qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

arm_gicv3_redist.c (39004B)


      1 /*
      2  * ARM GICv3 emulation: Redistributor
      3  *
      4  * Copyright (c) 2015 Huawei.
      5  * Copyright (c) 2016 Linaro Limited.
      6  * Written by Shlomo Pongratz, Peter Maydell
      7  *
      8  * This code is licensed under the GPL, version 2 or (at your option)
      9  * any later version.
     10  */
     11 
     12 #include "qemu/osdep.h"
     13 #include "qemu/log.h"
     14 #include "trace.h"
     15 #include "gicv3_internal.h"
     16 
     17 static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
     18 {
     19     /* Return a 32-bit mask which should be applied for this set of 32
     20      * interrupts; each bit is 1 if access is permitted by the
     21      * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
     22      * not affect config register accesses, unlike GICD_NSACR.)
     23      */
     24     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
     25         /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
     26         return cs->gicr_igroupr0;
     27     }
     28     return 0xFFFFFFFFU;
     29 }
     30 
     31 static int gicr_ns_access(GICv3CPUState *cs, int irq)
     32 {
     33     /* Return the 2 bit NSACR.NS_access field for this SGI */
     34     assert(irq < 16);
     35     return extract32(cs->gicr_nsacr, irq * 2, 2);
     36 }
     37 
     38 static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
     39                                       uint32_t *reg, uint32_t val)
     40 {
     41     /* Helper routine to implement writing to a "set-bitmap" register */
     42     val &= mask_group(cs, attrs);
     43     *reg |= val;
     44     gicv3_redist_update(cs);
     45 }
     46 
     47 static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
     48                                         uint32_t *reg, uint32_t val)
     49 {
     50     /* Helper routine to implement writing to a "clear-bitmap" register */
     51     val &= mask_group(cs, attrs);
     52     *reg &= ~val;
     53     gicv3_redist_update(cs);
     54 }
     55 
     56 static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
     57                                      uint32_t reg)
     58 {
     59     reg &= mask_group(cs, attrs);
     60     return reg;
     61 }
     62 
     63 static bool vcpu_resident(GICv3CPUState *cs, uint64_t vptaddr)
     64 {
     65     /*
     66      * Return true if a vCPU is resident, which is defined by
     67      * whether the GICR_VPENDBASER register is marked VALID and
     68      * has the right virtual pending table address.
     69      */
     70     if (!FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID)) {
     71         return false;
     72     }
     73     return vptaddr == (cs->gicr_vpendbaser & R_GICR_VPENDBASER_PHYADDR_MASK);
     74 }
     75 
     76 /**
     77  * update_for_one_lpi: Update pending information if this LPI is better
     78  *
     79  * @cs: GICv3CPUState
     80  * @irq: interrupt to look up in the LPI Configuration table
     81  * @ctbase: physical address of the LPI Configuration table to use
     82  * @ds: true if priority value should not be shifted
     83  * @hpp: points to pending information to update
     84  *
     85  * Look up @irq in the Configuration table specified by @ctbase
     86  * to see if it is enabled and what its priority is. If it is an
     87  * enabled interrupt with a higher priority than that currently
     88  * recorded in @hpp, update @hpp.
     89  */
     90 static void update_for_one_lpi(GICv3CPUState *cs, int irq,
     91                                uint64_t ctbase, bool ds, PendingIrq *hpp)
     92 {
     93     uint8_t lpite;
     94     uint8_t prio;
     95 
     96     address_space_read(&cs->gic->dma_as,
     97                        ctbase + ((irq - GICV3_LPI_INTID_START) * sizeof(lpite)),
     98                        MEMTXATTRS_UNSPECIFIED, &lpite, sizeof(lpite));
     99 
    100     if (!(lpite & LPI_CTE_ENABLED)) {
    101         return;
    102     }
    103 
    104     if (ds) {
    105         prio = lpite & LPI_PRIORITY_MASK;
    106     } else {
    107         prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80;
    108     }
    109 
    110     if ((prio < hpp->prio) ||
    111         ((prio == hpp->prio) && (irq <= hpp->irq))) {
    112         hpp->irq = irq;
    113         hpp->prio = prio;
    114         /* LPIs and vLPIs are always non-secure Grp1 interrupts */
    115         hpp->grp = GICV3_G1NS;
    116     }
    117 }
    118 
    119 /**
    120  * update_for_all_lpis: Fully scan LPI tables and find best pending LPI
    121  *
    122  * @cs: GICv3CPUState
    123  * @ptbase: physical address of LPI Pending table
    124  * @ctbase: physical address of LPI Configuration table
    125  * @ptsizebits: size of tables, specified as number of interrupt ID bits minus 1
    126  * @ds: true if priority value should not be shifted
    127  * @hpp: points to pending information to set
    128  *
    129  * Recalculate the highest priority pending enabled LPI from scratch,
    130  * and set @hpp accordingly.
    131  *
    132  * We scan the LPI pending table @ptbase; for each pending LPI, we read the
    133  * corresponding entry in the LPI configuration table @ctbase to extract
    134  * the priority and enabled information.
    135  *
    136  * We take @ptsizebits in the form idbits-1 because this is the way that
    137  * LPI table sizes are architecturally specified in GICR_PROPBASER.IDBits
    138  * and in the VMAPP command's VPT_size field.
