qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

arm_gicv3_dist.c (30888B)


      1 /*
      2  * ARM GICv3 emulation: Distributor
      3  *
      4  * Copyright (c) 2015 Huawei.
      5  * Copyright (c) 2016 Linaro Limited.
      6  * Written by Shlomo Pongratz, Peter Maydell
      7  *
      8  * This code is licensed under the GPL, version 2 or (at your option)
      9  * any later version.
     10  */
     11 
     12 #include "qemu/osdep.h"
     13 #include "qemu/log.h"
     14 #include "trace.h"
     15 #include "gicv3_internal.h"
     16 
     17 /* The GICD_NSACR registers contain a two bit field for each interrupt which
     18  * allows the guest to give NonSecure code access to registers controlling
     19  * Secure interrupts:
     20  *  0b00: no access (NS accesses to bits for Secure interrupts will RAZ/WI)
     21  *  0b01: NS r/w accesses permitted to ISPENDR, SETSPI_NSR, SGIR
     22  *  0b10: as 0b01, and also r/w to ICPENDR, r/o to ISACTIVER/ICACTIVER,
     23  *        and w/o to CLRSPI_NSR
     24  *  0b11: as 0b10, and also r/w to IROUTER and ITARGETSR
     25  *
     26  * Given a (multiple-of-32) interrupt number, these mask functions return
     27  * a mask word where each bit is 1 if the NSACR settings permit access
     28  * to the interrupt. The mask returned can then be ORed with the GICD_GROUP
     29  * word for this set of interrupts to give an overall mask.
     30  */
     31 
     32 typedef uint32_t maskfn(GICv3State *s, int irq);
     33 
     34 static uint32_t mask_nsacr_ge1(GICv3State *s, int irq)
     35 {
     36     /* Return a mask where each bit is set if the NSACR field is >= 1 */
     37     uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
     38 
     39     raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
     40     raw_nsacr = (raw_nsacr >> 1) | raw_nsacr;
     41     return half_unshuffle64(raw_nsacr);
     42 }
     43 
     44 static uint32_t mask_nsacr_ge2(GICv3State *s, int irq)
     45 {
     46     /* Return a mask where each bit is set if the NSACR field is >= 2 */
     47     uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
     48 
     49     raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
     50     raw_nsacr = raw_nsacr >> 1;
     51     return half_unshuffle64(raw_nsacr);
     52 }
     53 
     54 /* We don't need a mask_nsacr_ge3() because IROUTER<n> isn't a bitmap register,
     55  * but it would be implemented using:
     56  *  raw_nsacr = (raw_nsacr >> 1) & raw_nsacr;
     57  */
     58 
     59 static uint32_t mask_group_and_nsacr(GICv3State *s, MemTxAttrs attrs,
     60                                      maskfn *maskfn, int irq)
     61 {
     62     /* Return a 32-bit mask which should be applied for this set of 32
     63      * interrupts; each bit is 1 if access is permitted by the
     64      * combination of attrs.secure, GICD_GROUPR and GICD_NSACR.
     65      */
     66     uint32_t mask;
     67 
     68     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
     69         /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI
     70          * unless the NSACR bits permit access.
     71          */
     72         mask = *gic_bmp_ptr32(s->group, irq);
     73         if (maskfn) {
     74             mask |= maskfn(s, irq);
     75         }
     76         return mask;
     77     }
     78     return 0xFFFFFFFFU;
     79 }
     80 
     81 static int gicd_ns_access(GICv3State *s, int irq)
     82 {
     83     /* Return the 2 bit NS_access<x> field from GICD_NSACR<n> for the
     84      * specified interrupt.
     85      */
     86     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
     87         return 0;
     88     }
     89     return extract32(s->gicd_nsacr[irq / 16], (irq % 16) * 2, 2);
     90 }
     91 
     92 static void gicd_write_set_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
     93                                       uint32_t *bmp,
     94                                       maskfn *maskfn,
     95                                       int offset, uint32_t val)
     96 {
     97     /* Helper routine to implement writing to a "set-bitmap" register
     98      * (GICD_ISENABLER, GICD_ISPENDR, etc).
