qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

xive.c (61911B)


      1 /*
      2  * QEMU PowerPC XIVE interrupt controller model
      3  *
      4  * Copyright (c) 2017-2018, IBM Corporation.
      5  *
      6  * This code is licensed under the GPL version 2 or later. See the
      7  * COPYING file in the top-level directory.
      8  */
      9 
     10 #include "qemu/osdep.h"
     11 #include "qemu/log.h"
     12 #include "qemu/module.h"
     13 #include "qapi/error.h"
     14 #include "target/ppc/cpu.h"
     15 #include "sysemu/cpus.h"
     16 #include "sysemu/dma.h"
     17 #include "sysemu/reset.h"
     18 #include "hw/qdev-properties.h"
     19 #include "migration/vmstate.h"
     20 #include "monitor/monitor.h"
     21 #include "hw/irq.h"
     22 #include "hw/ppc/xive.h"
     23 #include "hw/ppc/xive_regs.h"
     24 #include "trace.h"
     25 
     26 /*
     27  * XIVE Thread Interrupt Management context
     28  */
     29 
     30 /*
     31  * Convert an Interrupt Pending Buffer (IPB) register to a Pending
     32  * Interrupt Priority Register (PIPR), which contains the priority of
     33  * the most favored pending notification.
     34  */
     35 static uint8_t ipb_to_pipr(uint8_t ibp)
     36 {
     37     return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
     38 }
     39 
     40 static uint8_t exception_mask(uint8_t ring)
     41 {
     42     switch (ring) {
     43     case TM_QW1_OS:
     44         return TM_QW1_NSR_EO;
     45     case TM_QW3_HV_PHYS:
     46         return TM_QW3_NSR_HE;
     47     default:
     48         g_assert_not_reached();
     49     }
     50 }
     51 
     52 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
     53 {
     54         switch (ring) {
     55         case TM_QW0_USER:
     56                 return 0; /* Not supported */
     57         case TM_QW1_OS:
     58                 return tctx->os_output;
     59         case TM_QW2_HV_POOL:
     60         case TM_QW3_HV_PHYS:
     61                 return tctx->hv_output;
     62         default:
     63                 return 0;
     64         }
     65 }
     66 
     67 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
     68 {
     69     uint8_t *regs = &tctx->regs[ring];
     70     uint8_t nsr = regs[TM_NSR];
     71     uint8_t mask = exception_mask(ring);
     72 
     73     qemu_irq_lower(xive_tctx_output(tctx, ring));
     74 
     75     if (regs[TM_NSR] & mask) {
     76         uint8_t cppr = regs[TM_PIPR];
     77 
     78         regs[TM_CPPR] = cppr;
     79 
     80         /* Reset the pending buffer bit */
     81         regs[TM_IPB] &= ~xive_priority_to_ipb(cppr);
     82         regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
     83 
     84         /* Drop Exception bit */
     85         regs[TM_NSR] &= ~mask;
     86 
     87         trace_xive_tctx_accept(tctx->cs->cpu_index, ring,
     88                                regs[TM_IPB], regs[TM_PIPR],
     89                                regs[TM_CPPR], regs[TM_NSR]);
     90     }
     91 
     92     return (nsr << 8) | regs[TM_CPPR];
     93 }
     94 
     95 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
     96 {
     97     uint8_t *regs = &tctx->regs[ring];
     98 
     99     if (regs[TM_PIPR] < regs[TM_CPPR]) {
    100         switch (ring) {
    101         case TM_QW1_OS:
    102             regs[TM_NSR] |= TM_QW1_NSR_EO;
    103             break;
    104         case TM_QW3_HV_PHYS:
    105             regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
    106             break;
    107         default:
    108             g_assert_not_reached();
    109         }
    110         trace_xive_tctx_notify(tctx->cs->cpu_index, ring,
    111                                regs[TM_IPB], regs[TM_PIPR],
    112                                regs[TM_CPPR], regs[TM_NSR]);
    113         qemu_irq_raise(xive_tctx_output(tctx, ring));
    114     }
    115 }
    116 
    117 void xive_tctx_reset_os_signal(XiveTCTX *tctx)
    118 {
    119     /*
    120      * Lower the External interrupt. Used when pulling an OS
    121      * context. It is necessary to avoid catching it in the hypervisor
    122      * context. It should be raised again when re-pushing the OS
    123      * context.
    124      */
    125     qemu_irq_lower(xive_tctx_output(tctx, TM_QW1_OS));
    126 }
    127 
    128 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
    129 {
    130     uint8_t *regs = &tctx->regs[ring];
    131 
    132     trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring,
    133                              regs[TM_IPB], regs[TM_PIPR],
    134                              cppr, regs[TM_NSR]);
    135 
    136     if (cppr > XIVE_PRIORITY_MAX) {
    137         cppr = 0xff;
    138     }
    139 
    140     tctx->regs[ring + TM_CPPR] = cppr;
    141 
    142     /* CPPR has changed, check if we need to raise a pending exception */
    143     xive_tctx_notify(tctx, ring);
    144 }
    145 
    146 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb)
    147 {
    148     uint8_t *regs = &tctx->regs[ring];
    149 
    150     regs[TM_IPB] |= ipb;
    151     regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
    152     xive_tctx_notify(tctx, ring);
    153 }
    154 
    155 /*
    156  * XIVE Thread Interrupt Management Area (TIMA)
    157  */
    158 
    159 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
    160                                 hwaddr offset, uint64_t value, unsigned size)
    161 {
    162     xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
    163 }
    164 
    165 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
    166                                    hwaddr offset, unsigned size)
    167 {
    168     return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
    169 }
    170 
    171 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
    172                                       hwaddr offset, unsigned size)
    173 {
    174     uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
    175     uint32_t qw2w2;
    176 
    177     qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
    178     memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
    179     return qw2w2;
    180 }
    181 
    182 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
    183                             uint64_t value, unsigned size)
    184 {
    185     tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
    186 }
    187 
    188 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
    189                                 hwaddr offset, unsigned size)
    190 {
    191     return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
    192 }
    193 
    194 /*
    195  * Define an access map for each page of the TIMA that we will use in
    196  * the memory region ops to filter values when doing loads and stores
    197  * of raw registers values
    198  *
    199  * Registers accessibility bits :
    200  *
    201  *    0x0 - no access
    202  *    0x1 - write only
    203  *    0x2 - read only
    204  *    0x3 - read/write
    205  */
    206 
    207 static const uint8_t xive_tm_hw_view[] = {
    208     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
    209     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
    210     0, 0, 3, 3,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
    211     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   3, 3, 3, 0, /* QW-3 PHYS */
    212 };
    213 
    214 static const uint8_t xive_tm_hv_view[] = {
    215     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
    216     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
    217     0, 0, 3, 3,   0, 0, 0, 0,   0, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
    218     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   0, 0, 0, 0, /* QW-3 PHYS */
    219 };
    220 
    221 static const uint8_t xive_tm_os_view[] = {
    222     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
    223     2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
    224     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
    225     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
    226 };
    227 
    228 static const uint8_t xive_tm_user_view[] = {
    229     3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-0 User */
    230     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
    231     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
    232     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
    233 };
    234 
    235 /*
    236  * Overall TIMA access map for the thread interrupt management context
    237  * registers
    238  */
    239 static const uint8_t *xive_tm_views[] = {
    240     [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
    241     [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
    242     [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
    243     [XIVE_TM_USER_PAGE] = xive_tm_user_view,
    244 };
    245 
    246 /*
    247  * Computes a register access mask for a given offset in the TIMA
    248  */
    249 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
    250 {
    251     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
    252     uint8_t reg_offset = offset & 0x3F;
    253     uint8_t reg_mask = write ? 0x1 : 0x2;
    254     uint64_t mask = 0x0;
    255     int i;
    256 
    257     for (i = 0; i < size; i++) {
    258         if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
    259             mask |= (uint64_t) 0xff << (8 * (size - i - 1));
    260         }
    261     }
    262 
    263     return mask;
    264 }
    265 
    266 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
    267                               unsigned size)
    268 {
    269     uint8_t ring_offset = offset & 0x30;
    270     uint8_t reg_offset = offset & 0x3F;
    271     uint64_t mask = xive_tm_mask(offset, size, true);
    272     int i;
    273 
    274     /*
    275      * Only 4 or 8 bytes stores are allowed and the User ring is
    276      * excluded
    277      */
    278     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
    279         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
    280                       HWADDR_PRIx"\n", offset);
    281         return;
    282     }
    283 
    284     /*
    285      * Use the register offset for the raw values and filter out
    286      * reserved values
    287      */
    288     for (i = 0; i < size; i++) {
    289         uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
    290         if (byte_mask) {
    291             tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
    292                 byte_mask;
    293         }
    294     }
    295 }
    296 
    297 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
    298 {
    299     uint8_t ring_offset = offset & 0x30;
    300     uint8_t reg_offset = offset & 0x3F;
    301     uint64_t mask = xive_tm_mask(offset, size, false);
    302     uint64_t ret;
    303     int i;
    304 
    305     /*
    306      * Only 4 or 8 bytes loads are allowed and the User ring is
    307      * excluded
    308      */
    309     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
    310         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
    311                       HWADDR_PRIx"\n", offset);
    312         return -1;
    313     }
    314 
    315     /* Use the register offset for the raw values */
    316     ret = 0;
    317     for (i = 0; i < size; i++) {
    318         ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
    319     }
    320 
    321     /* filter out reserved values */
    322     return ret & mask;
    323 }
    324 
    325 /*
    326  * The TM context is mapped twice within each page. Stores and loads
    327  * to the first mapping below 2K write and read the specified values
    328  * without modification. The second mapping above 2K performs specific
    329  * state changes (side effects) in addition to setting/returning the
    330  * interrupt management area context of the processor thread.
