qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

boston.c (30155B)


      1 /*
      2  * MIPS Boston development board emulation.
      3  *
      4  * Copyright (c) 2016 Imagination Technologies
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2.1 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 
     20 #include "qemu/osdep.h"
     21 #include "qemu/units.h"
     22 
     23 #include "elf.h"
     24 #include "hw/boards.h"
     25 #include "hw/char/serial.h"
     26 #include "hw/ide/pci.h"
     27 #include "hw/ide/ahci.h"
     28 #include "hw/loader.h"
     29 #include "hw/loader-fit.h"
     30 #include "hw/mips/bootloader.h"
     31 #include "hw/mips/cps.h"
     32 #include "hw/pci-host/xilinx-pcie.h"
     33 #include "hw/qdev-clock.h"
     34 #include "hw/qdev-properties.h"
     35 #include "qapi/error.h"
     36 #include "qemu/error-report.h"
     37 #include "qemu/guest-random.h"
     38 #include "qemu/log.h"
     39 #include "chardev/char.h"
     40 #include "sysemu/device_tree.h"
     41 #include "sysemu/sysemu.h"
     42 #include "sysemu/qtest.h"
     43 #include "sysemu/runstate.h"
     44 #include "sysemu/reset.h"
     45 
     46 #include <libfdt.h>
     47 #include "qom/object.h"
     48 
     49 #define TYPE_BOSTON "mips-boston"
     50 typedef struct BostonState BostonState;
     51 DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
     52                          TYPE_BOSTON)
     53 
     54 #define FDT_IRQ_TYPE_NONE       0
     55 #define FDT_IRQ_TYPE_LEVEL_HIGH 4
     56 #define FDT_GIC_SHARED          0
     57 #define FDT_GIC_LOCAL           1
     58 #define FDT_BOSTON_CLK_SYS      1
     59 #define FDT_BOSTON_CLK_CPU      2
     60 #define FDT_PCI_IRQ_MAP_PINS    4
     61 #define FDT_PCI_IRQ_MAP_DESCS   6
     62 
     63 struct BostonState {
     64     SysBusDevice parent_obj;
     65 
     66     MachineState *mach;
     67     MIPSCPSState cps;
     68     SerialMM *uart;
     69     Clock *cpuclk;
     70 
     71     CharBackend lcd_display;
     72     char lcd_content[8];
     73     bool lcd_inited;
     74 
     75     hwaddr kernel_entry;
     76     hwaddr fdt_base;
     77 };
     78 
     79 enum {
     80     BOSTON_LOWDDR,
     81     BOSTON_PCIE0,
     82     BOSTON_PCIE1,
     83     BOSTON_PCIE2,
     84     BOSTON_PCIE2_MMIO,
     85     BOSTON_CM,
     86     BOSTON_GIC,
     87     BOSTON_CDMM,
     88     BOSTON_CPC,
     89     BOSTON_PLATREG,
     90     BOSTON_UART,
     91     BOSTON_LCD,
     92     BOSTON_FLASH,
     93     BOSTON_PCIE1_MMIO,
     94     BOSTON_PCIE0_MMIO,
     95     BOSTON_HIGHDDR,
     96 };
     97 
     98 static const MemMapEntry boston_memmap[] = {
     99     [BOSTON_LOWDDR] =     {        0x0,    0x10000000 },
    100     [BOSTON_PCIE0] =      { 0x10000000,     0x2000000 },
    101     [BOSTON_PCIE1] =      { 0x12000000,     0x2000000 },
    102     [BOSTON_PCIE2] =      { 0x14000000,     0x2000000 },
    103     [BOSTON_PCIE2_MMIO] = { 0x16000000,      0x100000 },
    104     [BOSTON_CM] =         { 0x16100000,       0x20000 },
    105     [BOSTON_GIC] =        { 0x16120000,       0x20000 },
    106     [BOSTON_CDMM] =       { 0x16140000,        0x8000 },
    107     [BOSTON_CPC] =        { 0x16200000,        0x8000 },
    108     [BOSTON_PLATREG] =    { 0x17ffd000,        0x1000 },
    109     [BOSTON_UART] =       { 0x17ffe000,          0x20 },
    110     [BOSTON_LCD] =        { 0x17fff000,           0x8 },
    111     [BOSTON_FLASH] =      { 0x18000000,     0x8000000 },
    112     [BOSTON_PCIE1_MMIO] = { 0x20000000,    0x20000000 },
    113     [BOSTON_PCIE0_MMIO] = { 0x40000000,    0x40000000 },
    114     [BOSTON_HIGHDDR] =    { 0x80000000,           0x0 },
    115 };
    116 
    117 enum boston_plat_reg {
    118     PLAT_FPGA_BUILD     = 0x00,
    119     PLAT_CORE_CL        = 0x04,
    120     PLAT_WRAPPER_CL     = 0x08,
    121     PLAT_SYSCLK_STATUS  = 0x0c,
    122     PLAT_SOFTRST_CTL    = 0x10,
    123 #define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
    124     PLAT_DDR3_STATUS    = 0x14,
    125 #define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
    126 #define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
    127     PLAT_PCIE_STATUS    = 0x18,
    128 #define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
    129 #define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
    130 #define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
    131     PLAT_FLASH_CTL      = 0x1c,