     99      * Semantics implemented here:
    100      * RAZ/WI for SGIs, PPIs, unimplemented IRQs
    101      * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
    102      * Writing 1 means "set bit in bitmap"; writing 0 is ignored.
    103      * offset should be the offset in bytes of the register from the start
    104      * of its group.
    105      */
    106     int irq = offset * 8;
    107 
    108     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    109         return;
    110     }
    111     val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
    112     *gic_bmp_ptr32(bmp, irq) |= val;
    113     gicv3_update(s, irq, 32);
    114 }
    115 
    116 static void gicd_write_clear_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
    117                                         uint32_t *bmp,
    118                                         maskfn *maskfn,
    119                                         int offset, uint32_t val)
    120 {
    121     /* Helper routine to implement writing to a "clear-bitmap" register
    122      * (GICD_ICENABLER, GICD_ICPENDR, etc).
    123      * Semantics implemented here:
    124      * RAZ/WI for SGIs, PPIs, unimplemented IRQs
    125      * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
    126      * Writing 1 means "clear bit in bitmap"; writing 0 is ignored.
    127      * offset should be the offset in bytes of the register from the start
    128      * of its group.
    129      */
    130     int irq = offset * 8;
    131 
    132     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    133         return;
    134     }
    135     val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
    136     *gic_bmp_ptr32(bmp, irq) &= ~val;
    137     gicv3_update(s, irq, 32);
    138 }
    139 
    140 static uint32_t gicd_read_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
    141                                      uint32_t *bmp,
    142                                      maskfn *maskfn,
    143                                      int offset)
    144 {
    145     /* Helper routine to implement reading a "set/clear-bitmap" register
    146      * (GICD_ICENABLER, GICD_ISENABLER, GICD_ICPENDR, etc).
    147      * Semantics implemented here:
    148      * RAZ/WI for SGIs, PPIs, unimplemented IRQs
    149      * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
    150      * offset should be the offset in bytes of the register from the start
    151      * of its group.
    152      */
    153     int irq = offset * 8;
    154     uint32_t val;
    155 
    156     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    157         return 0;
    158     }
    159     val = *gic_bmp_ptr32(bmp, irq);
    160     if (bmp == s->pending) {
    161         /* The PENDING register is a special case -- for level triggered
    162          * interrupts, the PENDING state is the logical OR of the state of
    163          * the PENDING latch with the input line level.
    164          */
    165         uint32_t edge = *gic_bmp_ptr32(s->edge_trigger, irq);
    166         uint32_t level = *gic_bmp_ptr32(s->level, irq);
    167         val |= (~edge & level);
    168     }
    169     val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
    170     return val;
    171 }
    172 
    173 static uint8_t gicd_read_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq)
    174 {
    175     /* Read the value of GICD_IPRIORITYR<n> for the specified interrupt,
    176      * honouring security state (these are RAZ/WI for Group 0 or Secure
    177      * Group 1 interrupts).
    178      */
    179     uint32_t prio;
    180 
    181     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    182         return 0;
    183     }
    184 
    185     prio = s->gicd_ipriority[irq];
    186 
    187     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
    188         if (!gicv3_gicd_group_test(s, irq)) {
    189             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
    190             return 0;
    191         }
    192         /* NS view of the interrupt priority */
    193         prio = (prio << 1) & 0xff;
    194     }
    195     return prio;
    196 }
    197 
    198 static void gicd_write_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq,
    199                                   uint8_t value)
    200 {
    201     /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
    202      * honouring security state (these are RAZ/WI for Group 0 or Secure
    203      * Group 1 interrupts).