    331  */
    332 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
    333                                    hwaddr offset, unsigned size)
    334 {
    335     return xive_tctx_accept(tctx, TM_QW1_OS);
    336 }
    337 
    338 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
    339                                 hwaddr offset, uint64_t value, unsigned size)
    340 {
    341     xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
    342 }
    343 
    344 /*
    345  * Adjust the IPB to allow a CPU to process event queues of other
    346  * priorities during one physical interrupt cycle.
    347  */
    348 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
    349                                    hwaddr offset, uint64_t value, unsigned size)
    350 {
    351     xive_tctx_ipb_update(tctx, TM_QW1_OS, xive_priority_to_ipb(value & 0xff));
    352 }
    353 
    354 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
    355                                uint32_t *nvt_idx, bool *vo)
    356 {
    357     if (nvt_blk) {
    358         *nvt_blk = xive_nvt_blk(cam);
    359     }
    360     if (nvt_idx) {
    361         *nvt_idx = xive_nvt_idx(cam);
    362     }
    363     if (vo) {
    364         *vo = !!(cam & TM_QW1W2_VO);
    365     }
    366 }
    367 
    368 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
    369                                      uint32_t *nvt_idx, bool *vo)
    370 {
    371     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
    372     uint32_t cam = be32_to_cpu(qw1w2);
    373 
    374     xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
    375     return qw1w2;
    376 }
    377 
    378 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
    379 {
    380     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
    381 }
    382 
    383 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
    384                                     hwaddr offset, unsigned size)
    385 {
    386     uint32_t qw1w2;
    387     uint32_t qw1w2_new;
    388     uint8_t nvt_blk;
    389     uint32_t nvt_idx;
    390     bool vo;
    391 
    392     qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
    393 
    394     if (!vo) {
    395         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
    396                       nvt_blk, nvt_idx);
    397     }
    398 
    399     /* Invalidate CAM line */
    400     qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
    401     xive_tctx_set_os_cam(tctx, qw1w2_new);
    402 
    403     xive_tctx_reset_os_signal(tctx);
    404     return qw1w2;
    405 }
    406 
    407 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
    408                                   uint8_t nvt_blk, uint32_t nvt_idx)
    409 {
    410     XiveNVT nvt;
    411     uint8_t ipb;
    412 
    413     /*
    414      * Grab the associated NVT to pull the pending bits, and merge
    415      * them with the IPB of the thread interrupt context registers
    416      */
    417     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
    418         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
    419                           nvt_blk, nvt_idx);
    420         return;
    421     }
    422 
    423     ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
    424 
    425     if (ipb) {
    426         /* Reset the NVT value */
    427         nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
    428         xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
    429     }
    430     /*
    431      * Always call xive_tctx_ipb_update(). Even if there were no
    432      * escalation triggered, there could be a pending interrupt which
    433      * was saved when the context was pulled and that we need to take
    434      * into account by recalculating the PIPR (which is not
    435      * saved/restored).
    436      * It will also raise the External interrupt signal if needed.
    437      */
    438     xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb);
    439 }
    440 
    441 /*
    442  * Updating the OS CAM line can trigger a resend of interrupt
    443  */
    444 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
    445                                 hwaddr offset, uint64_t value, unsigned size)
    446 {
    447     uint32_t cam = value;
    448     uint32_t qw1w2 = cpu_to_be32(cam);
    449     uint8_t nvt_blk;
    450     uint32_t nvt_idx;
    451     bool vo;
    452 
    453     xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
    454 
    455     /* First update the registers */
    456     xive_tctx_set_os_cam(tctx, qw1w2);
    457 
    458     /* Check the interrupt pending bits */
    459     if (vo) {
    460         xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
    461     }
    462 }
    463 
    464 /*
    465  * Define a mapping of "special" operations depending on the TIMA page
    466  * offset and the size of the operation.
    467  */
    468 typedef struct XiveTmOp {
    469     uint8_t  page_offset;
    470     uint32_t op_offset;
    471     unsigned size;
    472     void     (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
    473                               hwaddr offset,
    474                               uint64_t value, unsigned size);
    475     uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
    476                              unsigned size);
    477 } XiveTmOp;
    478 
    479 static const XiveTmOp xive_tm_operations[] = {
    480     /*
    481      * MMIOs below 2K : raw values and special operations without side
    482      * effects
    483      */
    484     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,   1, xive_tm_set_os_cppr, NULL },
    485     { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2,     4, xive_tm_push_os_ctx, NULL },
    486     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
    487     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
    488     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
    489 
    490     /* MMIOs above 2K : special operations with side effects */
    491     { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,     2, NULL, xive_tm_ack_os_reg },
    492     { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
    493     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    4, NULL, xive_tm_pull_os_ctx },
    494     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    8, NULL, xive_tm_pull_os_ctx },
    495     { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,     2, NULL, xive_tm_ack_hv_reg },
    496     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  4, NULL, xive_tm_pull_pool_ctx },
    497     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  8, NULL, xive_tm_pull_pool_ctx },
    498 };
    499 
    500 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
    501 {
    502     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
    503     uint32_t op_offset = offset & 0xFFF;
    504     int i;
    505 
    506     for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
    507         const XiveTmOp *xto = &xive_tm_operations[i];
    508 
    509         /* Accesses done from a more privileged TIMA page is allowed */
    510         if (xto->page_offset >= page_offset &&
    511             xto->op_offset == op_offset &&
    512             xto->size == size &&
    513             ((write && xto->write_handler) || (!write && xto->read_handler))) {
    514             return xto;
    515         }
    516     }
    517     return NULL;
    518 }
    519 
    520 /*
    521  * TIMA MMIO handlers
    522  */
    523 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
    524                         uint64_t value, unsigned size)
    525 {
    526     const XiveTmOp *xto;
    527 
    528     trace_xive_tctx_tm_write(offset, size, value);
    529 
    530     /*
    531      * TODO: check V bit in Q[0-3]W2
    532      */
    533 
    534     /*
    535      * First, check for special operations in the 2K region
    536      */
    537     if (offset & 0x800) {
    538         xto = xive_tm_find_op(offset, size, true);
    539         if (!xto) {
    540             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
    541                           "@%"HWADDR_PRIx"\n", offset);
    542         } else {
    543             xto->write_handler(xptr, tctx, offset, value, size);
    544         }
    545         return;
    546     }
    547 
    548     /*
    549      * Then, for special operations in the region below 2K.
