strerror(kernel_size));
   1036         exit(1);
   1037     }
   1038 
   1039     /* Check where the kernel has been linked */
   1040     if (kernel_entry & 0x80000000ll) {
   1041         if (kvm_enabled()) {
   1042             error_report("KVM guest kernels must be linked in useg. "
   1043                          "Did you forget to enable CONFIG_KVM_GUEST?");
   1044             exit(1);
   1045         }
   1046 
   1047         xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
   1048     } else {
   1049         /* if kernel entry is in useg it is probably a KVM T&E kernel */
   1050         mips_um_ksegs_enable();
   1051 
   1052         xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
   1053     }
   1054 
   1055     /* load initrd */
   1056     initrd_size = 0;
   1057     initrd_offset = 0;
   1058     if (loaderparams.initrd_filename) {
   1059         initrd_size = get_image_size(loaderparams.initrd_filename);
   1060         if (initrd_size > 0) {
   1061             /*
   1062              * The kernel allocates the bootmap memory in the low memory after
   1063              * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
   1064              * pages.
   1065              */
   1066             initrd_offset = ROUND_UP(loaderparams.ram_low_size
   1067                                      - (initrd_size + 128 * KiB),
   1068                                      INITRD_PAGE_SIZE);
   1069             if (kernel_high >= initrd_offset) {
   1070                 error_report("memory too small for initial ram disk '%s'",
   1071                              loaderparams.initrd_filename);
   1072                 exit(1);
   1073             }
   1074             initrd_size = load_image_targphys(loaderparams.initrd_filename,
   1075                                               initrd_offset,
   1076                                               loaderparams.ram_size - initrd_offset);
   1077         }
   1078         if (initrd_size == (target_ulong) -1) {
   1079             error_report("could not load initial ram disk '%s'",
   1080                          loaderparams.initrd_filename);
   1081             exit(1);
   1082         }
   1083     }
   1084 
   1085     /* Setup prom parameters. */
   1086     prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
   1087     prom_buf = g_malloc(prom_size);
   1088 
   1089     prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
   1090     if (initrd_size > 0) {
   1091         prom_set(prom_buf, prom_index++,
   1092                  "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
   1093                  xlate_to_kseg0(NULL, initrd_offset),
   1094                  initrd_size, loaderparams.kernel_cmdline);
   1095     } else {
   1096         prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
   1097     }
   1098 
   1099     prom_set(prom_buf, prom_index++, "memsize");
   1100     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
   1101 
   1102     prom_set(prom_buf, prom_index++, "ememsize");
   1103     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
   1104 
   1105     prom_set(prom_buf, prom_index++, "modetty0");
   1106     prom_set(prom_buf, prom_index++, "38400n8r");
   1107 
   1108     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
   1109     for (size_t i = 0; i < sizeof(rng_seed); ++i) {
   1110         sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
   1111     }
   1112     prom_set(prom_buf, prom_index++, "rngseed");
   1113     rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE +
   1114                            sizeof(uint32_t) * ENVP_NB_ENTRIES;
   1115     prom_set(prom_buf, prom_index++, "%s", rng_seed_hex);
   1116 
   1117     prom_set(prom_buf, prom_index++, NULL);
   1118 
   1119     rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
   1120     qemu_register_reset_nosnapshotload(reinitialize_rng_seed,
   1121             rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset);
   1122 
   1123     g_free(prom_buf);
   1124     return kernel_entry;
   1125 }
   1126 
   1127 static void malta_mips_config(MIPSCPU *cpu)
   1128 {
   1129     MachineState *ms = MACHINE(qdev_get_machine());
   1130     unsigned int smp_cpus = ms->smp.cpus;
   1131     CPUMIPSState *env = &cpu->env;
   1132     CPUState *cs = CPU(cpu);
   1133 
   1134     if (ase_mt_available(env)) {
   1135         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
   1136                                            CP0MVPC0_PTC, 8,
   1137                                            smp_cpus * cs->nr_threads - 1);
   1138         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
   1139                                            CP0MVPC0_PVPE, 4, smp_cpus - 1);
   1140     }
   1141 }
   1142 
   1143 static void main_cpu_reset(void *opaque)
   1144 {
   1145     MIPSCPU *cpu = opaque;
   1146     CPUMIPSState *env = &cpu->env;
   1147 
   1148     cpu_reset(CPU(cpu));
   1149 
   1150     /*
   1151      * The bootloader does not need to be rewritten as it is located in a
   1152      * read only location. The kernel location and the arguments table
   1153      * location does not change.