    132     PLAT_SPARE0         = 0x20,
    133     PLAT_SPARE1         = 0x24,
    134     PLAT_SPARE2         = 0x28,
    135     PLAT_SPARE3         = 0x2c,
    136     PLAT_MMCM_DIV       = 0x30,
    137 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
    138 #define PLAT_MMCM_DIV_INPUT_SHIFT       8
    139 #define PLAT_MMCM_DIV_MUL_SHIFT         16
    140 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
    141     PLAT_BUILD_CFG      = 0x34,
    142 #define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
    143 #define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
    144 #define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
    145 #define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
    146     PLAT_DDR_CFG        = 0x38,
    147 #define PLAT_DDR_CFG_SIZE               (0xf << 0)
    148 #define PLAT_DDR_CFG_MHZ                (0xfff << 4)
    149     PLAT_NOC_PCIE0_ADDR = 0x3c,
    150     PLAT_NOC_PCIE1_ADDR = 0x40,
    151     PLAT_NOC_PCIE2_ADDR = 0x44,
    152     PLAT_SYS_CTL        = 0x48,
    153 };
    154 
    155 static void boston_lcd_event(void *opaque, QEMUChrEvent event)
    156 {
    157     BostonState *s = opaque;
    158     if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
    159         qemu_chr_fe_printf(&s->lcd_display, "        ");
    160         s->lcd_inited = true;
    161     }
    162 }
    163 
    164 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
    165                                 unsigned size)
    166 {
    167     BostonState *s = opaque;
    168     uint64_t val = 0;
    169 
    170     switch (size) {
    171     case 8:
    172         val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
    173         val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
    174         val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
    175         val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
    176         /* fall through */
    177     case 4:
    178         val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
    179         val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
    180         /* fall through */
    181     case 2:
    182         val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
    183         /* fall through */
    184     case 1:
    185         val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
    186         break;
    187     }
    188 
    189     return val;
    190 }
    191 
    192 static void boston_lcd_write(void *opaque, hwaddr addr,
    193                              uint64_t val, unsigned size)
    194 {
    195     BostonState *s = opaque;
    196 
    197     switch (size) {
    198     case 8:
    199         s->lcd_content[(addr + 7) & 0x7] = val >> 56;
    200         s->lcd_content[(addr + 6) & 0x7] = val >> 48;
    201         s->lcd_content[(addr + 5) & 0x7] = val >> 40;
    202         s->lcd_content[(addr + 4) & 0x7] = val >> 32;
    203         /* fall through */
    204     case 4:
    205         s->lcd_content[(addr + 3) & 0x7] = val >> 24;
    206         s->lcd_content[(addr + 2) & 0x7] = val >> 16;
    207         /* fall through */
    208     case 2:
    209         s->lcd_content[(addr + 1) & 0x7] = val >> 8;
    210         /* fall through */
    211     case 1:
    212         s->lcd_content[(addr + 0) & 0x7] = val;
    213         break;
    214     }
    215 
    216     qemu_chr_fe_printf(&s->lcd_display,
    217                        "\r%-8.8s", s->lcd_content);
    218 }
    219 
    220 static const MemoryRegionOps boston_lcd_ops = {
    221     .read = boston_lcd_read,
    222     .write = boston_lcd_write,
    223     .endianness = DEVICE_NATIVE_ENDIAN,
    224 };
    225 
    226 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
    227                                     unsigned size)
    228 {
    229     BostonState *s = opaque;
    230     uint32_t gic_freq, val;
    231 
    232     if (size != 4) {
    233         qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
    234         return 0;
    235     }
    236 
    237     switch (addr & 0xffff) {
    238     case PLAT_FPGA_BUILD:
    239     case PLAT_CORE_CL:
    240     case PLAT_WRAPPER_CL:
    241         return 0;
    242     case PLAT_DDR3_STATUS:
    243         return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
    244     case PLAT_MMCM_DIV:
    245         gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