    550      */
    551     xto = xive_tm_find_op(offset, size, true);
    552     if (xto) {
    553         xto->write_handler(xptr, tctx, offset, value, size);
    554         return;
    555     }
    556 
    557     /*
    558      * Finish with raw access to the register values
    559      */
    560     xive_tm_raw_write(tctx, offset, value, size);
    561 }
    562 
    563 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
    564                            unsigned size)
    565 {
    566     const XiveTmOp *xto;
    567     uint64_t ret;
    568 
    569     /*
    570      * TODO: check V bit in Q[0-3]W2
    571      */
    572 
    573     /*
    574      * First, check for special operations in the 2K region
    575      */
    576     if (offset & 0x800) {
    577         xto = xive_tm_find_op(offset, size, false);
    578         if (!xto) {
    579             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
    580                           "@%"HWADDR_PRIx"\n", offset);
    581             return -1;
    582         }
    583         ret = xto->read_handler(xptr, tctx, offset, size);
    584         goto out;
    585     }
    586 
    587     /*
    588      * Then, for special operations in the region below 2K.
    589      */
    590     xto = xive_tm_find_op(offset, size, false);
    591     if (xto) {
    592         ret = xto->read_handler(xptr, tctx, offset, size);
    593         goto out;
    594     }
    595 
    596     /*
    597      * Finish with raw access to the register values
    598      */
    599     ret = xive_tm_raw_read(tctx, offset, size);
    600 out:
    601     trace_xive_tctx_tm_read(offset, size, ret);
    602     return ret;
    603 }
    604 
    605 static char *xive_tctx_ring_print(uint8_t *ring)
    606 {
    607     uint32_t w2 = xive_tctx_word2(ring);
    608 
    609     return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
    610                    "%02x  %02x   %02x  %08x",
    611                    ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
    612                    ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
    613                    be32_to_cpu(w2));
    614 }
    615 
    616 static const char * const xive_tctx_ring_names[] = {
    617     "USER", "OS", "POOL", "PHYS",
    618 };
    619 
    620 /*
    621  * kvm_irqchip_in_kernel() will cause the compiler to turn this
    622  * info a nop if CONFIG_KVM isn't defined.
    623  */
    624 #define xive_in_kernel(xptr)                                            \
    625     (kvm_irqchip_in_kernel() &&                                         \
    626      ({                                                                 \
    627          XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);      \
    628          xpc->in_kernel ? xpc->in_kernel(xptr) : false;                 \
    629      }))
    630 
    631 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
    632 {
    633     int cpu_index;
    634     int i;
    635 
    636     /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
    637      * are hot plugged or unplugged.
    638      */
    639     if (!tctx) {
    640         return;
    641     }
    642 
    643     cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
    644 
    645     if (xive_in_kernel(tctx->xptr)) {
    646         Error *local_err = NULL;
    647 
    648         kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
    649         if (local_err) {
    650             error_report_err(local_err);
    651             return;
    652         }
    653     }
    654 
    655     monitor_printf(mon, "CPU[%04x]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
    656                    "  W2\n", cpu_index);
    657 
    658     for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
    659         char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
    660         monitor_printf(mon, "CPU[%04x]: %4s    %s\n", cpu_index,
    661                        xive_tctx_ring_names[i], s);
    662         g_free(s);
    663     }
    664 }
    665 
    666 void xive_tctx_reset(XiveTCTX *tctx)
    667 {
    668     memset(tctx->regs, 0, sizeof(tctx->regs));
    669 
    670     /* Set some defaults */
    671     tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
    672     tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
    673     tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
    674 
    675     /*
    676      * Initialize PIPR to 0xFF to avoid phantom interrupts when the
    677      * CPPR is first set.
    678      */
    679     tctx->regs[TM_QW1_OS + TM_PIPR] =
    680         ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
    681     tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
    682         ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
    683 }
    684 
    685 static void xive_tctx_realize(DeviceState *dev, Error **errp)
    686 {
    687     XiveTCTX *tctx = XIVE_TCTX(dev);
    688     PowerPCCPU *cpu;
    689     CPUPPCState *env;
    690 
    691     assert(tctx->cs);
    692     assert(tctx->xptr);
    693 
    694     cpu = POWERPC_CPU(tctx->cs);
    695     env = &cpu->env;
    696     switch (PPC_INPUT(env)) {
    697     case PPC_FLAGS_INPUT_POWER9:
    698         tctx->hv_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_HINT);
    699         tctx->os_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_INT);
    700         break;
    701 
    702     default:
    703         error_setg(errp, "XIVE interrupt controller does not support "
    704                    "this CPU bus model");
    705         return;
    706     }
    707 
    708     /* Connect the presenter to the VCPU (required for CPU hotplug) */
    709     if (xive_in_kernel(tctx->xptr)) {
    710         if (kvmppc_xive_cpu_connect(tctx, errp) < 0) {
    711             return;
    712         }
    713     }
    714 }
    715 
    716 static int vmstate_xive_tctx_pre_save(void *opaque)
    717 {
    718     XiveTCTX *tctx = XIVE_TCTX(opaque);
    719     Error *local_err = NULL;
    720     int ret;
    721 
    722     if (xive_in_kernel(tctx->xptr)) {
    723         ret = kvmppc_xive_cpu_get_state(tctx, &local_err);
    724         if (ret < 0) {
    725             error_report_err(local_err);
    726             return ret;
    727         }
    728     }
    729 
    730     return 0;
    731 }
    732 
    733 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
    734 {
    735     XiveTCTX *tctx = XIVE_TCTX(opaque);
    736     Error *local_err = NULL;
    737     int ret;
    738 
    739     if (xive_in_kernel(tctx->xptr)) {
    740         /*
    741          * Required for hotplugged CPU, for which the state comes
    742          * after all states of the machine.
    743          */
    744         ret = kvmppc_xive_cpu_set_state(tctx, &local_err);
    745         if (ret < 0) {
    746             error_report_err(local_err);
    747             return ret;
    748         }
    749     }
    750 
    751     return 0;
    752 }
    753 
    754 static const VMStateDescription vmstate_xive_tctx = {
    755     .name = TYPE_XIVE_TCTX,
    756     .version_id = 1,
    757     .minimum_version_id = 1,
    758     .pre_save = vmstate_xive_tctx_pre_save,
    759     .post_load = vmstate_xive_tctx_post_load,
    760     .fields = (VMStateField[]) {
    761         VMSTATE_BUFFER(regs, XiveTCTX),
    762         VMSTATE_END_OF_LIST()
    763     },
    764 };
    765 
    766 static Property xive_tctx_properties[] = {
    767     DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
    768     DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
    769                      XivePresenter *),
    770     DEFINE_PROP_END_OF_LIST(),
    771 };
    772 
    773 static void xive_tctx_class_init(ObjectClass *klass, void *data)
    774 {
    775     DeviceClass *dc = DEVICE_CLASS(klass);
    776 
    777     dc->desc = "XIVE Interrupt Thread Context";
    778     dc->realize = xive_tctx_realize;
    779     dc->vmsd = &vmstate_xive_tctx;
    780     device_class_set_props(dc, xive_tctx_properties);
    781     /*
    782      * Reason: part of XIVE interrupt controller, needs to be wired up
    783      * by xive_tctx_create().
