qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

arm_gicv3.c (13335B)


      1 /*
      2  * ARM Generic Interrupt Controller v3 (emulation)
      3  *
      4  * Copyright (c) 2015 Huawei.
      5  * Copyright (c) 2016 Linaro Limited
      6  * Written by Shlomo Pongratz, Peter Maydell
      7  *
      8  * This code is licensed under the GPL, version 2 or (at your option)
      9  * any later version.
     10  */
     11 
     12 /* This file contains implementation code for an interrupt controller
     13  * which implements the GICv3 architecture. Specifically this is where
     14  * the device class itself and the functions for handling interrupts
     15  * coming in and going out live.
     16  */
     17 
     18 #include "qemu/osdep.h"
     19 #include "qapi/error.h"
     20 #include "qemu/module.h"
     21 #include "hw/intc/arm_gicv3.h"
     22 #include "gicv3_internal.h"
     23 
     24 static bool irqbetter(GICv3CPUState *cs, int irq, uint8_t prio)
     25 {
     26     /* Return true if this IRQ at this priority should take
     27      * precedence over the current recorded highest priority
     28      * pending interrupt for this CPU. We also return true if
     29      * the current recorded highest priority pending interrupt
     30      * is the same as this one (a property which the calling code
     31      * relies on).
     32      */
     33     if (prio < cs->hppi.prio) {
     34         return true;
     35     }
     36     /* If multiple pending interrupts have the same priority then it is an
     37      * IMPDEF choice which of them to signal to the CPU. We choose to
     38      * signal the one with the lowest interrupt number.
     39      */
     40     if (prio == cs->hppi.prio && irq <= cs->hppi.irq) {
     41         return true;
     42     }
     43     return false;
     44 }
     45 
     46 static uint32_t gicd_int_pending(GICv3State *s, int irq)
     47 {
     48     /* Recalculate which distributor interrupts are actually pending
     49      * in the group of 32 interrupts starting at irq (which should be a multiple
     50      * of 32), and return a 32-bit integer which has a bit set for each
     51      * interrupt that is eligible to be signaled to the CPU interface.
     52      *
     53      * An interrupt is pending if:
     54      *  + the PENDING latch is set OR it is level triggered and the input is 1
     55      *  + its ENABLE bit is set
     56      *  + the GICD enable bit for its group is set
     57      *  + its ACTIVE bit is not set (otherwise it would be Active+Pending)
     58      * Conveniently we can bulk-calculate this with bitwise operations.
     59      */
     60     uint32_t pend, grpmask;
     61     uint32_t pending = *gic_bmp_ptr32(s->pending, irq);
     62     uint32_t edge_trigger = *gic_bmp_ptr32(s->edge_trigger, irq);
     63     uint32_t level = *gic_bmp_ptr32(s->level, irq);
     64     uint32_t group = *gic_bmp_ptr32(s->group, irq);
     65     uint32_t grpmod = *gic_bmp_ptr32(s->grpmod, irq);
     66     uint32_t enable = *gic_bmp_ptr32(s->enabled, irq);
     67     uint32_t active = *gic_bmp_ptr32(s->active, irq);
     68 
     69     pend = pending | (~edge_trigger & level);
     70     pend &= enable;
     71     pend &= ~active;
     72 
     73     if (s->gicd_ctlr & GICD_CTLR_DS) {
     74         grpmod = 0;
     75     }
     76 
     77     grpmask = 0;
     78     if (s->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
     79         grpmask |= group;
     80     }
     81     if (s->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
     82         grpmask |= (~group & grpmod);
     83     }
     84     if (s->gicd_ctlr & GICD_CTLR_EN_GRP0) {
     85         grpmask |= (~group & ~grpmod);
     86     }
     87     pend &= grpmask;
     88 
     89     return pend;
     90 }
     91 
     92 static uint32_t gicr_int_pending(GICv3CPUState *cs)
     93 {
     94     /* Recalculate which redistributor interrupts are actually pending,
     95      * and return a 32-bit integer which has a bit set for each interrupt
     96      * that is eligible to be signaled to the CPU interface.