    246         val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
    247         val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
    248         val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
    249         val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
    250         return val;
    251     case PLAT_BUILD_CFG:
    252         val = PLAT_BUILD_CFG_PCIE0_EN;
    253         val |= PLAT_BUILD_CFG_PCIE1_EN;
    254         val |= PLAT_BUILD_CFG_PCIE2_EN;
    255         return val;
    256     case PLAT_DDR_CFG:
    257         val = s->mach->ram_size / GiB;
    258         assert(!(val & ~PLAT_DDR_CFG_SIZE));
    259         val |= PLAT_DDR_CFG_MHZ;
    260         return val;
    261     default:
    262         qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
    263                       addr & 0xffff);
    264         return 0;
    265     }
    266 }
    267 
    268 static void boston_platreg_write(void *opaque, hwaddr addr,
    269                                  uint64_t val, unsigned size)
    270 {
    271     if (size != 4) {
    272         qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
    273         return;
    274     }
    275 
    276     switch (addr & 0xffff) {
    277     case PLAT_FPGA_BUILD:
    278     case PLAT_CORE_CL:
    279     case PLAT_WRAPPER_CL:
    280     case PLAT_DDR3_STATUS:
    281     case PLAT_PCIE_STATUS:
    282     case PLAT_MMCM_DIV:
    283     case PLAT_BUILD_CFG:
    284     case PLAT_DDR_CFG:
    285         /* read only */
    286         break;
    287     case PLAT_SOFTRST_CTL:
    288         if (val & PLAT_SOFTRST_CTL_SYSRESET) {
    289             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
    290         }
    291         break;
    292     default:
    293         qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
    294                       " = 0x%" PRIx64 "\n", addr & 0xffff, val);
    295         break;
    296     }
    297 }
    298 
    299 static const MemoryRegionOps boston_platreg_ops = {
    300     .read = boston_platreg_read,
    301     .write = boston_platreg_write,
    302     .endianness = DEVICE_NATIVE_ENDIAN,
    303 };
    304 
    305 static void mips_boston_instance_init(Object *obj)
    306 {
    307     BostonState *s = BOSTON(obj);
    308 
    309     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
    310     clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
    311 }
    312 
    313 static const TypeInfo boston_device = {
    314     .name          = TYPE_BOSTON,
    315     .parent        = TYPE_SYS_BUS_DEVICE,
    316     .instance_size = sizeof(BostonState),
    317     .instance_init = mips_boston_instance_init,
    318 };
    319 
    320 static void boston_register_types(void)
    321 {
    322     type_register_static(&boston_device);
    323 }
    324 type_init(boston_register_types)
    325 
    326 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr)
    327 {
    328     uint64_t regaddr;
    329 
    330     /* Move CM GCRs */
    331     regaddr = cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS),
    332     bl_gen_write_ulong(&p, regaddr,
    333                        boston_memmap[BOSTON_CM].base);
    334 
    335     /* Move & enable GIC GCRs */
    336     regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
    337                                            + GCR_GIC_BASE_OFS),
    338     bl_gen_write_ulong(&p, regaddr,
    339                        boston_memmap[BOSTON_GIC].base | GCR_GIC_BASE_GICEN_MSK);
    340 
    341     /* Move & enable CPC GCRs */
    342     regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
    343                                            + GCR_CPC_BASE_OFS),
    344     bl_gen_write_ulong(&p, regaddr,
    345                        boston_memmap[BOSTON_CPC].base | GCR_CPC_BASE_CPCEN_MSK);
    346 
    347     /*
    348      * Setup argument registers to follow the UHI boot protocol:
    349      *
    350      * a0/$4 = -2
    351      * a1/$5 = virtual address of FDT
    352      * a2/$6 = 0
    353      * a3/$7 = 0
    354      */
    355     bl_gen_jump_kernel(&p,
    356                        true, 0, true, (int32_t)-2,
    357                        true, fdt_addr, true, 0, true, 0,
    358                        kernel_entry);
    359 }
    360 
    361 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
    362                                      const void *match_data, hwaddr *load_addr)
    363 {