    784      */
    785     dc->user_creatable = false;
    786 }
    787 
    788 static const TypeInfo xive_tctx_info = {
    789     .name          = TYPE_XIVE_TCTX,
    790     .parent        = TYPE_DEVICE,
    791     .instance_size = sizeof(XiveTCTX),
    792     .class_init    = xive_tctx_class_init,
    793 };
    794 
    795 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
    796 {
    797     Object *obj;
    798 
    799     obj = object_new(TYPE_XIVE_TCTX);
    800     object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
    801     object_unref(obj);
    802     object_property_set_link(obj, "cpu", cpu, &error_abort);
    803     object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
    804     if (!qdev_realize(DEVICE(obj), NULL, errp)) {
    805         object_unparent(obj);
    806         return NULL;
    807     }
    808     return obj;
    809 }
    810 
    811 void xive_tctx_destroy(XiveTCTX *tctx)
    812 {
    813     Object *obj = OBJECT(tctx);
    814 
    815     object_unparent(obj);
    816 }
    817 
    818 /*
    819  * XIVE ESB helpers
    820  */
    821 
    822 uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
    823 {
    824     uint8_t old_pq = *pq & 0x3;
    825 
    826     *pq &= ~0x3;
    827     *pq |= value & 0x3;
    828 
    829     return old_pq;
    830 }
    831 
    832 bool xive_esb_trigger(uint8_t *pq)
    833 {
    834     uint8_t old_pq = *pq & 0x3;
    835 
    836     switch (old_pq) {
    837     case XIVE_ESB_RESET:
    838         xive_esb_set(pq, XIVE_ESB_PENDING);
    839         return true;
    840     case XIVE_ESB_PENDING:
    841     case XIVE_ESB_QUEUED:
    842         xive_esb_set(pq, XIVE_ESB_QUEUED);
    843         return false;
    844     case XIVE_ESB_OFF:
    845         xive_esb_set(pq, XIVE_ESB_OFF);
    846         return false;
    847     default:
    848          g_assert_not_reached();
    849     }
    850 }
    851 
    852 bool xive_esb_eoi(uint8_t *pq)
    853 {
    854     uint8_t old_pq = *pq & 0x3;
    855 
    856     switch (old_pq) {
    857     case XIVE_ESB_RESET:
    858     case XIVE_ESB_PENDING:
    859         xive_esb_set(pq, XIVE_ESB_RESET);
    860         return false;
    861     case XIVE_ESB_QUEUED:
    862         xive_esb_set(pq, XIVE_ESB_PENDING);
    863         return true;
    864     case XIVE_ESB_OFF:
    865         xive_esb_set(pq, XIVE_ESB_OFF);
    866         return false;
    867     default:
    868          g_assert_not_reached();
    869     }
    870 }
    871 
    872 /*
    873  * XIVE Interrupt Source (or IVSE)
    874  */
    875 
    876 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
    877 {
    878     assert(srcno < xsrc->nr_irqs);
    879 
    880     return xsrc->status[srcno] & 0x3;
    881 }
    882 
    883 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
    884 {
    885     assert(srcno < xsrc->nr_irqs);
    886 
    887     return xive_esb_set(&xsrc->status[srcno], pq);
    888 }
    889 
    890 /*
    891  * Returns whether the event notification should be forwarded.
    892  */
    893 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
    894 {
    895     uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
    896 
    897     xive_source_set_asserted(xsrc, srcno, true);
    898 
    899     switch (old_pq) {
    900     case XIVE_ESB_RESET:
    901         xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
    902         return true;
    903     default:
    904         return false;
    905     }
    906 }
    907 
    908 /*
    909  * Sources can be configured with PQ offloading in which case the check
    910  * on the PQ state bits of MSIs is disabled
    911  */
    912 static bool xive_source_esb_disabled(XiveSource *xsrc, uint32_t srcno)
    913 {
    914     return (xsrc->esb_flags & XIVE_SRC_PQ_DISABLE) &&
    915         !xive_source_irq_is_lsi(xsrc, srcno);
    916 }
    917 
    918 /*
    919  * Returns whether the event notification should be forwarded.
    920  */
    921 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
    922 {
    923     bool ret;
    924 
    925     assert(srcno < xsrc->nr_irqs);
    926 
    927     if (xive_source_esb_disabled(xsrc, srcno)) {
    928         return true;
    929     }
    930 
    931     ret = xive_esb_trigger(&xsrc->status[srcno]);
    932 
    933     if (xive_source_irq_is_lsi(xsrc, srcno) &&
    934         xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
    935         qemu_log_mask(LOG_GUEST_ERROR,
    936                       "XIVE: queued an event on LSI IRQ %d\n", srcno);
    937     }
    938 
    939     return ret;
    940 }
    941 
    942 /*
    943  * Returns whether the event notification should be forwarded.
    944  */
    945 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
    946 {
    947     bool ret;
    948 
    949     assert(srcno < xsrc->nr_irqs);
    950 
    951     if (xive_source_esb_disabled(xsrc, srcno)) {
    952         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EOI for IRQ %d\n", srcno);
    953         return false;
    954     }
    955 
    956     ret = xive_esb_eoi(&xsrc->status[srcno]);
    957 
    958     /*
    959      * LSI sources do not set the Q bit but they can still be
    960      * asserted, in which case we should forward a new event
    961      * notification
    962      */
    963     if (xive_source_irq_is_lsi(xsrc, srcno) &&
    964         xive_source_is_asserted(xsrc, srcno)) {
    965         ret = xive_source_lsi_trigger(xsrc, srcno);
    966     }
    967 
    968     return ret;
    969 }
    970 
    971 /*
    972  * Forward the source event notification to the Router
    973  */
    974 static void xive_source_notify(XiveSource *xsrc, int srcno)
    975 {
    976     XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
    977     bool pq_checked = !xive_source_esb_disabled(xsrc, srcno);
    978 
    979     if (xnc->notify) {
    980         xnc->notify(xsrc->xive, srcno, pq_checked);
    981     }
    982 }
    983 
    984 /*
    985  * In a two pages ESB MMIO setting, even page is the trigger page, odd
    986  * page is for management
    987  */
    988 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
    989 {
    990     return !((addr >> shift) & 1);
    991 }
    992 
    993 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
    994 {
    995     return xive_source_esb_has_2page(xsrc) &&
    996         addr_is_even(addr, xsrc->esb_shift - 1);
    997 }
    998 
    999 /*
   1000  * ESB MMIO loads
   1001  *                      Trigger page    Management/EOI page
   1002  *
   1003  * ESB MMIO setting     2 pages         1 or 2 pages
   1004  *
   1005  * 0x000 .. 0x3FF       -1              EOI and return 0|1
   1006  * 0x400 .. 0x7FF       -1              EOI and return 0|1
   1007  * 0x800 .. 0xBFF       -1              return PQ
   1008  * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
   1009  * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
   1010  * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
   1011  * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
   1012  */
   1013 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
   1014 {
   1015     XiveSource *xsrc = XIVE_SOURCE(opaque);
   1016     uint32_t offset = addr & 0xFFF;
   1017     uint32_t srcno = addr >> xsrc->esb_shift;
   1018     uint64_t ret = -1;
   1019 
   1020     /* In a two pages ESB MMIO setting, trigger page should not be read */
   1021     if (xive_source_is_trigger_page(xsrc, addr)) {
   1022         qemu_log_mask(LOG_GUEST_ERROR,
   1023                       "XIVE: invalid load on IRQ %d trigger page at "
   1024                       "0x%"HWADDR_PRIx"\n", srcno, addr);
   1025         return -1;
   1026     }
   1027 
   1028     switch (offset) {
   1029     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
   1030         ret = xive_source_esb_eoi(xsrc, srcno);
   1031 
   1032         /* Forward the source event notification for routing */
   1033         if (ret) {
   1034             xive_source_notify(xsrc, srcno);
   1035         }
   1036         break;
   1037 
   1038     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
   1039         ret = xive_source_esb_get(xsrc, srcno);
   1040         break;
   1041 
   1042     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
   1043     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
   1044     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
   1045     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
   1046         ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
   1047         break;
   1048     default:
   1049         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
   1050                       offset);
   1051     }
   1052 
   1053     trace_xive_source_esb_read(addr, srcno, ret);
   1054 
   1055     return ret;
   1056 }
   1057 
   1058 /*
   1059  * ESB MMIO stores
   1060  *                      Trigger page    Management/EOI page
   1061  *
   1062  * ESB MMIO setting     2 pages         1 or 2 pages
   1063  *
   1064  * 0x000 .. 0x3FF       Trigger         Trigger
   1065  * 0x400 .. 0x7FF       Trigger         EOI
   1066  * 0x800 .. 0xBFF       Trigger         undefined
   1067  * 0xC00 .. 0xCFF       Trigger         PQ=00
   1068  * 0xD00 .. 0xDFF       Trigger         PQ=01
   1069  * 0xE00 .. 0xDFF       Trigger         PQ=10
   1070  * 0xF00 .. 0xDFF       Trigger         PQ=11
   1071  */
   1072 static void xive_source_esb_write(void *opaque, hwaddr addr,
   1073                                   uint64_t value, unsigned size)
   1074 {
   1075     XiveSource *xsrc = XIVE_SOURCE(opaque);
   1076     uint32_t offset = addr & 0xFFF;
   1077     uint32_t srcno = addr >> xsrc->esb_shift;
   1078     bool notify = false;
   1079 
   1080     trace_xive_source_esb_write(addr, srcno, value);
   1081 
   1082     /* In a two pages ESB MMIO setting, trigger page only triggers */
   1083     if (xive_source_is_trigger_page(xsrc, addr)) {
   1084         notify = xive_source_esb_trigger(xsrc, srcno);
   1085         goto out;
   1086     }
   1087 
   1088     switch (offset) {
   1089     case 0 ... 0x3FF:
   1090         notify = xive_source_esb_trigger(xsrc, srcno);
   1091         break;
   1092 
   1093     case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
   1094         if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
   1095             qemu_log_mask(LOG_GUEST_ERROR,
   1096                           "XIVE: invalid Store EOI for IRQ %d\n", srcno);
   1097             return;
   1098         }
   1099 
   1100         notify = xive_source_esb_eoi(xsrc, srcno);
   1101         break;
   1102 
   1103     /*
   1104      * This is an internal offset used to inject triggers when the PQ
   1105      * state bits are not controlled locally. Such as for LSIs when
   1106      * under ABT mode.