    204      */
    205     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    206         return;
    207     }
    208 
    209     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
    210         if (!gicv3_gicd_group_test(s, irq)) {
    211             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
    212             return;
    213         }
    214         /* NS view of the interrupt priority */
    215         value = 0x80 | (value >> 1);
    216     }
    217     s->gicd_ipriority[irq] = value;
    218 }
    219 
    220 static uint64_t gicd_read_irouter(GICv3State *s, MemTxAttrs attrs, int irq)
    221 {
    222     /* Read the value of GICD_IROUTER<n> for the specified interrupt,
    223      * honouring security state.
    224      */
    225     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    226         return 0;
    227     }
    228 
    229     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
    230         /* RAZ/WI for NS accesses to secure interrupts */
    231         if (!gicv3_gicd_group_test(s, irq)) {
    232             if (gicd_ns_access(s, irq) != 3) {
    233                 return 0;
    234             }
    235         }
    236     }
    237 
    238     return s->gicd_irouter[irq];
    239 }
    240 
    241 static void gicd_write_irouter(GICv3State *s, MemTxAttrs attrs, int irq,
    242                                uint64_t val)
    243 {
    244     /* Write the value of GICD_IROUTER<n> for the specified interrupt,
    245      * honouring security state.
    246      */
    247     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    248         return;
    249     }
    250 
    251     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
    252         /* RAZ/WI for NS accesses to secure interrupts */
    253         if (!gicv3_gicd_group_test(s, irq)) {
    254             if (gicd_ns_access(s, irq) != 3) {
    255                 return;
    256             }
    257         }
    258     }
    259 
    260     s->gicd_irouter[irq] = val;
    261     gicv3_cache_target_cpustate(s, irq);
    262     gicv3_update(s, irq, 1);
    263 }
    264 
    265 /**
    266  * gicd_readb
    267  * gicd_readw
    268  * gicd_readl
    269  * gicd_readq
    270  * gicd_writeb
    271  * gicd_writew
    272  * gicd_writel
    273  * gicd_writeq
    274  *
    275  * Return %true if the operation succeeded, %false otherwise.
    276  */
    277 
    278 static bool gicd_readb(GICv3State *s, hwaddr offset,
    279                        uint64_t *data, MemTxAttrs attrs)
    280 {
    281     /* Most GICv3 distributor registers do not support byte accesses. */
    282     switch (offset) {
    283     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
    284     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
    285     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
    286         /* This GIC implementation always has affinity routing enabled,
    287          * so these registers are all RAZ/WI.
    288          */
    289         return true;
    290     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
    291         *data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR);
    292         return true;
    293     default:
    294         return false;
    295     }
    296 }
    297 
    298 static bool gicd_writeb(GICv3State *s, hwaddr offset,
    299                         uint64_t value, MemTxAttrs attrs)
    300 {
    301     /* Most GICv3 distributor registers do not support byte accesses. */
    302     switch (offset) {
    303     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
    304     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
    305     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
    306         /* This GIC implementation always has affinity routing enabled,
    307          * so these registers are all RAZ/WI.
    308          */
    309         return true;
    310     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
    311     {
    312         int irq = offset - GICD_IPRIORITYR;
    313 
    314         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    315             return true;
    316         }
    317         gicd_write_ipriorityr(s, attrs, irq, value);
    318         gicv3_update(s, irq, 1);
    319         return true;
    320     }
    321     default:
    322         return false;
    323     }
    324 }
    325 
    326 static bool gicd_readw(GICv3State *s, hwaddr offset,
    327                        uint64_t *data, MemTxAttrs attrs)
    328 {
    329     /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
    330      * support 16 bit accesses, and those registers are all part of the
    331      * optional message-based SPI feature which this GIC does not currently
    332      * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
    333      * reserved.
    334      */
    335     return false;
    336 }
    337 
    338 static bool gicd_writew(GICv3State *s, hwaddr offset,
    339                         uint64_t value, MemTxAttrs attrs)
    340 {
    341     /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
    342      * support 16 bit accesses, and those registers are all part of the
    343      * optional message-based SPI feature which this GIC does not currently
    344      * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
    345      * reserved.