   1154      */
   1155     if (loaderparams.kernel_filename) {
   1156         env->CP0_Status &= ~(1 << CP0St_ERL);
   1157     }
   1158 
   1159     malta_mips_config(cpu);
   1160 
   1161     if (kvm_enabled()) {
   1162         /* Start running from the bootloader we wrote to end of RAM */
   1163         env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
   1164     }
   1165 }
   1166 
   1167 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
   1168                                    qemu_irq *cbus_irq, qemu_irq *i8259_irq)
   1169 {
   1170     CPUMIPSState *env;
   1171     MIPSCPU *cpu;
   1172     int i;
   1173 
   1174     for (i = 0; i < ms->smp.cpus; i++) {
   1175         cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
   1176 
   1177         /* Init internal devices */
   1178         cpu_mips_irq_init_cpu(cpu);
   1179         cpu_mips_clock_init(cpu);
   1180         qemu_register_reset(main_cpu_reset, cpu);
   1181     }
   1182 
   1183     cpu = MIPS_CPU(first_cpu);
   1184     env = &cpu->env;
   1185     *i8259_irq = env->irq[2];
   1186     *cbus_irq = env->irq[4];
   1187 }
   1188 
   1189 static void create_cps(MachineState *ms, MaltaState *s,
   1190                        qemu_irq *cbus_irq, qemu_irq *i8259_irq)
   1191 {
   1192     object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
   1193     object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
   1194                             &error_fatal);
   1195     object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
   1196                             &error_fatal);
   1197     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
   1198     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
   1199 
   1200     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
   1201 
   1202     *i8259_irq = get_cps_irq(&s->cps, 3);
   1203     *cbus_irq = NULL;
   1204 }
   1205 
   1206 static void mips_create_cpu(MachineState *ms, MaltaState *s,
   1207                             qemu_irq *cbus_irq, qemu_irq *i8259_irq)
   1208 {
   1209     if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
   1210         create_cps(ms, s, cbus_irq, i8259_irq);
   1211     } else {
   1212         create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
   1213     }
   1214 }
   1215 
   1216 static
   1217 void mips_malta_init(MachineState *machine)
   1218 {
   1219     ram_addr_t ram_size = machine->ram_size;
   1220     ram_addr_t ram_low_size;
   1221     const char *kernel_filename = machine->kernel_filename;
   1222     const char *kernel_cmdline = machine->kernel_cmdline;
   1223     const char *initrd_filename = machine->initrd_filename;
   1224     char *filename;
   1225     PFlashCFI01 *fl;
   1226     MemoryRegion *system_memory = get_system_memory();
   1227     MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
   1228     MemoryRegion *ram_low_postio;
   1229     MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
   1230     const size_t smbus_eeprom_size = 8 * 256;
   1231     uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
   1232     uint64_t kernel_entry, bootloader_run_addr;
   1233     PCIBus *pci_bus;
   1234     ISABus *isa_bus;
   1235     qemu_irq cbus_irq, i8259_irq;
   1236     I2CBus *smbus;
   1237     DriveInfo *dinfo;
   1238     int fl_idx = 0;
   1239     int be;
   1240     MaltaState *s;
   1241     PCIDevice *piix4;
   1242     DeviceState *dev;
   1243 
   1244     s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
   1245     sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
   1246 
   1247     /* create CPU */
   1248     mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
   1249 
   1250     /* allocate RAM */
   1251     if (ram_size > 2 * GiB) {
   1252         error_report("Too much memory for this machine: %" PRId64 "MB,"
   1253                      " maximum 2048MB", ram_size / MiB);
   1254         exit(1);
   1255     }
   1256 
   1257     /* register RAM at high address where it is undisturbed by IO */
   1258     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
   1259 
   1260     /* alias for pre IO hole access */
   1261     memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
   1262                              machine->ram, 0, MIN(ram_size, 256 * MiB));
   1263     memory_region_add_subregion(system_memory, 0, ram_low_preio);
   1264 
   1265     /* alias for post IO hole access, if there is enough RAM */
   1266     if (ram_size > 512 * MiB) {
   1267         ram_low_postio = g_new(MemoryRegion, 1);
   1268         memory_region_init_alias(ram_low_postio, NULL,
   1269                                  "mips_malta_low_postio.ram",
   1270                                  machine->ram, 512 * MiB,