     97      *
     98      * An interrupt is pending if:
     99      *  + the PENDING latch is set OR it is level triggered and the input is 1
    100      *  + its ENABLE bit is set
    101      *  + the GICD enable bit for its group is set
    102      *  + its ACTIVE bit is not set (otherwise it would be Active+Pending)
    103      * Conveniently we can bulk-calculate this with bitwise operations.
    104      */
    105     uint32_t pend, grpmask, grpmod;
    106 
    107     pend = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
    108     pend &= cs->gicr_ienabler0;
    109     pend &= ~cs->gicr_iactiver0;
    110 
    111     if (cs->gic->gicd_ctlr & GICD_CTLR_DS) {
    112         grpmod = 0;
    113     } else {
    114         grpmod = cs->gicr_igrpmodr0;
    115     }
    116 
    117     grpmask = 0;
    118     if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
    119         grpmask |= cs->gicr_igroupr0;
    120     }
    121     if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
    122         grpmask |= (~cs->gicr_igroupr0 & grpmod);
    123     }
    124     if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP0) {
    125         grpmask |= (~cs->gicr_igroupr0 & ~grpmod);
    126     }
    127     pend &= grpmask;
    128 
    129     return pend;
    130 }
    131 
    132 /* Update the interrupt status after state in a redistributor
    133  * or CPU interface has changed, but don't tell the CPU i/f.
    134  */
    135 static void gicv3_redist_update_noirqset(GICv3CPUState *cs)
    136 {
    137     /* Find the highest priority pending interrupt among the
    138      * redistributor interrupts (SGIs and PPIs).
    139      */
    140     bool seenbetter = false;
    141     uint8_t prio;
    142     int i;
    143     uint32_t pend;
    144 
    145     /* Find out which redistributor interrupts are eligible to be
    146      * signaled to the CPU interface.
    147      */
    148     pend = gicr_int_pending(cs);
    149 
    150     if (pend) {
    151         for (i = 0; i < GIC_INTERNAL; i++) {
    152             if (!(pend & (1 << i))) {
    153                 continue;
    154             }
    155             prio = cs->gicr_ipriorityr[i];
    156             if (irqbetter(cs, i, prio)) {
    157                 cs->hppi.irq = i;
    158                 cs->hppi.prio = prio;
    159                 seenbetter = true;
    160             }
    161         }
    162     }
    163 
    164     if (seenbetter) {
    165         cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
    166     }
    167 
    168     if ((cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) && cs->gic->lpi_enable &&
    169         (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) &&
    170         (cs->hpplpi.prio != 0xff)) {
    171         if (irqbetter(cs, cs->hpplpi.irq, cs->hpplpi.prio)) {
    172             cs->hppi.irq = cs->hpplpi.irq;
    173             cs->hppi.prio = cs->hpplpi.prio;
    174             cs->hppi.grp = cs->hpplpi.grp;
    175             seenbetter = true;
    176         }
    177     }
    178 
    179     /* If the best interrupt we just found would preempt whatever
    180      * was the previous best interrupt before this update, then
    181      * we know it's definitely the best one now.
    182      * If we didn't find an interrupt that would preempt the previous
    183      * best, and the previous best is outside our range (or there was no
    184      * previous pending interrupt at all), then that is still valid, and
    185      * we leave it as the best.
    186      * Otherwise, we need to do a full update (because the previous best
    187      * interrupt has reduced in priority and any other interrupt could
    188      * now be the new best one).
    189      */
    190     if (!seenbetter && cs->hppi.prio != 0xff &&
    191         (cs->hppi.irq < GIC_INTERNAL ||
    192          cs->hppi.irq >= GICV3_LPI_INTID_START)) {
    193         gicv3_full_update_noirqset(cs->gic);
    194     }
    195 }
    196 
    197 /* Update the GIC status after state in a redistributor or
    198  * CPU interface has changed, and inform the CPU i/f of
    199  * its new highest priority pending interrupt.
    200  */
    201 void gicv3_redist_update(GICv3CPUState *cs)
    202 {
    203     gicv3_redist_update_noirqset(cs);
    204     gicv3_cpuif_update(cs);
    205 }
    206 
    207 /* Update the GIC status after state in the distributor has
    208  * changed affecting @len interrupts starting at @start,
    209  * but don't tell the CPU i/f.