    346      */
    347     return false;
    348 }
    349 
    350 static bool gicd_readl(GICv3State *s, hwaddr offset,
    351                        uint64_t *data, MemTxAttrs attrs)
    352 {
    353     /* Almost all GICv3 distributor registers are 32-bit.
    354      * Note that WO registers must return an UNKNOWN value on reads,
    355      * not an abort.
    356      */
    357 
    358     switch (offset) {
    359     case GICD_CTLR:
    360         if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
    361             /* The NS view of the GICD_CTLR sees only certain bits:
    362              * + bit [31] (RWP) is an alias of the Secure bit [31]
    363              * + bit [4] (ARE_NS) is an alias of Secure bit [5]
    364              * + bit [1] (EnableGrp1A) is an alias of Secure bit [1] if
    365              *   NS affinity routing is enabled, otherwise RES0
    366              * + bit [0] (EnableGrp1) is an alias of Secure bit [1] if
    367              *   NS affinity routing is not enabled, otherwise RES0
    368              * Since for QEMU affinity routing is always enabled
    369              * for both S and NS this means that bits [4] and [5] are
    370              * both always 1, and we can simply make the NS view
    371              * be bits 31, 4 and 1 of the S view.
    372              */
    373             *data = s->gicd_ctlr & (GICD_CTLR_ARE_S |
    374                                     GICD_CTLR_EN_GRP1NS |
    375                                     GICD_CTLR_RWP);
    376         } else {
    377             *data = s->gicd_ctlr;
    378         }
    379         return true;
    380     case GICD_TYPER:
    381     {
    382         /* For this implementation:
    383          * No1N == 1 (1-of-N SPI interrupts not supported)
    384          * A3V == 1 (non-zero values of Affinity level 3 supported)
    385          * IDbits == 0xf (we support 16-bit interrupt identifiers)
    386          * DVIS == 1 (Direct virtual LPI injection supported) if GICv4
    387          * LPIS == 1 (LPIs are supported if affinity routing is enabled)
    388          * num_LPIs == 0b00000 (bits [15:11],Number of LPIs as indicated
    389          *                      by GICD_TYPER.IDbits)
    390          * MBIS == 0 (message-based SPIs not supported)
    391          * SecurityExtn == 1 if security extns supported
    392          * CPUNumber == 0 since for us ARE is always 1
    393          * ITLinesNumber == (num external irqs / 32) - 1
    394          */
    395         int itlinesnumber = ((s->num_irq - GIC_INTERNAL) / 32) - 1;
    396         /*
    397          * SecurityExtn must be RAZ if GICD_CTLR.DS == 1, and
    398          * "security extensions not supported" always implies DS == 1,
    399          * so we only need to check the DS bit.
    400          */
    401         bool sec_extn = !(s->gicd_ctlr & GICD_CTLR_DS);
    402         bool dvis = s->revision >= 4;
    403 
    404         *data = (1 << 25) | (1 << 24) | (dvis << 18) | (sec_extn << 10) |
    405             (s->lpi_enable << GICD_TYPER_LPIS_SHIFT) |
    406             (0xf << 19) | itlinesnumber;
    407         return true;
    408     }
    409     case GICD_IIDR:
    410         /* We claim to be an ARM r0p0 with a zero ProductID.
    411          * This is the same as an r0p0 GIC-500.