    139  */
    140 static void update_for_all_lpis(GICv3CPUState *cs, uint64_t ptbase,
    141                                 uint64_t ctbase, unsigned ptsizebits,
    142                                 bool ds, PendingIrq *hpp)
    143 {
    144     AddressSpace *as = &cs->gic->dma_as;
    145     uint8_t pend;
    146     uint32_t pendt_size = (1ULL << (ptsizebits + 1));
    147     int i, bit;
    148 
    149     hpp->prio = 0xff;
    150 
    151     for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
    152         address_space_read(as, ptbase + i, MEMTXATTRS_UNSPECIFIED, &pend, 1);
    153         while (pend) {
    154             bit = ctz32(pend);
    155             update_for_one_lpi(cs, i * 8 + bit, ctbase, ds, hpp);
    156             pend &= ~(1 << bit);
    157         }
    158     }
    159 }
    160 
    161 /**
    162  * set_lpi_pending_bit: Set or clear pending bit for an LPI
    163  *
    164  * @cs: GICv3CPUState
    165  * @ptbase: physical address of LPI Pending table
    166  * @irq: LPI to change pending state for
    167  * @level: false to clear pending state, true to set
    168  *
    169  * Returns true if we needed to do something, false if the pending bit
    170  * was already at @level.
    171  */
    172 static bool set_pending_table_bit(GICv3CPUState *cs, uint64_t ptbase,
    173                                   int irq, bool level)
    174 {
    175     AddressSpace *as = &cs->gic->dma_as;
    176     uint64_t addr = ptbase + irq / 8;
    177     uint8_t pend;
    178 
    179     address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, &pend, 1);
    180     if (extract32(pend, irq % 8, 1) == level) {
    181         /* Bit already at requested state, no action required */
    182         return false;
    183     }
    184     pend = deposit32(pend, irq % 8, 1, level ? 1 : 0);
    185     address_space_write(as, addr, MEMTXATTRS_UNSPECIFIED, &pend, 1);
    186     return true;
    187 }
    188 
    189 static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
    190                                     int irq)
    191 {
    192     /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
    193      * honouring security state (these are RAZ/WI for Group 0 or Secure
    194      * Group 1 interrupts).
    195      */
    196     uint32_t prio;
    197 
    198     prio = cs->gicr_ipriorityr[irq];
    199 
    200     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
    201         if (!(cs->gicr_igroupr0 & (1U << irq))) {
    202             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
    203             return 0;
    204         }
    205         /* NS view of the interrupt priority */
    206         prio = (prio << 1) & 0xff;
    207     }
    208     return prio;
    209 }
    210 
    211 static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
    212                                   uint8_t value)
    213 {
    214     /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
    215      * honouring security state (these are RAZ/WI for Group 0 or Secure
    216      * Group 1 interrupts).
    217      */
    218     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
    219         if (!(cs->gicr_igroupr0 & (1U << irq))) {
    220             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
    221             return;
    222         }
    223         /* NS view of the interrupt priority */
    224         value = 0x80 | (value >> 1);
    225     }
    226     cs->gicr_ipriorityr[irq] = value;
    227 }
    228 
    229 static void gicv3_redist_update_vlpi_only(GICv3CPUState *cs)
    230 {
    231     uint64_t ptbase, ctbase, idbits;
    232 
    233     if (!FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID)) {
    234         cs->hppvlpi.prio = 0xff;
    235         return;
    236     }
    237 
    238     ptbase = cs->gicr_vpendbaser & R_GICR_VPENDBASER_PHYADDR_MASK;
    239     ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
    240     idbits = FIELD_EX64(cs->gicr_vpropbaser, GICR_VPROPBASER, IDBITS);
    241 
    242     update_for_all_lpis(cs, ptbase, ctbase, idbits, true, &cs->hppvlpi);
    243 }
    244 
    245 static void gicv3_redist_update_vlpi(GICv3CPUState *cs)
    246 {
    247     gicv3_redist_update_vlpi_only(cs);
    248     gicv3_cpuif_virt_irq_fiq_update(cs);
    249 }
    250 
    251 static void gicr_write_vpendbaser(GICv3CPUState *cs, uint64_t newval)
    252 {
    253     /* Write @newval to GICR_VPENDBASER, handling its effects */
    254     bool oldvalid = FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID);
    255     bool newvalid = FIELD_EX64(newval, GICR_VPENDBASER, VALID);
    256     bool pendinglast;
    257 
    258     /*
    259      * The DIRTY bit is read-only and for us is always zero;
    260      * other fields are writable.
    261      */
    262     newval &= R_GICR_VPENDBASER_INNERCACHE_MASK |
    263         R_GICR_VPENDBASER_SHAREABILITY_MASK |
    264         R_GICR_VPENDBASER_PHYADDR_MASK |
    265         R_GICR_VPENDBASER_OUTERCACHE_MASK |
    266         R_GICR_VPENDBASER_PENDINGLAST_MASK |
    267         R_GICR_VPENDBASER_IDAI_MASK |
    268         R_GICR_VPENDBASER_VALID_MASK;
    269 
    270     if (oldvalid && newvalid) {
    271         /*
    272          * Changing other fields while VALID is 1 is UNPREDICTABLE;
    273          * we choose to log and ignore the write.