   1271                                  ram_size - 512 * MiB);
   1272         memory_region_add_subregion(system_memory, 512 * MiB,
   1273                                     ram_low_postio);
   1274     }
   1275 
   1276 #if TARGET_BIG_ENDIAN
   1277     be = 1;
   1278 #else
   1279     be = 0;
   1280 #endif
   1281 
   1282     /* FPGA */
   1283 
   1284     /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
   1285     malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
   1286 
   1287     /* Load firmware in flash / BIOS. */
   1288     dinfo = drive_get(IF_PFLASH, 0, fl_idx);
   1289     fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
   1290                                FLASH_SIZE,
   1291                                dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
   1292                                65536,
   1293                                4, 0x0000, 0x0000, 0x0000, 0x0000, be);
   1294     bios = pflash_cfi01_get_memory(fl);
   1295     fl_idx++;
   1296     if (kernel_filename) {
   1297         ram_low_size = MIN(ram_size, 256 * MiB);
   1298         /* For KVM we reserve 1MB of RAM for running bootloader */
   1299         if (kvm_enabled()) {
   1300             ram_low_size -= 0x100000;
   1301             bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
   1302         } else {
   1303             bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
   1304         }
   1305 
   1306         /* Write a small bootloader to the flash location. */
   1307         loaderparams.ram_size = ram_size;
   1308         loaderparams.ram_low_size = ram_low_size;
   1309         loaderparams.kernel_filename = kernel_filename;
   1310         loaderparams.kernel_cmdline = kernel_cmdline;
   1311         loaderparams.initrd_filename = initrd_filename;
   1312         kernel_entry = load_kernel();
   1313 
   1314         if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
   1315             write_bootloader(memory_region_get_ram_ptr(bios),
   1316                              bootloader_run_addr, kernel_entry);
   1317         } else {
   1318             write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
   1319                                       bootloader_run_addr, kernel_entry);
   1320         }
   1321         if (kvm_enabled()) {
   1322             /* Write the bootloader code @ the end of RAM, 1MB reserved */
   1323             write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
   1324                                     ram_low_size,
   1325                              bootloader_run_addr, kernel_entry);
   1326         }
   1327     } else {
   1328         target_long bios_size = FLASH_SIZE;
   1329         /* The flash region isn't executable from a KVM guest */
   1330         if (kvm_enabled()) {
   1331             error_report("KVM enabled but no -kernel argument was specified. "
   1332                          "Booting from flash is not supported with KVM.");
   1333             exit(1);
   1334         }
   1335         /* Load firmware from flash. */
   1336         if (!dinfo) {
   1337             /* Load a BIOS image. */
   1338             filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
   1339                                       machine->firmware ?: BIOS_FILENAME);
   1340             if (filename) {
   1341                 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
   1342                                                 BIOS_SIZE);
   1343                 g_free(filename);
   1344             } else {
   1345                 bios_size = -1;
   1346             }
   1347             if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
   1348                 machine->firmware && !qtest_enabled()) {
   1349                 error_report("Could not load MIPS bios '%s'", machine->firmware);
   1350                 exit(1);
   1351             }
   1352         }
   1353         /*
   1354          * In little endian mode the 32bit words in the bios are swapped,
   1355          * a neat trick which allows bi-endian firmware.
   1356          */
   1357 #if !TARGET_BIG_ENDIAN
   1358         {
   1359             uint32_t *end, *addr;
   1360             const size_t swapsize = MIN(bios_size, 0x3e0000);
   1361             addr = rom_ptr(FLASH_ADDRESS, swapsize);
   1362             if (!addr) {
   1363                 addr = memory_region_get_ram_ptr(bios);
   1364             }
   1365             end = (void *)addr + swapsize;
   1366             while (addr < end) {
   1367                 bswap32s(addr);
   1368                 addr++;
   1369             }
   1370         }
   1371 #endif
   1372     }
   1373 
   1374     /*
   1375      * Map the BIOS at a 2nd physical location, as on the real board.