    412          */
    413         *data = gicv3_iidr();
    414         return true;
    415     case GICD_STATUSR:
    416         /* RAZ/WI for us (this is an optional register and our implementation
    417          * does not track RO/WO/reserved violations to report them to the guest)
    418          */
    419         *data = 0;
    420         return true;
    421     case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
    422     {
    423         int irq;
    424 
    425         if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
    426             *data = 0;
    427             return true;
    428         }
    429         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
    430         irq = (offset - GICD_IGROUPR) * 8;
    431         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    432             *data = 0;
    433             return true;
    434         }
    435         *data = *gic_bmp_ptr32(s->group, irq);
    436         return true;
    437     }
    438     case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
    439         *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
    440                                      offset - GICD_ISENABLER);
    441         return true;
    442     case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
    443         *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
    444                                      offset - GICD_ICENABLER);
    445         return true;
    446     case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
    447         *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
    448                                      offset - GICD_ISPENDR);
    449         return true;
    450     case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
    451         *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
    452                                      offset - GICD_ICPENDR);
    453         return true;
    454     case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
    455         *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
    456                                      offset - GICD_ISACTIVER);
    457         return true;
    458     case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
    459         *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
    460                                      offset - GICD_ICACTIVER);
    461         return true;
    462     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
    463     {
    464         int i, irq = offset - GICD_IPRIORITYR;
    465         uint32_t value = 0;
    466 
    467         for (i = irq + 3; i >= irq; i--) {
    468             value <<= 8;
    469             value |= gicd_read_ipriorityr(s, attrs, i);
    470         }
    471         *data = value;
    472         return true;
    473     }
    474     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
    475         /* RAZ/WI since affinity routing is always enabled */
    476         *data = 0;
    477         return true;
    478     case GICD_ICFGR ... GICD_ICFGR + 0xff:
    479     {
    480         /* Here only the even bits are used; odd bits are RES0 */
    481         int irq = (offset - GICD_ICFGR) * 4;
    482         uint32_t value = 0;
    483 
    484         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    485             *data = 0;
    486             return true;
    487         }
    488 
    489         /* Since our edge_trigger bitmap is one bit per irq, we only need
    490          * half of the 32-bit word, which we can then spread out
    491          * into the odd bits.
    492          */
    493         value = *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f);
    494         value &= mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
    495         value = extract32(value, (irq & 0x1f) ? 16 : 0, 16);
    496         value = half_shuffle32(value) << 1;
    497         *data = value;
    498         return true;
    499     }
    500     case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
    501     {
    502         int irq;
    503 
    504         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
    505             /* RAZ/WI if security disabled, or if
    506              * security enabled and this is an NS access
    507              */
    508             *data = 0;
    509             return true;
    510         }
    511         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
    512         irq = (offset - GICD_IGRPMODR) * 8;
    513         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    514             *data = 0;
    515             return true;
    516         }
    517         *data = *gic_bmp_ptr32(s->grpmod, irq);
    518         return true;
    519     }
    520     case GICD_NSACR ... GICD_NSACR + 0xff:
    521     {
    522         /* Two bits per interrupt */
    523         int irq = (offset - GICD_NSACR) * 4;
    524 
    525         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    526             *data = 0;
    527             return true;
    528         }
    529 
    530         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
    531             /* RAZ/WI if security disabled, or if
    532              * security enabled and this is an NS access
    533              */
    534             *data = 0;
    535             return true;
    536         }
    537 
    538         *data = s->gicd_nsacr[irq / 16];
    539         return true;
    540     }
    541     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
    542     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
    543         /* RAZ/WI since affinity routing is always enabled */
    544         *data = 0;
    545         return true;
    546     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
    547     {
    548         uint64_t r;
    549         int irq = (offset - GICD_IROUTER) / 8;
    550 
    551         r = gicd_read_irouter(s, attrs, irq);
    552         if (offset & 7) {
    553             *data = r >> 32;
    554         } else {
    555             *data = (uint32_t)r;
    556         }
    557         return true;
    558     }
    559     case GICD_IDREGS ... GICD_IDREGS + 0x2f:
    560         /* ID registers */
    561         *data = gicv3_idreg(s, offset - GICD_IDREGS, GICV3_PIDR0_DIST);
    562         return true;
    563     case GICD_SGIR:
    564         /* WO registers, return unknown value */
    565         qemu_log_mask(LOG_GUEST_ERROR,
    566                       "%s: invalid guest read from WO register at offset "
    567                       TARGET_FMT_plx "\n", __func__, offset);
    568         *data = 0;
    569         return true;
    570     default:
    571         return false;
    572     }
    573 }
    574 
    575 static bool gicd_writel(GICv3State *s, hwaddr offset,
    576                         uint64_t value, MemTxAttrs attrs)
    577 {
    578     /* Almost all GICv3 distributor registers are 32-bit. Note that
    579      * RO registers must ignore writes, not abort.