    210  */
    211 static void gicv3_update_noirqset(GICv3State *s, int start, int len)
    212 {
    213     int i;
    214     uint8_t prio;
    215     uint32_t pend = 0;
    216 
    217     assert(start >= GIC_INTERNAL);
    218     assert(len > 0);
    219 
    220     for (i = 0; i < s->num_cpu; i++) {
    221         s->cpu[i].seenbetter = false;
    222     }
    223 
    224     /* Find the highest priority pending interrupt in this range. */
    225     for (i = start; i < start + len; i++) {
    226         GICv3CPUState *cs;
    227 
    228         if (i == start || (i & 0x1f) == 0) {
    229             /* Calculate the next 32 bits worth of pending status */
    230             pend = gicd_int_pending(s, i & ~0x1f);
    231         }
    232 
    233         if (!(pend & (1 << (i & 0x1f)))) {
    234             continue;
    235         }
    236         cs = s->gicd_irouter_target[i];
    237         if (!cs) {
    238             /* Interrupts targeting no implemented CPU should remain pending
    239              * and not be forwarded to any CPU.
    240              */
    241             continue;
    242         }
    243         prio = s->gicd_ipriority[i];
    244         if (irqbetter(cs, i, prio)) {
    245             cs->hppi.irq = i;
    246             cs->hppi.prio = prio;
    247             cs->seenbetter = true;
    248         }
    249     }
    250 
    251     /* If the best interrupt we just found would preempt whatever
    252      * was the previous best interrupt before this update, then
    253      * we know it's definitely the best one now.
    254      * If we didn't find an interrupt that would preempt the previous
    255      * best, and the previous best is outside our range (or there was
    256      * no previous pending interrupt at all), then that
    257      * is still valid, and we leave it as the best.
    258      * Otherwise, we need to do a full update (because the previous best
    259      * interrupt has reduced in priority and any other interrupt could
    260      * now be the new best one).
    261      */
    262     for (i = 0; i < s->num_cpu; i++) {
    263         GICv3CPUState *cs = &s->cpu[i];
    264 
    265         if (cs->seenbetter) {
    266             cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
    267         }
    268 
    269         if (!cs->seenbetter && cs->hppi.prio != 0xff &&
    270             cs->hppi.irq >= start && cs->hppi.irq < start + len) {
    271             gicv3_full_update_noirqset(s);
    272             break;
    273         }
    274     }
    275 }
    276 
    277 void gicv3_update(GICv3State *s, int start, int len)
    278 {
    279     int i;
    280 
    281     gicv3_update_noirqset(s, start, len);
    282     for (i = 0; i < s->num_cpu; i++) {
    283         gicv3_cpuif_update(&s->cpu[i]);
    284     }
    285 }
    286 
    287 void gicv3_full_update_noirqset(GICv3State *s)
    288 {
    289     /* Completely recalculate the GIC status from scratch, but
    290      * don't update any outbound IRQ lines.
    291      */
    292     int i;
    293 
    294     for (i = 0; i < s->num_cpu; i++) {
    295         s->cpu[i].hppi.prio = 0xff;
    296     }
    297 
    298     /* Note that we can guarantee that these functions will not
    299      * recursively call back into gicv3_full_update(), because
    300      * at each point the "previous best" is always outside the
    301      * range we ask them to update.
    302      */
    303     gicv3_update_noirqset(s, GIC_INTERNAL, s->num_irq - GIC_INTERNAL);
    304 
    305     for (i = 0; i < s->num_cpu; i++) {
    306         gicv3_redist_update_noirqset(&s->cpu[i]);
    307     }
    308 }
    309 
    310 void gicv3_full_update(GICv3State *s)
    311 {
    312     /* Completely recalculate the GIC status from scratch, including
    313      * updating outbound IRQ lines.
    314      */
    315     int i;
    316 
    317     gicv3_full_update_noirqset(s);
    318     for (i = 0; i < s->num_cpu; i++) {
    319         gicv3_cpuif_update(&s->cpu[i]);
    320     }
    321 }
    322 
    323 /* Process a change in an external IRQ input. */
    324 static void gicv3_set_irq(void *opaque, int irq, int level)
    325 {
    326     /* Meaning of the 'irq' parameter:
    327      *  [0..N-1] : external interrupts
    328      *  [N..N+31] : PPI (internal) interrupts for CPU 0
    329      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
    330      *  ...