    364     BostonState *s = BOSTON(opaque);
    365     MachineState *machine = s->mach;
    366     const char *cmdline;
    367     int err;
    368     size_t ram_low_sz, ram_high_sz;
    369     size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
    370     g_autofree void *fdt = g_malloc0(fdt_sz);
    371     uint8_t rng_seed[32];
    372 
    373     err = fdt_open_into(fdt_orig, fdt, fdt_sz);
    374     if (err) {
    375         fprintf(stderr, "unable to open FDT\n");
    376         return NULL;
    377     }
    378 
    379     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
    380     qemu_fdt_setprop(fdt, "/chosen", "rng-seed", rng_seed, sizeof(rng_seed));
    381 
    382     cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
    383             ? machine->kernel_cmdline : " ";
    384     err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
    385     if (err < 0) {
    386         fprintf(stderr, "couldn't set /chosen/bootargs\n");
    387         return NULL;
    388     }
    389 
    390     ram_low_sz = MIN(256 * MiB, machine->ram_size);
    391     ram_high_sz = machine->ram_size - ram_low_sz;
    392     qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
    393                         1, boston_memmap[BOSTON_LOWDDR].base, 1, ram_low_sz,
    394                         1, boston_memmap[BOSTON_HIGHDDR].base + ram_low_sz,
    395                         1, ram_high_sz);
    396 
    397     fdt = g_realloc(fdt, fdt_totalsize(fdt));
    398     qemu_fdt_dumpdtb(fdt, fdt_sz);
    399 
    400     s->fdt_base = *load_addr;
    401 
    402     return g_steal_pointer(&fdt);
    403 }
    404 
    405 static const void *boston_kernel_filter(void *opaque, const void *kernel,
    406                                         hwaddr *load_addr, hwaddr *entry_addr)
    407 {
    408     BostonState *s = BOSTON(opaque);
    409 
    410     s->kernel_entry = *entry_addr;
    411 
    412     return kernel;
    413 }
    414 
    415 static const struct fit_loader_match boston_matches[] = {
    416     { "img,boston" },
    417     { NULL },
    418 };
    419 
    420 static const struct fit_loader boston_fit_loader = {
    421     .matches = boston_matches,
    422     .addr_to_phys = cpu_mips_kseg0_to_phys,
    423     .fdt_filter = boston_fdt_filter,
    424     .kernel_filter = boston_kernel_filter,
    425 };
    426 
    427 static inline XilinxPCIEHost *
    428 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
    429                  hwaddr cfg_base, uint64_t cfg_size,
    430                  hwaddr mmio_base, uint64_t mmio_size,
    431                  qemu_irq irq)
    432 {
    433     DeviceState *dev;
    434     MemoryRegion *cfg, *mmio;
    435 
    436     dev = qdev_new(TYPE_XILINX_PCIE_HOST);
    437 
    438     qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
    439     qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
    440     qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
    441     qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
    442     qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
    443 
    444     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    445 
    446     cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
    447     memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
    448 
    449     mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
    450     memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
    451 
    452     qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
    453 
    454     return XILINX_PCIE_HOST(dev);
    455 }
    456 
    457 
    458 static void fdt_create_pcie(void *fdt, int gic_ph, int irq, hwaddr reg_base,
    459                             hwaddr reg_size, hwaddr mmio_base, hwaddr mmio_size)
    460 {
    461     int i;
    462     char *name, *intc_name;
    463     uint32_t intc_ph;
    464     uint32_t interrupt_map[FDT_PCI_IRQ_MAP_PINS][FDT_PCI_IRQ_MAP_DESCS];
    465 
    466     intc_ph = qemu_fdt_alloc_phandle(fdt);
    467     name = g_strdup_printf("/soc/pci@%" HWADDR_PRIx, reg_base);
    468     qemu_fdt_add_subnode(fdt, name);
    469     qemu_fdt_setprop_string(fdt, name, "compatible",
    470                             "xlnx,axi-pcie-host-1.00.a");
    471     qemu_fdt_setprop_string(fdt, name, "device_type", "pci");
    472     qemu_fdt_setprop_cells(fdt, name, "reg", reg_base, reg_size);
    473 
    474     qemu_fdt_setprop_cell(fdt, name, "#address-cells", 3);