    274          */
    275         if (cs->gicr_vpendbaser ^ newval) {
    276             qemu_log_mask(LOG_GUEST_ERROR,
    277                           "%s: Changing GICR_VPENDBASER when VALID=1 "
    278                           "is UNPREDICTABLE\n", __func__);
    279         }
    280         return;
    281     }
    282     if (!oldvalid && !newvalid) {
    283         cs->gicr_vpendbaser = newval;
    284         return;
    285     }
    286 
    287     if (newvalid) {
    288         /*
    289          * Valid going from 0 to 1: update hppvlpi from tables.
    290          * If IDAI is 0 we are allowed to use the info we cached in
    291          * the IMPDEF area of the table.
    292          * PendingLast is RES1 when we make this transition.
    293          */
    294         pendinglast = true;
    295     } else {
    296         /*
    297          * Valid going from 1 to 0:
    298          * Set PendingLast if there was a pending enabled interrupt
    299          * for the vPE that was just descheduled.
    300          * If we cache info in the IMPDEF area, write it out here.
    301          */
    302         pendinglast = cs->hppvlpi.prio != 0xff;
    303     }
    304 
    305     newval = FIELD_DP64(newval, GICR_VPENDBASER, PENDINGLAST, pendinglast);
    306     cs->gicr_vpendbaser = newval;
    307     gicv3_redist_update_vlpi(cs);
    308 }
    309 
    310 static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
    311                               uint64_t *data, MemTxAttrs attrs)
    312 {
    313     switch (offset) {
    314     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
    315         *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
    316         return MEMTX_OK;
    317     default:
    318         return MEMTX_ERROR;
    319     }
    320 }
    321 
    322 static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
    323                                uint64_t value, MemTxAttrs attrs)
    324 {
    325     switch (offset) {
    326     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
    327         gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
    328         gicv3_redist_update(cs);
    329         return MEMTX_OK;
    330     default:
    331         return MEMTX_ERROR;
    332     }
    333 }
    334 
    335 static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
    336                               uint64_t *data, MemTxAttrs attrs)
    337 {
    338     switch (offset) {
    339     case GICR_CTLR:
    340         *data = cs->gicr_ctlr;
    341         return MEMTX_OK;
    342     case GICR_IIDR:
    343         *data = gicv3_iidr();
    344         return MEMTX_OK;
    345     case GICR_TYPER:
    346         *data = extract64(cs->gicr_typer, 0, 32);
    347         return MEMTX_OK;
    348     case GICR_TYPER + 4:
    349         *data = extract64(cs->gicr_typer, 32, 32);
    350         return MEMTX_OK;
    351     case GICR_STATUSR:
    352         /* RAZ/WI for us (this is an optional register and our implementation
    353          * does not track RO/WO/reserved violations to report them to the guest)
    354          */
    355         *data = 0;
    356         return MEMTX_OK;
    357     case GICR_WAKER:
    358         *data = cs->gicr_waker;
    359         return MEMTX_OK;
    360     case GICR_PROPBASER:
    361         *data = extract64(cs->gicr_propbaser, 0, 32);
    362         return MEMTX_OK;
    363     case GICR_PROPBASER + 4:
    364         *data = extract64(cs->gicr_propbaser, 32, 32);
    365         return MEMTX_OK;
    366     case GICR_PENDBASER:
    367         *data = extract64(cs->gicr_pendbaser, 0, 32);
    368         return MEMTX_OK;
    369     case GICR_PENDBASER + 4:
    370         *data = extract64(cs->gicr_pendbaser, 32, 32);
    371         return MEMTX_OK;
    372     case GICR_IGROUPR0:
    373         if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
    374             *data = 0;
    375             return MEMTX_OK;
    376         }
    377         *data = cs->gicr_igroupr0;
    378         return MEMTX_OK;
    379     case GICR_ISENABLER0:
    380     case GICR_ICENABLER0:
    381         *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
    382         return MEMTX_OK;
    383     case GICR_ISPENDR0:
    384     case GICR_ICPENDR0:
    385     {
    386         /* The pending register reads as the logical OR of the pending
    387          * latch and the input line level for level-triggered interrupts.
    388          */
    389         uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
    390         *data = gicr_read_bitmap_reg(cs, attrs, val);
    391         return MEMTX_OK;
    392     }
    393     case GICR_ISACTIVER0:
    394     case GICR_ICACTIVER0:
    395         *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
    396         return MEMTX_OK;
    397     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
    398     {
    399         int i, irq = offset - GICR_IPRIORITYR;
    400         uint32_t value = 0;
    401 
    402         for (i = irq + 3; i >= irq; i--) {
    403             value <<= 8;
    404             value |= gicr_read_ipriorityr(cs, attrs, i);
    405         }
    406         *data = value;
    407         return MEMTX_OK;
    408     }
    409     case GICR_ICFGR0:
    410     case GICR_ICFGR1:
    411     {
    412         /* Our edge_trigger bitmap is one bit per irq; take the correct
    413          * half of it, and spread it out into the odd bits.