    580      */
    581 
    582     switch (offset) {
    583     case GICD_CTLR:
    584     {
    585         uint32_t mask;
    586         /* GICv3 5.3.20 */
    587         if (s->gicd_ctlr & GICD_CTLR_DS) {
    588             /* With only one security state, E1NWF is RAZ/WI, DS is RAO/WI,
    589              * ARE is RAO/WI (affinity routing always on), and only
    590              * bits 0 and 1 (group enables) are writable.
    591              */
    592             mask = GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1NS;
    593         } else {
    594             if (attrs.secure) {
    595                 /* for secure access:
    596                  * ARE_NS and ARE_S are RAO/WI (affinity routing always on)
    597                  * E1NWF is RAZ/WI (we don't support enable-1-of-n-wakeup)
    598                  *
    599                  * We can only modify bits[2:0] (the group enables).
    600                  */
    601                 mask = GICD_CTLR_DS | GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1_ALL;
    602             } else {
    603                 /* For non secure access ARE_NS is RAO/WI and EnableGrp1
    604                  * is RES0. The only writable bit is [1] (EnableGrp1A), which
    605                  * is an alias of the Secure bit [1].
    606                  */
    607                 mask = GICD_CTLR_EN_GRP1NS;
    608             }
    609         }
    610         s->gicd_ctlr = (s->gicd_ctlr & ~mask) | (value & mask);
    611         if (value & mask & GICD_CTLR_DS) {
    612             /* We just set DS, so the ARE_NS and EnG1S bits are now RES0.
    613              * Note that this is a one-way transition because if DS is set
    614              * then it's not writable, so it can only go back to 0 with a
    615              * hardware reset.
    616              */
    617             s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS);
    618         }
    619         gicv3_full_update(s);
    620         return true;
    621     }
    622     case GICD_STATUSR:
    623         /* RAZ/WI for our implementation */
    624         return true;
    625     case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
    626     {
    627         int irq;
    628 
    629         if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
    630             return true;
    631         }
    632         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
    633         irq = (offset - GICD_IGROUPR) * 8;
    634         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    635             return true;
    636         }
    637         *gic_bmp_ptr32(s->group, irq) = value;
    638         gicv3_update(s, irq, 32);
    639         return true;
    640     }
    641     case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
    642         gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL,
    643                                   offset - GICD_ISENABLER, value);
    644         return true;
    645     case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
    646         gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL,
    647                                     offset - GICD_ICENABLER, value);
    648         return true;
    649     case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
    650         gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
    651                                   offset - GICD_ISPENDR, value);
    652         return true;
    653     case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
    654         gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
    655                                     offset - GICD_ICPENDR, value);
    656         return true;
    657     case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
    658         gicd_write_set_bitmap_reg(s, attrs, s->active, NULL,
    659                                   offset - GICD_ISACTIVER, value);
    660         return true;
    661     case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
    662         gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL,
    663                                     offset - GICD_ICACTIVER, value);
    664         return true;
    665     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
    666     {
    667         int i, irq = offset - GICD_IPRIORITYR;
    668 
    669         if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) {
    670             return true;
    671         }
    672 
    673         for (i = irq; i < irq + 4; i++, value >>= 8) {
    674             gicd_write_ipriorityr(s, attrs, i, value);
    675         }
    676         gicv3_update(s, irq, 4);
    677         return true;
    678     }
    679     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
    680         /* RAZ/WI since affinity routing is always enabled */
    681         return true;
    682     case GICD_ICFGR ... GICD_ICFGR + 0xff:
    683     {
    684         /* Here only the odd bits are used; even bits are RES0 */
    685         int irq = (offset - GICD_ICFGR) * 4;
    686         uint32_t mask, oldval;
    687 
    688         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    689             return true;
    690         }
    691 
    692         /* Since our edge_trigger bitmap is one bit per irq, our input
    693          * 32-bits will compress down into 16 bits which we need
    694          * to write into the bitmap.