   1107      */
   1108     case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF:
   1109         notify = true;
   1110         break;
   1111 
   1112     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
   1113     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
   1114     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
   1115     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
   1116         xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
   1117         break;
   1118 
   1119     default:
   1120         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
   1121                       offset);
   1122         return;
   1123     }
   1124 
   1125 out:
   1126     /* Forward the source event notification for routing */
   1127     if (notify) {
   1128         xive_source_notify(xsrc, srcno);
   1129     }
   1130 }
   1131 
   1132 static const MemoryRegionOps xive_source_esb_ops = {
   1133     .read = xive_source_esb_read,
   1134     .write = xive_source_esb_write,
   1135     .endianness = DEVICE_BIG_ENDIAN,
   1136     .valid = {
   1137         .min_access_size = 8,
   1138         .max_access_size = 8,
   1139     },
   1140     .impl = {
   1141         .min_access_size = 8,
   1142         .max_access_size = 8,
   1143     },
   1144 };
   1145 
   1146 void xive_source_set_irq(void *opaque, int srcno, int val)
   1147 {
   1148     XiveSource *xsrc = XIVE_SOURCE(opaque);
   1149     bool notify = false;
   1150 
   1151     if (xive_source_irq_is_lsi(xsrc, srcno)) {
   1152         if (val) {
   1153             notify = xive_source_lsi_trigger(xsrc, srcno);
   1154         } else {
   1155             xive_source_set_asserted(xsrc, srcno, false);
   1156         }
   1157     } else {
   1158         if (val) {
   1159             notify = xive_source_esb_trigger(xsrc, srcno);
   1160         }
   1161     }
   1162 
   1163     /* Forward the source event notification for routing */
   1164     if (notify) {
   1165         xive_source_notify(xsrc, srcno);
   1166     }
   1167 }
   1168 
   1169 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
   1170 {
   1171     int i;
   1172 
   1173     for (i = 0; i < xsrc->nr_irqs; i++) {
   1174         uint8_t pq = xive_source_esb_get(xsrc, i);
   1175 
   1176         if (pq == XIVE_ESB_OFF) {
   1177             continue;
   1178         }
   1179 
   1180         monitor_printf(mon, "  %08x %s %c%c%c\n", i + offset,
   1181                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
   1182                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
   1183                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
   1184                        xive_source_is_asserted(xsrc, i) ? 'A' : ' ');
   1185     }
   1186 }
   1187 
   1188 static void xive_source_reset(void *dev)
   1189 {
   1190     XiveSource *xsrc = XIVE_SOURCE(dev);
   1191 
   1192     /* Do not clear the LSI bitmap */
   1193 
   1194     /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
   1195     memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
   1196 }
   1197 
   1198 static void xive_source_realize(DeviceState *dev, Error **errp)
   1199 {
   1200     XiveSource *xsrc = XIVE_SOURCE(dev);
   1201     size_t esb_len = xive_source_esb_len(xsrc);
   1202 
   1203     assert(xsrc->xive);
   1204 
   1205     if (!xsrc->nr_irqs) {
   1206         error_setg(errp, "Number of interrupt needs to be greater than 0");
   1207         return;
   1208     }
   1209 
   1210     if (xsrc->esb_shift != XIVE_ESB_4K &&
   1211         xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
   1212         xsrc->esb_shift != XIVE_ESB_64K &&
   1213         xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
   1214         error_setg(errp, "Invalid ESB shift setting");
   1215         return;
   1216     }
   1217 
   1218     xsrc->status = g_malloc0(xsrc->nr_irqs);
   1219     xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
   1220 
   1221     memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len);
   1222     memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc),
   1223                           &xive_source_esb_ops, xsrc, "xive.esb-emulated",
   1224                           esb_len);
   1225     memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated);
   1226 
   1227     qemu_register_reset(xive_source_reset, dev);
   1228 }
   1229 
   1230 static const VMStateDescription vmstate_xive_source = {
   1231     .name = TYPE_XIVE_SOURCE,
   1232     .version_id = 1,
   1233     .minimum_version_id = 1,
   1234     .fields = (VMStateField[]) {
   1235         VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
   1236         VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
   1237         VMSTATE_END_OF_LIST()
   1238     },
   1239 };
   1240 
   1241 /*
   1242  * The default XIVE interrupt source setting for the ESB MMIOs is two
   1243  * 64k pages without Store EOI, to be in sync with KVM.
   1244  */
   1245 static Property xive_source_properties[] = {
   1246     DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
   1247     DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
   1248     DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
   1249     DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
   1250                      XiveNotifier *),
   1251     DEFINE_PROP_END_OF_LIST(),
   1252 };
   1253 
   1254 static void xive_source_class_init(ObjectClass *klass, void *data)
   1255 {
   1256     DeviceClass *dc = DEVICE_CLASS(klass);
   1257 
   1258     dc->desc    = "XIVE Interrupt Source";
   1259     device_class_set_props(dc, xive_source_properties);
   1260     dc->realize = xive_source_realize;
   1261     dc->vmsd    = &vmstate_xive_source;
   1262     /*
   1263      * Reason: part of XIVE interrupt controller, needs to be wired up,
   1264      * e.g. by spapr_xive_instance_init().