    414          */
    415         uint32_t value;
    416 
    417         value = cs->edge_trigger & mask_group(cs, attrs);
    418         value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
    419         value = half_shuffle32(value) << 1;
    420         *data = value;
    421         return MEMTX_OK;
    422     }
    423     case GICR_IGRPMODR0:
    424         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
    425             /* RAZ/WI if security disabled, or if
    426              * security enabled and this is an NS access
    427              */
    428             *data = 0;
    429             return MEMTX_OK;
    430         }
    431         *data = cs->gicr_igrpmodr0;
    432         return MEMTX_OK;
    433     case GICR_NSACR:
    434         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
    435             /* RAZ/WI if security disabled, or if
    436              * security enabled and this is an NS access
    437              */
    438             *data = 0;
    439             return MEMTX_OK;
    440         }
    441         *data = cs->gicr_nsacr;
    442         return MEMTX_OK;
    443     case GICR_IDREGS ... GICR_IDREGS + 0x2f:
    444         *data = gicv3_idreg(cs->gic, offset - GICR_IDREGS, GICV3_PIDR0_REDIST);
    445         return MEMTX_OK;
    446         /*
    447          * VLPI frame registers. We don't need a version check for
    448          * VPROPBASER and VPENDBASER because gicv3_redist_size() will
    449          * prevent pre-v4 GIC from passing us offsets this high.
    450          */
    451     case GICR_VPROPBASER:
    452         *data = extract64(cs->gicr_vpropbaser, 0, 32);
    453         return MEMTX_OK;
    454     case GICR_VPROPBASER + 4:
    455         *data = extract64(cs->gicr_vpropbaser, 32, 32);
    456         return MEMTX_OK;
    457     case GICR_VPENDBASER:
    458         *data = extract64(cs->gicr_vpendbaser, 0, 32);
    459         return MEMTX_OK;
    460     case GICR_VPENDBASER + 4:
    461         *data = extract64(cs->gicr_vpendbaser, 32, 32);
    462         return MEMTX_OK;
    463     default:
    464         return MEMTX_ERROR;
    465     }
    466 }
    467 
    468 static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
    469                                uint64_t value, MemTxAttrs attrs)
    470 {
    471     switch (offset) {
    472     case GICR_CTLR:
    473         /* For our implementation, GICR_TYPER.DPGS is 0 and so all
    474          * the DPG bits are RAZ/WI. We don't do anything asynchronously,
    475          * so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we
    476          * implement LPIs) so Enable_LPIs is programmable.
    477          */
    478         if (cs->gicr_typer & GICR_TYPER_PLPIS) {
    479             if (value & GICR_CTLR_ENABLE_LPIS) {
    480                 cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS;
    481                 /* Check for any pending interr in pending table */
    482                 gicv3_redist_update_lpi(cs);
    483             } else {
    484                 cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS;
    485                 /* cs->hppi might have been an LPI; recalculate */
    486                 gicv3_redist_update(cs);
    487             }
    488         }
    489         return MEMTX_OK;
    490     case GICR_STATUSR:
    491         /* RAZ/WI for our implementation */
    492         return MEMTX_OK;
    493     case GICR_WAKER:
    494         /* Only the ProcessorSleep bit is writable. When the guest sets
    495          * it, it requests that we transition the channel between the
    496          * redistributor and the cpu interface to quiescent, and that
    497          * we set the ChildrenAsleep bit once the inteface has reached the
    498          * quiescent state.
    499          * Setting the ProcessorSleep to 0 reverses the quiescing, and
    500          * ChildrenAsleep is cleared once the transition is complete.
    501          * Since our interface is not asynchronous, we complete these
    502          * transitions instantaneously, so we set ChildrenAsleep to the
    503          * same value as ProcessorSleep here.
    504          */
    505         value &= GICR_WAKER_ProcessorSleep;
    506         if (value & GICR_WAKER_ProcessorSleep) {
    507             value |= GICR_WAKER_ChildrenAsleep;
    508         }
    509         cs->gicr_waker = value;
    510         return MEMTX_OK;
    511     case GICR_PROPBASER:
    512         cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
    513         return MEMTX_OK;
    514     case GICR_PROPBASER + 4:
    515         cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
    516         return MEMTX_OK;
    517     case GICR_PENDBASER:
    518         cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
    519         return MEMTX_OK;
    520     case GICR_PENDBASER + 4:
    521         cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
    522         return MEMTX_OK;
    523     case GICR_IGROUPR0:
    524         if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
    525             return MEMTX_OK;
    526         }
    527         cs->gicr_igroupr0 = value;
    528         gicv3_redist_update(cs);
    529         return MEMTX_OK;
    530     case GICR_ISENABLER0:
    531         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
    532         return MEMTX_OK;
    533     case GICR_ICENABLER0:
    534         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
    535         return MEMTX_OK;
    536     case GICR_ISPENDR0:
    537         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
    538         return MEMTX_OK;
    539     case GICR_ICPENDR0:
    540         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
    541         return MEMTX_OK;
    542     case GICR_ISACTIVER0:
    543         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
    544         return MEMTX_OK;
    545     case GICR_ICACTIVER0:
    546         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
    547         return MEMTX_OK;
    548     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
    549     {
    550         int i, irq = offset - GICR_IPRIORITYR;
    551 
    552         for (i = irq; i < irq + 4; i++, value >>= 8) {
    553             gicr_write_ipriorityr(cs, attrs, i, value);
    554         }
    555         gicv3_redist_update(cs);
    556         return MEMTX_OK;
    557     }
    558     case GICR_ICFGR0:
    559         /* Register is all RAZ/WI or RAO/WI bits */
    560         return MEMTX_OK;
    561     case GICR_ICFGR1:
    562     {
    563         uint32_t mask;
    564 
    565         /* Since our edge_trigger bitmap is one bit per irq, our input
    566          * 32-bits will compress down into 16 bits which we need
    567          * to write into the bitmap.