    475     qemu_fdt_setprop_cell(fdt, name, "#size-cells", 2);
    476     qemu_fdt_setprop_cell(fdt, name, "#interrupt-cells", 1);
    477 
    478     qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
    479     qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, irq,
    480                             FDT_IRQ_TYPE_LEVEL_HIGH);
    481 
    482     qemu_fdt_setprop_cells(fdt, name, "ranges", 0x02000000, 0, mmio_base,
    483                             mmio_base, 0, mmio_size);
    484     qemu_fdt_setprop_cells(fdt, name, "bus-range", 0x00, 0xff);
    485 
    486 
    487 
    488     intc_name = g_strdup_printf("%s/interrupt-controller", name);
    489     qemu_fdt_add_subnode(fdt, intc_name);
    490     qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
    491     qemu_fdt_setprop_cell(fdt, intc_name, "#address-cells", 0);
    492     qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
    493     qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_ph);
    494 
    495     qemu_fdt_setprop_cells(fdt, name, "interrupt-map-mask", 0, 0, 0, 7);
    496     for (i = 0; i < FDT_PCI_IRQ_MAP_PINS; i++) {
    497         uint32_t *irqmap = interrupt_map[i];
    498 
    499         irqmap[0] = cpu_to_be32(0);
    500         irqmap[1] = cpu_to_be32(0);
    501         irqmap[2] = cpu_to_be32(0);
    502         irqmap[3] = cpu_to_be32(i + 1);
    503         irqmap[4] = cpu_to_be32(intc_ph);
    504         irqmap[5] = cpu_to_be32(i + 1);
    505     }
    506     qemu_fdt_setprop(fdt, name, "interrupt-map",
    507                      &interrupt_map, sizeof(interrupt_map));
    508 
    509     g_free(intc_name);
    510     g_free(name);
    511 }
    512 
    513 static const void *create_fdt(BostonState *s,
    514                               const MemMapEntry *memmap, int *dt_size)
    515 {
    516     void *fdt;
    517     int cpu;
    518     MachineState *mc = s->mach;
    519     uint32_t platreg_ph, gic_ph, clk_ph;
    520     char *name, *gic_name, *platreg_name, *stdout_name;
    521     static const char * const syscon_compat[2] = {
    522         "img,boston-platform-regs", "syscon"
    523     };
    524 
    525     fdt = create_device_tree(dt_size);
    526     if (!fdt) {
    527         error_report("create_device_tree() failed");
    528         exit(1);
    529     }
    530 
    531     platreg_ph = qemu_fdt_alloc_phandle(fdt);
    532     gic_ph = qemu_fdt_alloc_phandle(fdt);
    533     clk_ph = qemu_fdt_alloc_phandle(fdt);
    534 
    535     qemu_fdt_setprop_string(fdt, "/", "model", "img,boston");
    536     qemu_fdt_setprop_string(fdt, "/", "compatible", "img,boston");
    537     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x1);
    538     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x1);
    539 
    540 
    541     qemu_fdt_add_subnode(fdt, "/cpus");
    542     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
    543     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
    544 
    545     for (cpu = 0; cpu < mc->smp.cpus; cpu++) {
    546         name = g_strdup_printf("/cpus/cpu@%d", cpu);
    547         qemu_fdt_add_subnode(fdt, name);
    548         qemu_fdt_setprop_string(fdt, name, "compatible", "img,mips");
    549         qemu_fdt_setprop_string(fdt, name, "status", "okay");
    550         qemu_fdt_setprop_cell(fdt, name, "reg", cpu);
    551         qemu_fdt_setprop_string(fdt, name, "device_type", "cpu");
    552         qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
    553         g_free(name);
    554     }
    555 
    556     qemu_fdt_add_subnode(fdt, "/soc");
    557     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
    558     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
    559     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x1);
    560     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x1);
    561 
    562     fdt_create_pcie(fdt, gic_ph, 2,
    563                 memmap[BOSTON_PCIE0].base, memmap[BOSTON_PCIE0].size,
    564                 memmap[BOSTON_PCIE0_MMIO].base, memmap[BOSTON_PCIE0_MMIO].size);
    565 
    566     fdt_create_pcie(fdt, gic_ph, 1,
    567                 memmap[BOSTON_PCIE1].base, memmap[BOSTON_PCIE1].size,
    568                 memmap[BOSTON_PCIE1_MMIO].base, memmap[BOSTON_PCIE1_MMIO].size);
    569 
    570     fdt_create_pcie(fdt, gic_ph, 0,
    571                 memmap[BOSTON_PCIE2].base, memmap[BOSTON_PCIE2].size,