   1376      * Copy it so that we can patch in the MIPS revision, which cannot be
   1377      * handled by an overlapping region as the resulting ROM code subpage
   1378      * regions are not executable.
   1379      */
   1380     memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
   1381                            &error_fatal);
   1382     if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
   1383                   FLASH_ADDRESS, BIOS_SIZE)) {
   1384         memcpy(memory_region_get_ram_ptr(bios_copy),
   1385                memory_region_get_ram_ptr(bios), BIOS_SIZE);
   1386     }
   1387     memory_region_set_readonly(bios_copy, true);
   1388     memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
   1389 
   1390     /* Board ID = 0x420 (Malta Board with CoreLV) */
   1391     stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
   1392 
   1393     /* Northbridge */
   1394     dev = sysbus_create_simple("gt64120", -1, NULL);
   1395     pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci"));
   1396     /*
   1397      * The whole address space decoded by the GT-64120A doesn't generate
   1398      * exception when accessing invalid memory. Create an empty slot to
   1399      * emulate this feature.
   1400      */
   1401     empty_slot_init("GT64120", 0, 0x20000000);
   1402 
   1403     /* Southbridge */
   1404     piix4 = pci_create_simple_multifunction(pci_bus, PCI_DEVFN(10, 0), true,
   1405                                             TYPE_PIIX4_PCI_DEVICE);
   1406     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0"));
   1407 
   1408     dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide"));
   1409     pci_ide_create_devs(PCI_DEVICE(dev));
   1410 
   1411     /* Interrupt controller */
   1412     qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq);
   1413 
   1414     /* generate SPD EEPROM data */
   1415     dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm"));
   1416     smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c"));
   1417     generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
   1418     generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
   1419     smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
   1420     g_free(smbus_eeprom_buf);
   1421 
   1422     /* Super I/O: SMS FDC37M817 */
   1423     isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
   1424 
   1425     /* Network card */
   1426     network_init(pci_bus);
   1427 
   1428     /* Optional PCI video card */
   1429     pci_vga_init(pci_bus);
   1430 }
   1431 
   1432 static void mips_malta_instance_init(Object *obj)
   1433 {
   1434     MaltaState *s = MIPS_MALTA(obj);
   1435 
   1436     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
   1437     clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
   1438 }
   1439 
   1440 static const TypeInfo mips_malta_device = {
   1441     .name          = TYPE_MIPS_MALTA,
   1442     .parent        = TYPE_SYS_BUS_DEVICE,
   1443     .instance_size = sizeof(MaltaState),
   1444     .instance_init = mips_malta_instance_init,
   1445 };
   1446 
   1447 GlobalProperty malta_compat[] = {
   1448     { "PIIX4_PM", "memory-hotplug-support", "off" },
   1449     { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
   1450     { "PIIX4_PM", "acpi-root-pci-hotplug", "off" },
   1451     { "PIIX4_PM", "x-not-migrate-acpi-index", "true" },
   1452 };
   1453 const size_t malta_compat_len = G_N_ELEMENTS(malta_compat);
   1454 
   1455 static void mips_malta_machine_init(MachineClass *mc)
   1456 {
   1457     mc->desc = "MIPS Malta Core LV";
   1458     mc->init = mips_malta_init;
   1459     mc->block_default_type = IF_IDE;
   1460     mc->max_cpus = 16;
   1461     mc->is_default = true;
   1462 #ifdef TARGET_MIPS64
   1463     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
   1464 #else
   1465     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
   1466 #endif
   1467     mc->default_ram_id = "mips_malta.ram";
   1468     compat_props_add(mc->compat_props, malta_compat, malta_compat_len);
   1469 }
   1470 
   1471 DEFINE_MACHINE("malta", mips_malta_machine_init)
   1472 
   1473 static void mips_malta_register_types(void)
   1474 {
   1475     type_register_static(&mips_malta_device);
   1476 }
   1477 
   1478 type_init(mips_malta_register_types)