    568          */
    569         value = half_unshuffle32(value >> 1) << 16;
    570         mask = mask_group(cs, attrs) & 0xffff0000U;
    571 
    572         cs->edge_trigger &= ~mask;
    573         cs->edge_trigger |= (value & mask);
    574 
    575         gicv3_redist_update(cs);
    576         return MEMTX_OK;
    577     }
    578     case GICR_IGRPMODR0:
    579         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
    580             /* RAZ/WI if security disabled, or if
    581              * security enabled and this is an NS access
    582              */
    583             return MEMTX_OK;
    584         }
    585         cs->gicr_igrpmodr0 = value;
    586         gicv3_redist_update(cs);
    587         return MEMTX_OK;
    588     case GICR_NSACR:
    589         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
    590             /* RAZ/WI if security disabled, or if
    591              * security enabled and this is an NS access
    592              */
    593             return MEMTX_OK;
    594         }
    595         cs->gicr_nsacr = value;
    596         /* no update required as this only affects access permission checks */
    597         return MEMTX_OK;
    598     case GICR_IIDR:
    599     case GICR_TYPER:
    600     case GICR_IDREGS ... GICR_IDREGS + 0x2f:
    601         /* RO registers, ignore the write */
    602         qemu_log_mask(LOG_GUEST_ERROR,
    603                       "%s: invalid guest write to RO register at offset "
    604                       TARGET_FMT_plx "\n", __func__, offset);
    605         return MEMTX_OK;
    606         /*
    607          * VLPI frame registers. We don't need a version check for
    608          * VPROPBASER and VPENDBASER because gicv3_redist_size() will
    609          * prevent pre-v4 GIC from passing us offsets this high.
    610          */
    611     case GICR_VPROPBASER:
    612         cs->gicr_vpropbaser = deposit64(cs->gicr_vpropbaser, 0, 32, value);
    613         return MEMTX_OK;
    614     case GICR_VPROPBASER + 4:
    615         cs->gicr_vpropbaser = deposit64(cs->gicr_vpropbaser, 32, 32, value);
    616         return MEMTX_OK;
    617     case GICR_VPENDBASER:
    618         gicr_write_vpendbaser(cs, deposit64(cs->gicr_vpendbaser, 0, 32, value));
    619         return MEMTX_OK;
    620     case GICR_VPENDBASER + 4:
    621         gicr_write_vpendbaser(cs, deposit64(cs->gicr_vpendbaser, 32, 32, value));
    622         return MEMTX_OK;
    623     default:
    624         return MEMTX_ERROR;
    625     }
    626 }
    627 
    628 static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
    629                                uint64_t *data, MemTxAttrs attrs)
    630 {
    631     switch (offset) {
    632     case GICR_TYPER:
    633         *data = cs->gicr_typer;
    634         return MEMTX_OK;
    635     case GICR_PROPBASER:
    636         *data = cs->gicr_propbaser;
    637         return MEMTX_OK;
    638     case GICR_PENDBASER:
    639         *data = cs->gicr_pendbaser;
    640         return MEMTX_OK;
    641         /*
    642          * VLPI frame registers. We don't need a version check for
    643          * VPROPBASER and VPENDBASER because gicv3_redist_size() will
    644          * prevent pre-v4 GIC from passing us offsets this high.
    645          */
    646     case GICR_VPROPBASER:
    647         *data = cs->gicr_vpropbaser;
    648         return MEMTX_OK;
    649     case GICR_VPENDBASER:
    650         *data = cs->gicr_vpendbaser;
    651         return MEMTX_OK;
    652     default:
    653         return MEMTX_ERROR;
    654     }
    655 }
    656 
    657 static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
    658                                 uint64_t value, MemTxAttrs attrs)
    659 {
    660     switch (offset) {
    661     case GICR_PROPBASER:
    662         cs->gicr_propbaser = value;
    663         return MEMTX_OK;
    664     case GICR_PENDBASER:
    665         cs->gicr_pendbaser = value;
    666         return MEMTX_OK;
    667     case GICR_TYPER:
    668         /* RO register, ignore the write */
    669         qemu_log_mask(LOG_GUEST_ERROR,
    670                       "%s: invalid guest write to RO register at offset "
    671                       TARGET_FMT_plx "\n", __func__, offset);
    672         return MEMTX_OK;
    673         /*
    674          * VLPI frame registers. We don't need a version check for
    675          * VPROPBASER and VPENDBASER because gicv3_redist_size() will
    676          * prevent pre-v4 GIC from passing us offsets this high.
    677          */
    678     case GICR_VPROPBASER:
    679         cs->gicr_vpropbaser = value;
    680         return MEMTX_OK;
    681     case GICR_VPENDBASER:
    682         gicr_write_vpendbaser(cs, value);
    683         return MEMTX_OK;
    684     default:
    685         return MEMTX_ERROR;
    686     }
    687 }
    688 
    689 MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
    690                               unsigned size, MemTxAttrs attrs)
    691 {
    692     GICv3RedistRegion *region = opaque;
    693     GICv3State *s = region->gic;
    694     GICv3CPUState *cs;
    695     MemTxResult r;
    696     int cpuidx;
    697 
    698     assert((offset & (size - 1)) == 0);
    699 
    700     /*
    701      * There are (for GICv3) two 64K redistributor pages per CPU.
    702      * In some cases the redistributor pages for all CPUs are not
    703      * contiguous (eg on the virt board they are split into two
    704      * parts if there are too many CPUs to all fit in the same place
    705      * in the memory map); if so then the GIC has multiple MemoryRegions
    706      * for the redistributors.