   1265      */
   1266     dc->user_creatable = false;
   1267 }
   1268 
   1269 static const TypeInfo xive_source_info = {
   1270     .name          = TYPE_XIVE_SOURCE,
   1271     .parent        = TYPE_DEVICE,
   1272     .instance_size = sizeof(XiveSource),
   1273     .class_init    = xive_source_class_init,
   1274 };
   1275 
   1276 /*
   1277  * XiveEND helpers
   1278  */
   1279 
   1280 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
   1281 {
   1282     uint64_t qaddr_base = xive_end_qaddr(end);
   1283     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
   1284     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
   1285     uint32_t qentries = 1 << (qsize + 10);
   1286     int i;
   1287 
   1288     /*
   1289      * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
   1290      */
   1291     monitor_printf(mon, " [ ");
   1292     qindex = (qindex - (width - 1)) & (qentries - 1);
   1293     for (i = 0; i < width; i++) {
   1294         uint64_t qaddr = qaddr_base + (qindex << 2);
   1295         uint32_t qdata = -1;
   1296 
   1297         if (dma_memory_read(&address_space_memory, qaddr,
   1298                             &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
   1299             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
   1300                           HWADDR_PRIx "\n", qaddr);
   1301             return;
   1302         }
   1303         monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
   1304                        be32_to_cpu(qdata));
   1305         qindex = (qindex + 1) & (qentries - 1);
   1306     }
   1307     monitor_printf(mon, "]");
   1308 }
   1309 
   1310 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
   1311 {
   1312     uint64_t qaddr_base = xive_end_qaddr(end);
   1313     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
   1314     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
   1315     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
   1316     uint32_t qentries = 1 << (qsize + 10);
   1317 
   1318     uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
   1319     uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
   1320     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
   1321     uint8_t pq;
   1322 
   1323     if (!xive_end_is_valid(end)) {
   1324         return;
   1325     }
   1326 
   1327     pq = xive_get_field32(END_W1_ESn, end->w1);
   1328 
   1329     monitor_printf(mon, "  %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
   1330                    end_idx,
   1331                    pq & XIVE_ESB_VAL_P ? 'P' : '-',
   1332                    pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
   1333                    xive_end_is_valid(end)    ? 'v' : '-',
   1334                    xive_end_is_enqueue(end)  ? 'q' : '-',
   1335                    xive_end_is_notify(end)   ? 'n' : '-',
   1336                    xive_end_is_backlog(end)  ? 'b' : '-',
   1337                    xive_end_is_escalate(end) ? 'e' : '-',
   1338                    xive_end_is_uncond_escalation(end)   ? 'u' : '-',
   1339                    xive_end_is_silent_escalation(end)   ? 's' : '-',
   1340                    xive_end_is_firmware(end)   ? 'f' : '-',
   1341                    priority, nvt_blk, nvt_idx);
   1342 
   1343     if (qaddr_base) {
   1344         monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
   1345                        qaddr_base, qindex, qentries, qgen);
   1346         xive_end_queue_pic_print_info(end, 6, mon);
   1347     }
   1348     monitor_printf(mon, "\n");
   1349 }
   1350 
   1351 static void xive_end_enqueue(XiveEND *end, uint32_t data)
   1352 {
   1353     uint64_t qaddr_base = xive_end_qaddr(end);
   1354     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
   1355     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
   1356     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
   1357 
   1358     uint64_t qaddr = qaddr_base + (qindex << 2);
   1359     uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
   1360     uint32_t qentries = 1 << (qsize + 10);
   1361 
   1362     if (dma_memory_write(&address_space_memory, qaddr,
   1363                          &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
   1364         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
   1365                       HWADDR_PRIx "\n", qaddr);
   1366         return;
   1367     }
   1368 
   1369     qindex = (qindex + 1) & (qentries - 1);
   1370     if (qindex == 0) {
   1371         qgen ^= 1;
   1372         end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
   1373     }
   1374     end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
   1375 }
   1376 
   1377 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
   1378                                    Monitor *mon)
   1379 {
   1380     XiveEAS *eas = (XiveEAS *) &end->w4;
   1381     uint8_t pq;
   1382 
   1383     if (!xive_end_is_escalate(end)) {
   1384         return;
   1385     }
   1386 
   1387     pq = xive_get_field32(END_W1_ESe, end->w1);
   1388 
   1389     monitor_printf(mon, "  %08x %c%c %c%c end:%02x/%04x data:%08x\n",
   1390                    end_idx,
   1391                    pq & XIVE_ESB_VAL_P ? 'P' : '-',
   1392                    pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
   1393                    xive_eas_is_valid(eas) ? 'V' : ' ',
   1394                    xive_eas_is_masked(eas) ? 'M' : ' ',
   1395                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
   1396                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
   1397                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
   1398 }
   1399 
   1400 /*
   1401  * XIVE Router (aka. Virtualization Controller or IVRE)
   1402  */
   1403 
   1404 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
   1405                         XiveEAS *eas)
   1406 {
   1407     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
   1408 
   1409     return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
   1410 }
   1411 
   1412 static
   1413 int xive_router_get_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
   1414                        uint8_t *pq)
   1415 {
   1416     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
   1417 
   1418     return xrc->get_pq(xrtr, eas_blk, eas_idx, pq);
   1419 }
   1420 
   1421 static
   1422 int xive_router_set_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
   1423                        uint8_t *pq)
   1424 {
   1425     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
   1426 
   1427     return xrc->set_pq(xrtr, eas_blk, eas_idx, pq);
   1428 }
   1429 
   1430 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
   1431                         XiveEND *end)
   1432 {
   1433    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
   1434 
   1435    return xrc->get_end(xrtr, end_blk, end_idx, end);
   1436 }
   1437 
   1438 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
   1439                           XiveEND *end, uint8_t word_number)
   1440 {
   1441    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
   1442 
   1443    return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
   1444 }
   1445 
   1446 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
   1447                         XiveNVT *nvt)
   1448 {
   1449    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
   1450 
   1451    return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
   1452 }
   1453 
   1454 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
   1455                         XiveNVT *nvt, uint8_t word_number)
   1456 {
   1457    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
   1458 
   1459    return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
   1460 }
   1461 
   1462 static int xive_router_get_block_id(XiveRouter *xrtr)
   1463 {
   1464    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
   1465 
   1466    return xrc->get_block_id(xrtr);
   1467 }
   1468 
   1469 static void xive_router_realize(DeviceState *dev, Error **errp)
   1470 {
   1471     XiveRouter *xrtr = XIVE_ROUTER(dev);
   1472 
   1473     assert(xrtr->xfb);
   1474 }
   1475 
   1476 /*
   1477  * Encode the HW CAM line in the block group mode format :
   1478  *
   1479  *   chip << 19 | 0000000 0 0001 thread (7Bit)
   1480  */
   1481 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
   1482 {
   1483     CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
   1484     uint32_t pir = env->spr_cb[SPR_PIR].default_value;
   1485     uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
   1486 
   1487     return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
   1488 }
   1489 
   1490 /*
   1491  * The thread context register words are in big-endian format.
   1492  */
   1493 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
   1494                               uint8_t format,
   1495                               uint8_t nvt_blk, uint32_t nvt_idx,
   1496                               bool cam_ignore, uint32_t logic_serv)
   1497 {
   1498     uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
   1499     uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
   1500     uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
   1501     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
   1502     uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
   1503 
   1504     /*
   1505      * TODO (PowerNV): ignore mode. The low order bits of the NVT
   1506      * identifier are ignored in the "CAM" match.
   1507      */
   1508 
   1509     if (format == 0) {
   1510         if (cam_ignore == true) {
   1511             /*
   1512              * F=0 & i=1: Logical server notification (bits ignored at
   1513              * the end of the NVT identifier)
   1514              */
   1515             qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
   1516                           nvt_blk, nvt_idx);
   1517              return -1;
   1518         }
   1519 
   1520         /* F=0 & i=0: Specific NVT notification */
   1521 
   1522         /* PHYS ring */
   1523         if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
   1524             cam == xive_tctx_hw_cam_line(xptr, tctx)) {
   1525             return TM_QW3_HV_PHYS;
   1526         }
   1527 
   1528         /* HV POOL ring */
   1529         if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
   1530             cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
   1531             return TM_QW2_HV_POOL;
   1532         }
   1533 
   1534         /* OS ring */
   1535         if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
   1536             cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
   1537             return TM_QW1_OS;
   1538         }
   1539     } else {
   1540         /* F=1 : User level Event-Based Branch (EBB) notification */
   1541 
   1542         /* USER ring */
   1543         if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
   1544              (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
   1545              (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
   1546              (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
   1547             return TM_QW0_USER;
   1548         }
   1549     }
   1550     return -1;
   1551 }
   1552 
   1553 /*
   1554  * This is our simple Xive Presenter Engine model. It is merged in the
   1555  * Router as it does not require an extra object.
   1556  *
   1557  * It receives notification requests sent by the IVRE to find one
   1558  * matching NVT (or more) dispatched on the processor threads. In case
   1559  * of a single NVT notification, the process is abreviated and the
   1560  * thread is signaled if a match is found. In case of a logical server
   1561  * notification (bits ignored at the end of the NVT identifier), the
   1562  * IVPE and IVRE select a winning thread using different filters. This
   1563  * involves 2 or 3 exchanges on the PowerBus that the model does not
   1564  * support.