    695          */
    696         value = half_unshuffle32(value >> 1);
    697         mask = mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
    698         if (irq & 0x1f) {
    699             value <<= 16;
    700             mask &= 0xffff0000U;
    701         } else {
    702             mask &= 0xffff;
    703         }
    704         oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f));
    705         value = (oldval & ~mask) | (value & mask);
    706         *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value;
    707         return true;
    708     }
    709     case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
    710     {
    711         int irq;
    712 
    713         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
    714             /* RAZ/WI if security disabled, or if
    715              * security enabled and this is an NS access
    716              */
    717             return true;
    718         }
    719         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
    720         irq = (offset - GICD_IGRPMODR) * 8;
    721         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    722             return true;
    723         }
    724         *gic_bmp_ptr32(s->grpmod, irq) = value;
    725         gicv3_update(s, irq, 32);
    726         return true;
    727     }
    728     case GICD_NSACR ... GICD_NSACR + 0xff:
    729     {
    730         /* Two bits per interrupt */
    731         int irq = (offset - GICD_NSACR) * 4;
    732 
    733         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    734             return true;
    735         }
    736 
    737         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
    738             /* RAZ/WI if security disabled, or if
    739              * security enabled and this is an NS access
    740              */
    741             return true;
    742         }
    743 
    744         s->gicd_nsacr[irq / 16] = value;
    745         /* No update required as this only affects access permission checks */
    746         return true;
    747     }
    748     case GICD_SGIR:
    749         /* RES0 if affinity routing is enabled */
    750         return true;
    751     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
    752     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
    753         /* RAZ/WI since affinity routing is always enabled */
    754         return true;
    755     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
    756     {
    757         uint64_t r;
    758         int irq = (offset - GICD_IROUTER) / 8;
    759 
    760         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    761             return true;
    762         }
    763 
    764         /* Write half of the 64-bit register */
    765         r = gicd_read_irouter(s, attrs, irq);
    766         r = deposit64(r, (offset & 7) ? 32 : 0, 32, value);
    767         gicd_write_irouter(s, attrs, irq, r);
    768         return true;
    769     }
    770     case GICD_IDREGS ... GICD_IDREGS + 0x2f:
    771     case GICD_TYPER:
    772     case GICD_IIDR:
    773         /* RO registers, ignore the write */
    774         qemu_log_mask(LOG_GUEST_ERROR,
    775                       "%s: invalid guest write to RO register at offset "
    776                       TARGET_FMT_plx "\n", __func__, offset);
    777         return true;
    778     default:
    779         return false;
    780     }
    781 }
    782 
    783 static bool gicd_writeq(GICv3State *s, hwaddr offset,
    784                         uint64_t value, MemTxAttrs attrs)
    785 {
    786     /* Our only 64-bit registers are GICD_IROUTER<n> */
    787     int irq;
    788 
    789     switch (offset) {
    790     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
    791         irq = (offset - GICD_IROUTER) / 8;
    792         gicd_write_irouter(s, attrs, irq, value);
    793         return true;
    794     default:
    795         return false;
    796     }
    797 }
    798 
    799 static bool gicd_readq(GICv3State *s, hwaddr offset,
    800                        uint64_t *data, MemTxAttrs attrs)
