qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

sparse-mem.c (4295B)


      1 /*
      2  * A sparse memory device. Useful for fuzzing
      3  *
      4  * Copyright Red Hat Inc., 2021
      5  *
      6  * Authors:
      7  *  Alexander Bulekov   <alxndr@bu.edu>
      8  *
      9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
     10  * See the COPYING file in the top-level directory.
     11  */
     12 
     13 #include "qemu/osdep.h"
     14 
     15 #include "hw/qdev-properties.h"
     16 #include "hw/sysbus.h"
     17 #include "qapi/error.h"
     18 #include "qemu/units.h"
     19 #include "sysemu/qtest.h"
     20 #include "hw/mem/sparse-mem.h"
     21 
     22 #define SPARSE_MEM(obj) OBJECT_CHECK(SparseMemState, (obj), TYPE_SPARSE_MEM)
     23 #define SPARSE_BLOCK_SIZE 0x1000
     24 
     25 typedef struct SparseMemState {
     26     SysBusDevice parent_obj;
     27     MemoryRegion mmio;
     28     uint64_t baseaddr;
     29     uint64_t length;
     30     uint64_t size_used;
     31     uint64_t maxsize;
     32     GHashTable *mapped;
     33 } SparseMemState;
     34 
     35 typedef struct sparse_mem_block {
     36     uint8_t data[SPARSE_BLOCK_SIZE];
     37 } sparse_mem_block;
     38 
     39 static uint64_t sparse_mem_read(void *opaque, hwaddr addr, unsigned int size)
     40 {
     41     SparseMemState *s = opaque;
     42     uint64_t ret = 0;
     43     size_t pfn = addr / SPARSE_BLOCK_SIZE;
     44     size_t offset = addr % SPARSE_BLOCK_SIZE;
     45     sparse_mem_block *block;
     46 
     47     block = g_hash_table_lookup(s->mapped, (void *)pfn);
     48     if (block) {
     49         assert(offset + size <= sizeof(block->data));
     50         memcpy(&ret, block->data + offset, size);
     51     }
     52     return ret;
     53 }
     54 
     55 static void sparse_mem_write(void *opaque, hwaddr addr, uint64_t v,
     56                              unsigned int size)
     57 {
     58     SparseMemState *s = opaque;
     59     size_t pfn = addr / SPARSE_BLOCK_SIZE;
     60     size_t offset = addr % SPARSE_BLOCK_SIZE;
     61     sparse_mem_block *block;
     62 
     63     if (!g_hash_table_lookup(s->mapped, (void *)pfn) &&
     64         s->size_used + SPARSE_BLOCK_SIZE < s->maxsize && v) {
     65         g_hash_table_insert(s->mapped, (void *)pfn,
     66                             g_new0(sparse_mem_block, 1));
     67         s->size_used += sizeof(block->data);
     68     }
     69     block = g_hash_table_lookup(s->mapped, (void *)pfn);
     70     if (!block) {
     71         return;
     72     }
     73 
     74     assert(offset + size <= sizeof(block->data));
     75 
     76     memcpy(block->data + offset, &v, size);
     77 
     78 }
     79 
     80 static const MemoryRegionOps sparse_mem_ops = {
     81     .read = sparse_mem_read,
     82     .write = sparse_mem_write,
     83     .endianness = DEVICE_LITTLE_ENDIAN,
     84     .valid = {
     85             .min_access_size = 1,
     86             .max_access_size = 8,
     87             .unaligned = false,
     88         },
     89 };
     90 
     91 static Property sparse_mem_properties[] = {
     92     /* The base address of the memory */
     93     DEFINE_PROP_UINT64("baseaddr", SparseMemState, baseaddr, 0x0),
     94     /* The length of the sparse memory region */
     95     DEFINE_PROP_UINT64("length", SparseMemState, length, UINT64_MAX),
     96     /* Max amount of actual memory that can be used to back the sparse memory */
     97     DEFINE_PROP_UINT64("maxsize", SparseMemState, maxsize, 10 * MiB),
     98     DEFINE_PROP_END_OF_LIST(),
     99 };
    100 
    101 MemoryRegion *sparse_mem_init(uint64_t addr, uint64_t length)
    102 {
    103     DeviceState *dev;
    104 
    105     dev = qdev_new(TYPE_SPARSE_MEM);
    106     qdev_prop_set_uint64(dev, "baseaddr", addr);
    107     qdev_prop_set_uint64(dev, "length", length);
    108     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    109     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(dev), 0, addr, -10000);
    110     return &SPARSE_MEM(dev)->mmio;
    111 }
    112 
    113 static void sparse_mem_realize(DeviceState *dev, Error **errp)
    114 {
    115     SparseMemState *s = SPARSE_MEM(dev);
    116     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
    117 
    118     if (!qtest_enabled()) {
    119         error_setg(errp, "sparse_mem device should only be used "
    120                          "for testing with QTest");
    121         return;
    122     }
    123 
    124     assert(s->baseaddr + s->length > s->baseaddr);
    125 
    126     s->mapped = g_hash_table_new(NULL, NULL);
    127     memory_region_init_io(&s->mmio, OBJECT(s), &sparse_mem_ops, s,
    128                           "sparse-mem", s->length);
    129     sysbus_init_mmio(sbd, &s->mmio);
    130 }
    131 
    132 static void sparse_mem_class_init(ObjectClass *klass, void *data)
    133 {
    134     DeviceClass *dc = DEVICE_CLASS(klass);
    135 
    136     device_class_set_props(dc, sparse_mem_properties);
    137 
    138     dc->desc = "Sparse Memory Device";
    139     dc->realize = sparse_mem_realize;
    140 }
    141 
    142 static const TypeInfo sparse_mem_types[] = {
    143     {
    144         .name = TYPE_SPARSE_MEM,
    145         .parent = TYPE_SYS_BUS_DEVICE,
    146         .instance_size = sizeof(SparseMemState),
    147         .class_init = sparse_mem_class_init,
    148     },
    149 };
    150 DEFINE_TYPES(sparse_mem_types);