    572                 memmap[BOSTON_PCIE2_MMIO].base, memmap[BOSTON_PCIE2_MMIO].size);
    573 
    574     /* GIC with it's timer node */
    575     gic_name = g_strdup_printf("/soc/interrupt-controller@%" HWADDR_PRIx,
    576                                 memmap[BOSTON_GIC].base);
    577     qemu_fdt_add_subnode(fdt, gic_name);
    578     qemu_fdt_setprop_string(fdt, gic_name, "compatible", "mti,gic");
    579     qemu_fdt_setprop_cells(fdt, gic_name, "reg", memmap[BOSTON_GIC].base,
    580                             memmap[BOSTON_GIC].size);
    581     qemu_fdt_setprop(fdt, gic_name, "interrupt-controller", NULL, 0);
    582     qemu_fdt_setprop_cell(fdt, gic_name, "#interrupt-cells", 3);
    583     qemu_fdt_setprop_cell(fdt, gic_name, "phandle", gic_ph);
    584 
    585     name = g_strdup_printf("%s/timer", gic_name);
    586     qemu_fdt_add_subnode(fdt, name);
    587     qemu_fdt_setprop_string(fdt, name, "compatible", "mti,gic-timer");
    588     qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_LOCAL, 1,
    589                             FDT_IRQ_TYPE_NONE);
    590     qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
    591     g_free(name);
    592     g_free(gic_name);
    593 
    594     /* CDMM node */
    595     name = g_strdup_printf("/soc/cdmm@%" HWADDR_PRIx, memmap[BOSTON_CDMM].base);
    596     qemu_fdt_add_subnode(fdt, name);
    597     qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cdmm");
    598     qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CDMM].base,
    599                             memmap[BOSTON_CDMM].size);
    600     g_free(name);
    601 
    602     /* CPC node */
    603     name = g_strdup_printf("/soc/cpc@%" HWADDR_PRIx, memmap[BOSTON_CPC].base);
    604     qemu_fdt_add_subnode(fdt, name);
    605     qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cpc");
    606     qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CPC].base,
    607                             memmap[BOSTON_CPC].size);
    608     g_free(name);
    609 
    610     /* platreg and it's clk node */
    611     platreg_name = g_strdup_printf("/soc/system-controller@%" HWADDR_PRIx,
    612                                    memmap[BOSTON_PLATREG].base);
    613     qemu_fdt_add_subnode(fdt, platreg_name);
    614     qemu_fdt_setprop_string_array(fdt, platreg_name, "compatible",
    615                                  (char **)&syscon_compat,
    616                                  ARRAY_SIZE(syscon_compat));
    617     qemu_fdt_setprop_cells(fdt, platreg_name, "reg",
    618                            memmap[BOSTON_PLATREG].base,
    619                            memmap[BOSTON_PLATREG].size);
    620     qemu_fdt_setprop_cell(fdt, platreg_name, "phandle", platreg_ph);
    621 
    622     name = g_strdup_printf("%s/clock", platreg_name);
    623     qemu_fdt_add_subnode(fdt, name);
    624     qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-clock");
    625     qemu_fdt_setprop_cell(fdt, name, "#clock-cells", 1);
    626     qemu_fdt_setprop_cell(fdt, name, "phandle", clk_ph);
    627     g_free(name);
    628     g_free(platreg_name);
    629 
    630     /* reboot node */
    631     name = g_strdup_printf("/soc/reboot");
    632     qemu_fdt_add_subnode(fdt, name);
    633     qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-reboot");
    634     qemu_fdt_setprop_cell(fdt, name, "regmap", platreg_ph);
    635     qemu_fdt_setprop_cell(fdt, name, "offset", 0x10);
    636     qemu_fdt_setprop_cell(fdt, name, "mask", 0x10);
    637     g_free(name);
    638 
    639     /* uart node */
    640     name = g_strdup_printf("/soc/uart@%" HWADDR_PRIx, memmap[BOSTON_UART].base);
    641     qemu_fdt_add_subnode(fdt, name);
    642     qemu_fdt_setprop_string(fdt, name, "compatible", "ns16550a");
    643     qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_UART].base,
    644                             memmap[BOSTON_UART].size);
    645     qemu_fdt_setprop_cell(fdt, name, "reg-shift", 0x2);
    646     qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
    647     qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, 3,
    648                             FDT_IRQ_TYPE_LEVEL_HIGH);
    649     qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_SYS);
    650 
    651     qemu_fdt_add_subnode(fdt, "/chosen");
    652     stdout_name = g_strdup_printf("%s:115200", name);
    653     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", stdout_name);
    654     g_free(stdout_name);