    707      */
    708     cpuidx = region->cpuidx + offset / gicv3_redist_size(s);
    709     offset %= gicv3_redist_size(s);
    710 
    711     cs = &s->cpu[cpuidx];
    712 
    713     switch (size) {
    714     case 1:
    715         r = gicr_readb(cs, offset, data, attrs);
    716         break;
    717     case 4:
    718         r = gicr_readl(cs, offset, data, attrs);
    719         break;
    720     case 8:
    721         r = gicr_readll(cs, offset, data, attrs);
    722         break;
    723     default:
    724         r = MEMTX_ERROR;
    725         break;
    726     }
    727 
    728     if (r != MEMTX_OK) {
    729         qemu_log_mask(LOG_GUEST_ERROR,
    730                       "%s: invalid guest read at offset " TARGET_FMT_plx
    731                       " size %u\n", __func__, offset, size);
    732         trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
    733                                    size, attrs.secure);
    734         /* The spec requires that reserved registers are RAZ/WI;
    735          * so use MEMTX_ERROR returns from leaf functions as a way to
    736          * trigger the guest-error logging but don't return it to
    737          * the caller, or we'll cause a spurious guest data abort.
    738          */
    739         r = MEMTX_OK;
    740         *data = 0;
    741     } else {
    742         trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
    743                                 size, attrs.secure);
    744     }
    745     return r;
    746 }
    747 
    748 MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
    749                                unsigned size, MemTxAttrs attrs)
    750 {
    751     GICv3RedistRegion *region = opaque;
    752     GICv3State *s = region->gic;
    753     GICv3CPUState *cs;
    754     MemTxResult r;
    755     int cpuidx;
    756 
    757     assert((offset & (size - 1)) == 0);
    758 
    759     /*
    760      * There are (for GICv3) two 64K redistributor pages per CPU.
    761      * In some cases the redistributor pages for all CPUs are not
    762      * contiguous (eg on the virt board they are split into two
    763      * parts if there are too many CPUs to all fit in the same place
    764      * in the memory map); if so then the GIC has multiple MemoryRegions
    765      * for the redistributors.
    766      */
    767     cpuidx = region->cpuidx + offset / gicv3_redist_size(s);
    768     offset %= gicv3_redist_size(s);
    769 
    770     cs = &s->cpu[cpuidx];
    771 
    772     switch (size) {
    773     case 1:
    774         r = gicr_writeb(cs, offset, data, attrs);
    775         break;
    776     case 4:
    777         r = gicr_writel(cs, offset, data, attrs);
    778         break;
    779     case 8:
    780         r = gicr_writell(cs, offset, data, attrs);
    781         break;
    782     default:
    783         r = MEMTX_ERROR;
    784         break;
    785     }
    786 
    787     if (r != MEMTX_OK) {
    788         qemu_log_mask(LOG_GUEST_ERROR,
    789                       "%s: invalid guest write at offset " TARGET_FMT_plx
    790                       " size %u\n", __func__, offset, size);
    791         trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
    792                                     size, attrs.secure);
    793         /* The spec requires that reserved registers are RAZ/WI;
    794          * so use MEMTX_ERROR returns from leaf functions as a way to
    795          * trigger the guest-error logging but don't return it to
    796          * the caller, or we'll cause a spurious guest data abort.
    797          */
    798         r = MEMTX_OK;
    799     } else {
    800         trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
    801                                  size, attrs.secure);
    802     }
    803     return r;
    804 }
    805 
    806 static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq)
    807 {
    808     uint64_t lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
    809 
    810     update_for_one_lpi(cs, irq, lpict_baddr,
    811                        cs->gic->gicd_ctlr & GICD_CTLR_DS,
    812                        &cs->hpplpi);
    813 }
    814 
    815 void gicv3_redist_update_lpi_only(GICv3CPUState *cs)
    816 {
    817     /*
    818      * This function scans the LPI pending table and for each pending
    819      * LPI, reads the corresponding entry from LPI configuration table
    820      * to extract the priority info and determine if the current LPI
    821      * priority is lower than the last computed high priority lpi interrupt.
    822      * If yes, replace current LPI as the new high priority lpi interrupt.
    823      */
    824     uint64_t lpipt_baddr, lpict_baddr;
    825     uint64_t idbits;
    826 
    827     idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
    828                  GICD_TYPER_IDBITS);
    829 
    830     if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
    831         return;
    832     }
    833 
    834     lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
    835     lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
    836 
    837     update_for_all_lpis(cs, lpipt_baddr, lpict_baddr, idbits,
    838                         cs->gic->gicd_ctlr & GICD_CTLR_DS, &cs->hpplpi);
    839 }
    840 
    841 void gicv3_redist_update_lpi(GICv3CPUState *cs)
    842 {
    843     gicv3_redist_update_lpi_only(cs);
    844     gicv3_redist_update(cs);
    845 }
    846 
    847 void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level)
    848 {
    849     /*
    850      * This function updates the pending bit in lpi pending table for
    851      * the irq being activated or deactivated.