    331      */
    332     GICv3State *s = opaque;
    333 
    334     if (irq < (s->num_irq - GIC_INTERNAL)) {
    335         /* external interrupt (SPI) */
    336         gicv3_dist_set_irq(s, irq + GIC_INTERNAL, level);
    337     } else {
    338         /* per-cpu interrupt (PPI) */
    339         int cpu;
    340 
    341         irq -= (s->num_irq - GIC_INTERNAL);
    342         cpu = irq / GIC_INTERNAL;
    343         irq %= GIC_INTERNAL;
    344         assert(cpu < s->num_cpu);
    345         /* Raising SGIs via this function would be a bug in how the board
    346          * model wires up interrupts.
    347          */
    348         assert(irq >= GIC_NR_SGIS);
    349         gicv3_redist_set_irq(&s->cpu[cpu], irq, level);
    350     }
    351 }
    352 
    353 static void arm_gicv3_post_load(GICv3State *s)
    354 {
    355     int i;
    356     /* Recalculate our cached idea of the current highest priority
    357      * pending interrupt, but don't set IRQ or FIQ lines.
    358      */
    359     for (i = 0; i < s->num_cpu; i++) {
    360         gicv3_redist_update_lpi_only(&s->cpu[i]);
    361     }
    362     gicv3_full_update_noirqset(s);
    363     /* Repopulate the cache of GICv3CPUState pointers for target CPUs */
    364     gicv3_cache_all_target_cpustates(s);
    365 }
    366 
    367 static const MemoryRegionOps gic_ops[] = {
    368     {
    369         .read_with_attrs = gicv3_dist_read,
    370         .write_with_attrs = gicv3_dist_write,
    371         .endianness = DEVICE_NATIVE_ENDIAN,
    372         .valid.min_access_size = 1,
    373         .valid.max_access_size = 8,
    374         .impl.min_access_size = 1,
    375         .impl.max_access_size = 8,
    376     },
    377     {
    378         .read_with_attrs = gicv3_redist_read,
    379         .write_with_attrs = gicv3_redist_write,
    380         .endianness = DEVICE_NATIVE_ENDIAN,
    381         .valid.min_access_size = 1,
    382         .valid.max_access_size = 8,
    383         .impl.min_access_size = 1,
    384         .impl.max_access_size = 8,
    385     }
    386 };
    387 
    388 static void arm_gic_realize(DeviceState *dev, Error **errp)
    389 {
    390     /* Device instance realize function for the GIC sysbus device */
    391     GICv3State *s = ARM_GICV3(dev);
    392     ARMGICv3Class *agc = ARM_GICV3_GET_CLASS(s);
    393     Error *local_err = NULL;
    394 
    395     agc->parent_realize(dev, &local_err);
    396     if (local_err) {
    397         error_propagate(errp, local_err);
    398         return;
    399     }
    400 
    401     gicv3_init_irqs_and_mmio(s, gicv3_set_irq, gic_ops);
    402 
    403     gicv3_init_cpuif(s);
    404 }
    405 
    406 static void arm_gicv3_class_init(ObjectClass *klass, void *data)
    407 {
    408     DeviceClass *dc = DEVICE_CLASS(klass);
    409     ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
    410     ARMGICv3Class *agc = ARM_GICV3_CLASS(klass);
    411 
    412     agcc->post_load = arm_gicv3_post_load;
    413     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
    414 }
    415 
    416 static const TypeInfo arm_gicv3_info = {
    417     .name = TYPE_ARM_GICV3,
    418     .parent = TYPE_ARM_GICV3_COMMON,
    419     .instance_size = sizeof(GICv3State),
    420     .class_init = arm_gicv3_class_init,
    421     .class_size = sizeof(ARMGICv3Class),
    422 };
    423 
    424 static void arm_gicv3_register_types(void)
    425 {
    426     type_register_static(&arm_gicv3_info);
    427 }
    428 
    429 type_init(arm_gicv3_register_types)