    655     g_free(name);
    656 
    657     /* lcd node */
    658     name = g_strdup_printf("/soc/lcd@%" HWADDR_PRIx, memmap[BOSTON_LCD].base);
    659     qemu_fdt_add_subnode(fdt, name);
    660     qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-lcd");
    661     qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_LCD].base,
    662                             memmap[BOSTON_LCD].size);
    663     g_free(name);
    664 
    665     name = g_strdup_printf("/memory@0");
    666     qemu_fdt_add_subnode(fdt, name);
    667     qemu_fdt_setprop_string(fdt, name, "device_type", "memory");
    668     g_free(name);
    669 
    670     return fdt;
    671 }
    672 
    673 static void boston_mach_init(MachineState *machine)
    674 {
    675     DeviceState *dev;
    676     BostonState *s;
    677     MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
    678     MemoryRegion *sys_mem = get_system_memory();
    679     XilinxPCIEHost *pcie2;
    680     PCIDevice *ahci;
    681     DriveInfo *hd[6];
    682     Chardev *chr;
    683     int fw_size, fit_err;
    684 
    685     if ((machine->ram_size % GiB) ||
    686         (machine->ram_size > (2 * GiB))) {
    687         error_report("Memory size must be 1GB or 2GB");
    688         exit(1);
    689     }
    690 
    691     dev = qdev_new(TYPE_BOSTON);
    692     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    693 
    694     s = BOSTON(dev);
    695     s->mach = machine;
    696 
    697     if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
    698         error_report("Boston requires CPUs which support CPS");
    699         exit(1);
    700     }
    701 
    702     object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
    703     object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
    704                             &error_fatal);
    705     object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
    706                             &error_fatal);
    707     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
    708                           qdev_get_clock_out(dev, "cpu-refclk"));
    709     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
    710 
    711     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
    712 
    713     flash =  g_new(MemoryRegion, 1);
    714     memory_region_init_rom(flash, NULL, "boston.flash",
    715                            boston_memmap[BOSTON_FLASH].size, &error_fatal);
    716     memory_region_add_subregion_overlap(sys_mem,
    717                                         boston_memmap[BOSTON_FLASH].base,
    718                                         flash, 0);
    719 
    720     memory_region_add_subregion_overlap(sys_mem,
    721                                         boston_memmap[BOSTON_HIGHDDR].base,
    722                                         machine->ram, 0);
    723 
    724     ddr_low_alias = g_new(MemoryRegion, 1);
    725     memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
    726                              machine->ram, 0,
    727                              MIN(machine->ram_size, (256 * MiB)));
    728     memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
    729 
    730     xilinx_pcie_init(sys_mem, 0,
    731                      boston_memmap[BOSTON_PCIE0].base,
    732                      boston_memmap[BOSTON_PCIE0].size,
    733                      boston_memmap[BOSTON_PCIE0_MMIO].base,
    734                      boston_memmap[BOSTON_PCIE0_MMIO].size,
    735                      get_cps_irq(&s->cps, 2));
    736 
    737     xilinx_pcie_init(sys_mem, 1,
    738                      boston_memmap[BOSTON_PCIE1].base,
    739                      boston_memmap[BOSTON_PCIE1].size,
    740                      boston_memmap[BOSTON_PCIE1_MMIO].base,
    741                      boston_memmap[BOSTON_PCIE1_MMIO].size,
    742                      get_cps_irq(&s->cps, 1));
    743 
    744     pcie2 = xilinx_pcie_init(sys_mem, 2,
    745                              boston_memmap[BOSTON_PCIE2].base,
    746                              boston_memmap[BOSTON_PCIE2].size,
    747                              boston_memmap[BOSTON_PCIE2_MMIO].base,
    748                              boston_memmap[BOSTON_PCIE2_MMIO].size,
    749                              get_cps_irq(&s->cps, 0));
    750 
    751     platreg = g_new(MemoryRegion, 1);
    752     memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