    852      */
    853     uint64_t lpipt_baddr;
    854 
    855     lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
    856     if (!set_pending_table_bit(cs, lpipt_baddr, irq, level)) {
    857         /* no change in the value of pending bit, return */
    858         return;
    859     }
    860 
    861     /*
    862      * check if this LPI is better than the current hpplpi, if yes
    863      * just set hpplpi.prio and .irq without doing a full rescan
    864      */
    865     if (level) {
    866         gicv3_redist_check_lpi_priority(cs, irq);
    867         gicv3_redist_update(cs);
    868     } else {
    869         if (irq == cs->hpplpi.irq) {
    870             gicv3_redist_update_lpi(cs);
    871         }
    872     }
    873 }
    874 
    875 void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level)
    876 {
    877     uint64_t idbits;
    878 
    879     idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
    880                  GICD_TYPER_IDBITS);
    881 
    882     if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
    883         (irq > (1ULL << (idbits + 1)) - 1) || irq < GICV3_LPI_INTID_START) {
    884         return;
    885     }
    886 
    887     /* set/clear the pending bit for this irq */
    888     gicv3_redist_lpi_pending(cs, irq, level);
    889 }
    890 
    891 void gicv3_redist_inv_lpi(GICv3CPUState *cs, int irq)
    892 {
    893     /*
    894      * The only cached information for LPIs we have is the HPPLPI.
    895      * We could be cleverer about identifying when we don't need
    896      * to do a full rescan of the pending table, but until we find
    897      * this is a performance issue, just always recalculate.
    898      */
    899     gicv3_redist_update_lpi(cs);
    900 }
    901 
    902 void gicv3_redist_mov_lpi(GICv3CPUState *src, GICv3CPUState *dest, int irq)
    903 {
    904     /*
    905      * Move the specified LPI's pending state from the source redistributor
    906      * to the destination.
    907      *
    908      * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE:
    909      * we choose to NOP. If LPIs are disabled on source there's nothing
    910      * to be transferred anyway.
    911      */
    912     uint64_t idbits;
    913     uint32_t pendt_size;
    914     uint64_t src_baddr;
    915 
    916     if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
    917         !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
    918         return;
    919     }
    920 
    921     idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS),
    922                  GICD_TYPER_IDBITS);
    923     idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS),
    924                  idbits);
    925 
    926     pendt_size = 1ULL << (idbits + 1);
    927     if ((irq / 8) >= pendt_size) {
    928         return;
    929     }
    930 
    931     src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
    932 
    933     if (!set_pending_table_bit(src, src_baddr, irq, 0)) {
    934         /* Not pending on source, nothing to do */
    935         return;
    936     }
    937     if (irq == src->hpplpi.irq) {
    938         /*
    939          * We just made this LPI not-pending so only need to update
    940          * if it was previously the highest priority pending LPI
    941          */
    942         gicv3_redist_update_lpi(src);
    943     }
    944     /* Mark it pending on the destination */
    945     gicv3_redist_lpi_pending(dest, irq, 1);
    946 }
    947 
    948 void gicv3_redist_movall_lpis(GICv3CPUState *src, GICv3CPUState *dest)
    949 {
    950     /*
    951      * We must move all pending LPIs from the source redistributor
    952      * to the destination. That is, for every pending LPI X on
    953      * src, we must set it not-pending on src and pending on dest.
    954      * LPIs that are already pending on dest are not cleared.
    955      *
    956      * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE:
    957      * we choose to NOP. If LPIs are disabled on source there's nothing
    958      * to be transferred anyway.
    959      */
    960     AddressSpace *as = &src->gic->dma_as;
    961     uint64_t idbits;
    962     uint32_t pendt_size;
    963     uint64_t src_baddr, dest_baddr;
    964     int i;
    965 
    966     if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
    967         !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
    968         return;
    969     }
    970 
    971     idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS),
    972                  GICD_TYPER_IDBITS);
    973     idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS),
    974                  idbits);
    975 
    976     pendt_size = 1ULL << (idbits + 1);
    977     src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
    978     dest_baddr = dest->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
    979 
    980     for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
    981         uint8_t src_pend, dest_pend;
    982 
    983         address_space_read(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED,
    984                            &src_pend, sizeof(src_pend));
    985         if (!src_pend) {
    986             continue;
    987         }
    988         address_space_read(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED,
    989                            &dest_pend, sizeof(dest_pend));
    990         dest_pend |= src_pend;
    991         src_pend = 0;
    992         address_space_write(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED,
    993                             &src_pend, sizeof(src_pend));
    994         address_space_write(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED,
    995                             &dest_pend, sizeof(dest_pend));
    996     }
    997 
    998     gicv3_redist_update_lpi(src);
    999     gicv3_redist_update_lpi(dest);
   1000 }
   1001 
   1002 void gicv3_redist_vlpi_pending(GICv3CPUState *cs, int irq, int level)
   1003 {
   1004     /*
   1005      * Change the pending state of the specified vLPI.
   1006      * Unlike gicv3_redist_process_vlpi(), we know here that the
   1007      * vCPU is definitely resident on this redistributor, and that
   1008      * the irq is in range.