   1565  *
   1566  * The parameters represent what is sent on the PowerBus
   1567  */
   1568 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
   1569                            uint8_t nvt_blk, uint32_t nvt_idx,
   1570                            bool cam_ignore, uint8_t priority,
   1571                            uint32_t logic_serv)
   1572 {
   1573     XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
   1574     XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
   1575     int count;
   1576 
   1577     /*
   1578      * Ask the machine to scan the interrupt controllers for a match
   1579      */
   1580     count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
   1581                            priority, logic_serv, &match);
   1582     if (count < 0) {
   1583         return false;
   1584     }
   1585 
   1586     /* handle CPU exception delivery */
   1587     if (count) {
   1588         trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring);
   1589         xive_tctx_ipb_update(match.tctx, match.ring,
   1590                              xive_priority_to_ipb(priority));
   1591     }
   1592 
   1593     return !!count;
   1594 }
   1595 
   1596 /*
   1597  * Notification using the END ESe/ESn bit (Event State Buffer for
   1598  * escalation and notification). Provide further coalescing in the
   1599  * Router.
   1600  */
   1601 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
   1602                                       uint32_t end_idx, XiveEND *end,
   1603                                       uint32_t end_esmask)
   1604 {
   1605     uint8_t pq = xive_get_field32(end_esmask, end->w1);
   1606     bool notify = xive_esb_trigger(&pq);
   1607 
   1608     if (pq != xive_get_field32(end_esmask, end->w1)) {
   1609         end->w1 = xive_set_field32(end_esmask, end->w1, pq);
   1610         xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
   1611     }
   1612 
   1613     /* ESe/n[Q]=1 : end of notification */
   1614     return notify;
   1615 }
   1616 
   1617 /*
   1618  * An END trigger can come from an event trigger (IPI or HW) or from
   1619  * another chip. We don't model the PowerBus but the END trigger
   1620  * message has the same parameters than in the function below.
   1621  */
   1622 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
   1623                                    uint32_t end_idx, uint32_t end_data)
   1624 {
   1625     XiveEND end;
   1626     uint8_t priority;
   1627     uint8_t format;
   1628     uint8_t nvt_blk;
   1629     uint32_t nvt_idx;
   1630     XiveNVT nvt;
   1631     bool found;
   1632 
   1633     /* END cache lookup */
   1634     if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
   1635         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
   1636                       end_idx);
   1637         return;
   1638     }
   1639 
   1640     if (!xive_end_is_valid(&end)) {
   1641         trace_xive_router_end_notify(end_blk, end_idx, end_data);
   1642         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
   1643                       end_blk, end_idx);
   1644         return;
   1645     }
   1646 
   1647     if (xive_end_is_enqueue(&end)) {
   1648         xive_end_enqueue(&end, end_data);
   1649         /* Enqueuing event data modifies the EQ toggle and index */
   1650         xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
   1651     }
   1652 
   1653     /*
   1654      * When the END is silent, we skip the notification part.
   1655      */
   1656     if (xive_end_is_silent_escalation(&end)) {
   1657         goto do_escalation;
   1658     }
   1659 
   1660     /*
   1661      * The W7 format depends on the F bit in W6. It defines the type
   1662      * of the notification :
   1663      *
   1664      *   F=0 : single or multiple NVT notification
   1665      *   F=1 : User level Event-Based Branch (EBB) notification, no
   1666      *         priority
   1667      */
   1668     format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
   1669     priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
   1670 
   1671     /* The END is masked */
   1672     if (format == 0 && priority == 0xff) {
   1673         return;
   1674     }
   1675 
   1676     /*
   1677      * Check the END ESn (Event State Buffer for notification) for
   1678      * even further coalescing in the Router
   1679      */
   1680     if (!xive_end_is_notify(&end)) {
   1681         /* ESn[Q]=1 : end of notification */
   1682         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
   1683                                        &end, END_W1_ESn)) {
   1684             return;
   1685         }
   1686     }
   1687 
   1688     /*
   1689      * Follows IVPE notification
   1690      */
   1691     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
   1692     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
   1693 
   1694     /* NVT cache lookup */
   1695     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
   1696         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
   1697                       nvt_blk, nvt_idx);
   1698         return;
   1699     }
   1700 
   1701     if (!xive_nvt_is_valid(&nvt)) {
   1702         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
   1703                       nvt_blk, nvt_idx);
   1704         return;
   1705     }
   1706 
   1707     found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
   1708                           xive_get_field32(END_W7_F0_IGNORE, end.w7),
   1709                           priority,
   1710                           xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
   1711 
   1712     /* TODO: Auto EOI. */
   1713 
   1714     if (found) {
   1715         return;
   1716     }
   1717 
   1718     /*
   1719      * If no matching NVT is dispatched on a HW thread :
   1720      * - specific VP: update the NVT structure if backlog is activated
   1721      * - logical server : forward request to IVPE (not supported)
   1722      */
   1723     if (xive_end_is_backlog(&end)) {
   1724         uint8_t ipb;
   1725 
   1726         if (format == 1) {
   1727             qemu_log_mask(LOG_GUEST_ERROR,
   1728                           "XIVE: END %x/%x invalid config: F1 & backlog\n",
   1729                           end_blk, end_idx);
   1730             return;
   1731         }
   1732         /*
   1733          * Record the IPB in the associated NVT structure for later
   1734          * use. The presenter will resend the interrupt when the vCPU
   1735          * is dispatched again on a HW thread.
   1736          */
   1737         ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) |
   1738             xive_priority_to_ipb(priority);
   1739         nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
   1740         xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
   1741 
   1742         /*
   1743          * On HW, follows a "Broadcast Backlog" to IVPEs
   1744          */
   1745     }
   1746 
   1747 do_escalation:
   1748     /*
   1749      * If activated, escalate notification using the ESe PQ bits and
   1750      * the EAS in w4-5
   1751      */
   1752     if (!xive_end_is_escalate(&end)) {
   1753         return;
   1754     }
   1755 
   1756     /*
   1757      * Check the END ESe (Event State Buffer for escalation) for even
   1758      * further coalescing in the Router
   1759      */
   1760     if (!xive_end_is_uncond_escalation(&end)) {
   1761         /* ESe[Q]=1 : end of notification */
   1762         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
   1763                                        &end, END_W1_ESe)) {
   1764             return;
   1765         }
   1766     }
   1767 
   1768     trace_xive_router_end_escalate(end_blk, end_idx,
   1769            (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
   1770            (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
   1771            (uint32_t) xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
   1772     /*
   1773      * The END trigger becomes an Escalation trigger
   1774      */
   1775     xive_router_end_notify(xrtr,
   1776                            xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
   1777                            xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
   1778                            xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
   1779 }
   1780 
   1781 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked)
   1782 {
   1783     XiveRouter *xrtr = XIVE_ROUTER(xn);
   1784     uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
   1785     uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
   1786     XiveEAS eas;
   1787 
   1788     /* EAS cache lookup */
   1789     if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
   1790         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
   1791         return;
   1792     }
   1793 
   1794     if (!pq_checked) {
   1795         bool notify;
   1796         uint8_t pq;
   1797 
   1798         /* PQ cache lookup */
   1799         if (xive_router_get_pq(xrtr, eas_blk, eas_idx, &pq)) {
   1800             /* Set FIR */
   1801             g_assert_not_reached();
   1802         }
   1803 
   1804         notify = xive_esb_trigger(&pq);
   1805 
   1806         if (xive_router_set_pq(xrtr, eas_blk, eas_idx, &pq)) {