    801 {
    802     /* Our only 64-bit registers are GICD_IROUTER<n> */
    803     int irq;
    804 
    805     switch (offset) {
    806     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
    807         irq = (offset - GICD_IROUTER) / 8;
    808         *data = gicd_read_irouter(s, attrs, irq);
    809         return true;
    810     default:
    811         return false;
    812     }
    813 }
    814 
    815 MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data,
    816                             unsigned size, MemTxAttrs attrs)
    817 {
    818     GICv3State *s = (GICv3State *)opaque;
    819     bool r;
    820 
    821     switch (size) {
    822     case 1:
    823         r = gicd_readb(s, offset, data, attrs);
    824         break;
    825     case 2:
    826         r = gicd_readw(s, offset, data, attrs);
    827         break;
    828     case 4:
    829         r = gicd_readl(s, offset, data, attrs);
    830         break;
    831     case 8:
    832         r = gicd_readq(s, offset, data, attrs);
    833         break;
    834     default:
    835         r = false;
    836         break;
    837     }
    838 
    839     if (!r) {
    840         qemu_log_mask(LOG_GUEST_ERROR,
    841                       "%s: invalid guest read at offset " TARGET_FMT_plx
    842                       " size %u\n", __func__, offset, size);
    843         trace_gicv3_dist_badread(offset, size, attrs.secure);
    844         /* The spec requires that reserved registers are RAZ/WI;
    845          * so use MEMTX_ERROR returns from leaf functions as a way to
    846          * trigger the guest-error logging but don't return it to
    847          * the caller, or we'll cause a spurious guest data abort.
    848          */
    849         *data = 0;
    850     } else {
    851         trace_gicv3_dist_read(offset, *data, size, attrs.secure);
    852     }
    853     return MEMTX_OK;
    854 }
    855 
    856 MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data,
    857                              unsigned size, MemTxAttrs attrs)
    858 {
    859     GICv3State *s = (GICv3State *)opaque;
    860     bool r;
    861 
    862     switch (size) {
    863     case 1:
    864         r = gicd_writeb(s, offset, data, attrs);
    865         break;
    866     case 2:
    867         r = gicd_writew(s, offset, data, attrs);
    868         break;
    869     case 4:
    870         r = gicd_writel(s, offset, data, attrs);
    871         break;
    872     case 8:
    873         r = gicd_writeq(s, offset, data, attrs);
    874         break;
    875     default:
    876         r = false;
    877         break;
    878     }
    879 
    880     if (!r) {
    881         qemu_log_mask(LOG_GUEST_ERROR,
    882                       "%s: invalid guest write at offset " TARGET_FMT_plx
    883                       " size %u\n", __func__, offset, size);
    884         trace_gicv3_dist_badwrite(offset, data, size, attrs.secure);
    885         /* The spec requires that reserved registers are RAZ/WI;
    886          * so use MEMTX_ERROR returns from leaf functions as a way to
    887          * trigger the guest-error logging but don't return it to
    888          * the caller, or we'll cause a spurious guest data abort.
    889          */
    890     } else {
    891         trace_gicv3_dist_write(offset, data, size, attrs.secure);
    892     }
    893     return MEMTX_OK;
    894 }
    895 
    896 void gicv3_dist_set_irq(GICv3State *s, int irq, int level)
    897 {
    898     /* Update distributor state for a change in an external SPI input line */
    899     if (level == gicv3_gicd_level_test(s, irq)) {
    900         return;
    901     }
    902 
    903     trace_gicv3_dist_set_irq(irq, level);
    904 
    905     gicv3_gicd_level_replace(s, irq, level);
    906 
    907     if (level) {
    908         /* 0->1 edges latch the pending bit for edge-triggered interrupts */
    909         if (gicv3_gicd_edge_trigger_test(s, irq)) {
    910             gicv3_gicd_pending_set(s, irq);
    911         }
    912     }
    913 
    914     gicv3_update(s, irq, 1);
    915 }