   1009      */
   1010     uint64_t vptbase, ctbase;
   1011 
   1012     vptbase = FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, PHYADDR) << 16;
   1013 
   1014     if (set_pending_table_bit(cs, vptbase, irq, level)) {
   1015         if (level) {
   1016             /* Check whether this vLPI is now the best */
   1017             ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
   1018             update_for_one_lpi(cs, irq, ctbase, true, &cs->hppvlpi);
   1019             gicv3_cpuif_virt_irq_fiq_update(cs);
   1020         } else {
   1021             /* Only need to recalculate if this was previously the best vLPI */
   1022             if (irq == cs->hppvlpi.irq) {
   1023                 gicv3_redist_update_vlpi(cs);
   1024             }
   1025         }
   1026     }
   1027 }
   1028 
   1029 void gicv3_redist_process_vlpi(GICv3CPUState *cs, int irq, uint64_t vptaddr,
   1030                                int doorbell, int level)
   1031 {
   1032     bool bit_changed;
   1033     bool resident = vcpu_resident(cs, vptaddr);
   1034     uint64_t ctbase;
   1035 
   1036     if (resident) {
   1037         uint32_t idbits = FIELD_EX64(cs->gicr_vpropbaser, GICR_VPROPBASER, IDBITS);
   1038         if (irq >= (1ULL << (idbits + 1))) {
   1039             return;
   1040         }
   1041     }
   1042 
   1043     bit_changed = set_pending_table_bit(cs, vptaddr, irq, level);
   1044     if (resident && bit_changed) {
   1045         if (level) {
   1046             /* Check whether this vLPI is now the best */
   1047             ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
   1048             update_for_one_lpi(cs, irq, ctbase, true, &cs->hppvlpi);
   1049             gicv3_cpuif_virt_irq_fiq_update(cs);
   1050         } else {
   1051             /* Only need to recalculate if this was previously the best vLPI */
   1052             if (irq == cs->hppvlpi.irq) {
   1053                 gicv3_redist_update_vlpi(cs);
   1054             }
   1055         }
   1056     }
   1057 
   1058     if (!resident && level && doorbell != INTID_SPURIOUS &&
   1059         (cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
   1060         /* vCPU is not currently resident: ring the doorbell */
   1061         gicv3_redist_process_lpi(cs, doorbell, 1);
   1062     }
   1063 }
   1064 
   1065 void gicv3_redist_mov_vlpi(GICv3CPUState *src, uint64_t src_vptaddr,
   1066                            GICv3CPUState *dest, uint64_t dest_vptaddr,
   1067                            int irq, int doorbell)
   1068 {
   1069     /*
   1070      * Move the specified vLPI's pending state from the source redistributor
   1071      * to the destination.
   1072      */
   1073     if (!set_pending_table_bit(src, src_vptaddr, irq, 0)) {
   1074         /* Not pending on source, nothing to do */
   1075         return;
   1076     }
   1077     if (vcpu_resident(src, src_vptaddr) && irq == src->hppvlpi.irq) {
   1078         /*
   1079          * Update src's cached highest-priority pending vLPI if we just made
   1080          * it not-pending
   1081          */
   1082         gicv3_redist_update_vlpi(src);
   1083     }
   1084     /*
   1085      * Mark the vLPI pending on the destination (ringing the doorbell
   1086      * if the vCPU isn't resident)
   1087      */
   1088     gicv3_redist_process_vlpi(dest, irq, dest_vptaddr, doorbell, irq);
   1089 }
   1090 
   1091 void gicv3_redist_vinvall(GICv3CPUState *cs, uint64_t vptaddr)
   1092 {
   1093     if (!vcpu_resident(cs, vptaddr)) {
   1094         /* We don't have anything cached if the vCPU isn't resident */
   1095         return;
   1096     }
   1097 
   1098     /* Otherwise, our only cached information is the HPPVLPI info */
   1099     gicv3_redist_update_vlpi(cs);
   1100 }
   1101 
   1102 void gicv3_redist_inv_vlpi(GICv3CPUState *cs, int irq, uint64_t vptaddr)
   1103 {
   1104     /*
   1105      * The only cached information for LPIs we have is the HPPLPI.
   1106      * We could be cleverer about identifying when we don't need
   1107      * to do a full rescan of the pending table, but until we find
   1108      * this is a performance issue, just always recalculate.
   1109      */
   1110     gicv3_redist_vinvall(cs, vptaddr);
   1111 }
   1112 
   1113 void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
   1114 {
   1115     /* Update redistributor state for a change in an external PPI input line */
   1116     if (level == extract32(cs->level, irq, 1)) {
   1117         return;
   1118     }
   1119 
   1120     trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
   1121 
   1122     cs->level = deposit32(cs->level, irq, 1, level);
   1123 
   1124     if (level) {
   1125         /* 0->1 edges latch the pending bit for edge-triggered interrupts */
   1126         if (extract32(cs->edge_trigger, irq, 1)) {
   1127             cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
   1128         }
   1129     }
   1130 
   1131     gicv3_redist_update(cs);
   1132 }
   1133 
   1134 void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
   1135 {
   1136     /* Update redistributor state for a generated SGI */
   1137     int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
   1138 
   1139     /* If we are asked for a Secure Group 1 SGI and it's actually
   1140      * configured as Secure Group 0 this is OK (subject to the usual
   1141      * NSACR checks).
   1142      */
   1143     if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
   1144         grp = GICV3_G0;
   1145     }
   1146 
   1147     if (grp != irqgrp) {
   1148         return;
   1149     }
   1150 
   1151     if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
   1152         /* If security is enabled we must test the NSACR bits */
   1153         int nsaccess = gicr_ns_access(cs, irq);
   1154 
   1155         if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
   1156             (irqgrp == GICV3_G1 && nsaccess < 2)) {
   1157             return;
   1158         }
   1159     }
   1160 
   1161     /* OK, we can accept the SGI */
   1162     trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
   1163     cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
   1164     gicv3_redist_update(cs);
   1165 }