    753                           "boston-platregs",
    754                           boston_memmap[BOSTON_PLATREG].size);
    755     memory_region_add_subregion_overlap(sys_mem,
    756                           boston_memmap[BOSTON_PLATREG].base, platreg, 0);
    757 
    758     s->uart = serial_mm_init(sys_mem, boston_memmap[BOSTON_UART].base, 2,
    759                              get_cps_irq(&s->cps, 3), 10000000,
    760                              serial_hd(0), DEVICE_NATIVE_ENDIAN);
    761 
    762     lcd = g_new(MemoryRegion, 1);
    763     memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
    764     memory_region_add_subregion_overlap(sys_mem,
    765                                         boston_memmap[BOSTON_LCD].base, lcd, 0);
    766 
    767     chr = qemu_chr_new("lcd", "vc:320x240", NULL);
    768     qemu_chr_fe_init(&s->lcd_display, chr, NULL);
    769     qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
    770                              boston_lcd_event, NULL, s, NULL, true);
    771 
    772     ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
    773                                            PCI_DEVFN(0, 0),
    774                                            true, TYPE_ICH9_AHCI);
    775     g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
    776     ide_drive_get(hd, ahci_get_num_ports(ahci));
    777     ahci_ide_create_devs(ahci, hd);
    778 
    779     if (machine->firmware) {
    780         fw_size = load_image_targphys(machine->firmware,
    781                                       0x1fc00000, 4 * MiB);
    782         if (fw_size == -1) {
    783             error_report("unable to load firmware image '%s'",
    784                           machine->firmware);
    785             exit(1);
    786         }
    787     } else if (machine->kernel_filename) {
    788         uint64_t kernel_entry, kernel_high;
    789         ssize_t kernel_size;
    790 
    791         kernel_size = load_elf(machine->kernel_filename, NULL,
    792                            cpu_mips_kseg0_to_phys, NULL,
    793                            &kernel_entry, NULL, &kernel_high,
    794                            NULL, 0, EM_MIPS, 1, 0);
    795 
    796         if (kernel_size > 0) {
    797             int dt_size;
    798             g_autofree const void *dtb_file_data = NULL;
    799             g_autofree const void *dtb_load_data = NULL;
    800             hwaddr dtb_paddr = QEMU_ALIGN_UP(kernel_high, 64 * KiB);
    801             hwaddr dtb_vaddr = cpu_mips_phys_to_kseg0(NULL, dtb_paddr);
    802 
    803             s->kernel_entry = kernel_entry;
    804             if (machine->dtb) {
    805                 dtb_file_data = load_device_tree(machine->dtb, &dt_size);
    806             } else {
    807                 dtb_file_data = create_fdt(s, boston_memmap, &dt_size);
    808             }
    809 
    810             dtb_load_data = boston_fdt_filter(s, dtb_file_data,
    811                                               NULL, &dtb_vaddr);
    812 
    813             /* Calculate real fdt size after filter */
    814             dt_size = fdt_totalsize(dtb_load_data);
    815             rom_add_blob_fixed("dtb", dtb_load_data, dt_size, dtb_paddr);
    816             qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
    817                                 rom_ptr(dtb_paddr, dt_size));
    818         } else {
    819             /* Try to load file as FIT */
    820             fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
    821             if (fit_err) {
    822                 error_report("unable to load kernel image");
    823                 exit(1);
    824             }
    825         }
    826 
    827         gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
    828                      s->kernel_entry, s->fdt_base);
    829     } else if (!qtest_enabled()) {
    830         error_report("Please provide either a -kernel or -bios argument");
    831         exit(1);
    832     }
    833 }
    834 
    835 static void boston_mach_class_init(MachineClass *mc)
    836 {
    837     mc->desc = "MIPS Boston";
    838     mc->init = boston_mach_init;
    839     mc->block_default_type = IF_IDE;
    840     mc->default_ram_size = 1 * GiB;
    841     mc->default_ram_id = "boston.ddr";
    842     mc->max_cpus = 16;
    843     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
    844 }
    845 
    846 DEFINE_MACHINE("boston", boston_mach_class_init)