   1807             /* Set FIR */
   1808             g_assert_not_reached();
   1809         }
   1810 
   1811         if (!notify) {
   1812             return;
   1813         }
   1814     }
   1815 
   1816     if (!xive_eas_is_valid(&eas)) {
   1817         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
   1818         return;
   1819     }
   1820 
   1821     if (xive_eas_is_masked(&eas)) {
   1822         /* Notification completed */
   1823         return;
   1824     }
   1825 
   1826     /*
   1827      * The event trigger becomes an END trigger
   1828      */
   1829     xive_router_end_notify(xrtr,
   1830                            xive_get_field64(EAS_END_BLOCK, eas.w),
   1831                            xive_get_field64(EAS_END_INDEX, eas.w),
   1832                            xive_get_field64(EAS_END_DATA,  eas.w));
   1833 }
   1834 
   1835 static Property xive_router_properties[] = {
   1836     DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
   1837                      TYPE_XIVE_FABRIC, XiveFabric *),
   1838     DEFINE_PROP_END_OF_LIST(),
   1839 };
   1840 
   1841 static void xive_router_class_init(ObjectClass *klass, void *data)
   1842 {
   1843     DeviceClass *dc = DEVICE_CLASS(klass);
   1844     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
   1845 
   1846     dc->desc    = "XIVE Router Engine";
   1847     device_class_set_props(dc, xive_router_properties);
   1848     /* Parent is SysBusDeviceClass. No need to call its realize hook */
   1849     dc->realize = xive_router_realize;
   1850     xnc->notify = xive_router_notify;
   1851 }
   1852 
   1853 static const TypeInfo xive_router_info = {
   1854     .name          = TYPE_XIVE_ROUTER,
   1855     .parent        = TYPE_SYS_BUS_DEVICE,
   1856     .abstract      = true,
   1857     .instance_size = sizeof(XiveRouter),
   1858     .class_size    = sizeof(XiveRouterClass),
   1859     .class_init    = xive_router_class_init,
   1860     .interfaces    = (InterfaceInfo[]) {
   1861         { TYPE_XIVE_NOTIFIER },
   1862         { TYPE_XIVE_PRESENTER },
   1863         { }
   1864     }
   1865 };
   1866 
   1867 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
   1868 {
   1869     if (!xive_eas_is_valid(eas)) {
   1870         return;
   1871     }
   1872 
   1873     monitor_printf(mon, "  %08x %s end:%02x/%04x data:%08x\n",
   1874                    lisn, xive_eas_is_masked(eas) ? "M" : " ",
   1875                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
   1876                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
   1877                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
   1878 }
   1879 
   1880 /*
   1881  * END ESB MMIO loads
   1882  */
   1883 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
   1884 {
   1885     XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
   1886     uint32_t offset = addr & 0xFFF;
   1887     uint8_t end_blk;
   1888     uint32_t end_idx;
   1889     XiveEND end;
   1890     uint32_t end_esmask;
   1891     uint8_t pq;
   1892     uint64_t ret = -1;
   1893 
   1894     /*
   1895      * The block id should be deduced from the load address on the END
   1896      * ESB MMIO but our model only supports a single block per XIVE chip.
   1897      */
   1898     end_blk = xive_router_get_block_id(xsrc->xrtr);
   1899     end_idx = addr >> (xsrc->esb_shift + 1);
   1900 
   1901     trace_xive_end_source_read(end_blk, end_idx, addr);
   1902 
   1903     if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
   1904         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
   1905                       end_idx);
   1906         return -1;
   1907     }
   1908 
   1909     if (!xive_end_is_valid(&end)) {
   1910         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
   1911                       end_blk, end_idx);
   1912         return -1;
   1913     }
   1914 
   1915     end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
   1916     pq = xive_get_field32(end_esmask, end.w1);
   1917 
   1918     switch (offset) {
   1919     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
   1920         ret = xive_esb_eoi(&pq);
   1921 
   1922         /* Forward the source event notification for routing ?? */
   1923         break;
   1924 
   1925     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
   1926         ret = pq;
   1927         break;
   1928 
   1929     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
   1930     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
   1931     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
   1932     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
   1933         ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
   1934         break;
   1935     default:
   1936         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
   1937                       offset);
   1938         return -1;
   1939     }
   1940 
   1941     if (pq != xive_get_field32(end_esmask, end.w1)) {
   1942         end.w1 = xive_set_field32(end_esmask, end.w1, pq);
   1943         xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
   1944     }
   1945 
   1946     return ret;
   1947 }
   1948 
   1949 /*
   1950  * END ESB MMIO stores are invalid
   1951  */
   1952 static void xive_end_source_write(void *opaque, hwaddr addr,
   1953                                   uint64_t value, unsigned size)
   1954 {
   1955     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
   1956                   HWADDR_PRIx"\n", addr);
   1957 }
   1958 
   1959 static const MemoryRegionOps xive_end_source_ops = {
   1960     .read = xive_end_source_read,
   1961     .write = xive_end_source_write,
   1962     .endianness = DEVICE_BIG_ENDIAN,
   1963     .valid = {
   1964         .min_access_size = 8,
   1965         .max_access_size = 8,
   1966     },
   1967     .impl = {
   1968         .min_access_size = 8,
   1969         .max_access_size = 8,
   1970     },
   1971 };
   1972 
   1973 static void xive_end_source_realize(DeviceState *dev, Error **errp)
   1974 {
   1975     XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
   1976 
   1977     assert(xsrc->xrtr);
   1978 
   1979     if (!xsrc->nr_ends) {
   1980         error_setg(errp, "Number of interrupt needs to be greater than 0");
   1981         return;
   1982     }
   1983 
   1984     if (xsrc->esb_shift != XIVE_ESB_4K &&
   1985         xsrc->esb_shift != XIVE_ESB_64K) {
   1986         error_setg(errp, "Invalid ESB shift setting");
   1987         return;
   1988     }
   1989 
   1990     /*
   1991      * Each END is assigned an even/odd pair of MMIO pages, the even page
   1992      * manages the ESn field while the odd page manages the ESe field.
   1993      */
   1994     memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
   1995                           &xive_end_source_ops, xsrc, "xive.end",
   1996                           (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
   1997 }
   1998 
   1999 static Property xive_end_source_properties[] = {
   2000     DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
   2001     DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
   2002     DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
   2003                      XiveRouter *),
   2004     DEFINE_PROP_END_OF_LIST(),
   2005 };
   2006 
   2007 static void xive_end_source_class_init(ObjectClass *klass, void *data)
   2008 {
   2009     DeviceClass *dc = DEVICE_CLASS(klass);
   2010 
   2011     dc->desc    = "XIVE END Source";
   2012     device_class_set_props(dc, xive_end_source_properties);
   2013     dc->realize = xive_end_source_realize;
   2014     /*
   2015      * Reason: part of XIVE interrupt controller, needs to be wired up,
   2016      * e.g. by spapr_xive_instance_init().
   2017      */
   2018     dc->user_creatable = false;
   2019 }
   2020 
   2021 static const TypeInfo xive_end_source_info = {
   2022     .name          = TYPE_XIVE_END_SOURCE,
   2023     .parent        = TYPE_DEVICE,
   2024     .instance_size = sizeof(XiveENDSource),
   2025     .class_init    = xive_end_source_class_init,
   2026 };
   2027 
   2028 /*
   2029  * XIVE Notifier
   2030  */
   2031 static const TypeInfo xive_notifier_info = {
   2032     .name = TYPE_XIVE_NOTIFIER,
   2033     .parent = TYPE_INTERFACE,
   2034     .class_size = sizeof(XiveNotifierClass),
   2035 };
   2036 
   2037 /*
   2038  * XIVE Presenter
   2039  */
   2040 static const TypeInfo xive_presenter_info = {
   2041     .name = TYPE_XIVE_PRESENTER,
   2042     .parent = TYPE_INTERFACE,
   2043     .class_size = sizeof(XivePresenterClass),
   2044 };
   2045 
   2046 /*
   2047  * XIVE Fabric
   2048  */
   2049 static const TypeInfo xive_fabric_info = {
   2050     .name = TYPE_XIVE_FABRIC,
   2051     .parent = TYPE_INTERFACE,
   2052     .class_size = sizeof(XiveFabricClass),
   2053 };
   2054 
   2055 static void xive_register_types(void)
   2056 {
   2057     type_register_static(&xive_fabric_info);
   2058     type_register_static(&xive_source_info);
   2059     type_register_static(&xive_notifier_info);
   2060     type_register_static(&xive_presenter_info);
   2061     type_register_static(&xive_router_info);
   2062     type_register_static(&xive_end_source_info);
   2063     type_register_static(&xive_tctx_info);
   2064 }
   2065 
   2066 type_init(xive_register_types)